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Abstract: In this paper, we introduce a geometry called F -geometry on a statistical manifold
S using an embedding F of S into the space RX of random variables. Amari’s α−geometry
is a special case of F−geometry. Then using the embedding F and a positive smooth
functionG, we introduce (F,G)−metric and (F,G)−connections that enable one to consider
weighted Fisher information metric and weighted connections. The necessary and sufficient
condition for two (F,G)−connections to be dual with respect to the (F,G)−metric is
obtained. Then we show that Amari’s 0−connection is the only self dual F−connection with
respect to the Fisher information metric. Invariance properties of the geometric structures are
discussed, which proved that Amari’s α−connections are the only F−connections that are
invariant under smooth one-to-one transformations of the random variables.

Keywords: embedding; Amari’s α−connections; F−metric; F−connections;
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1. Introduction

Geometric study of statistical estimation has opened up an interesting new area called the Information
Geometry. Information geometry achieved a remarkable progress through the works of Amari [1,2], and
his colleagues [3,4]. In the last few years, many authors have considerably contributed in this area [5–9].
Information geometry has a wide variety of applications in other areas of engineering and science, such
as neural networks, machine learning, biology, mathematical finance, control system theory, quantum
systems, statistical mechanics, etc.
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A statistical manifold of probability distributions is equipped with a Riemannian metric and a pair
of dual affine connections [2,4,9]. It was Rao [10] who introduced the idea of using Fisher information
as a Riemannian metric in the manifold of probability distributions. Chentsov [11] introduced a family
of affine connections on a statistical manifold defined on finite sets. Amari [2] introduced a family of
affine connections called α−connections using a one parameter family of functions, the α−embeddings.
These α−connections are equivalent to those defined by Chentsov. The Fisher information metric and
these affine connections are characterized by invariance with respect to the sufficient statistic [4,12] and
play a vital role in the theory of statistical estimation. Zhang [13] generalized Amari’s α−representation
and using this general representation together with a convex function he defined a family of divergence
functions from the point of view of representational and referential duality. The Riemannian metric and
dual connections are defined using these divergence functions.

In this paper, Amari’s idea of using α−embeddings to define geometric structures is extended to a
general embedding. This paper is organized as follows. In Section 2, we define an affine connection
called F−connection and a Riemannian metric called F−metric using a general embedding F of
a statistical manifold S into the space of random variables. We show that F−metric is the Fisher
information metric and Amari’s α−geometry is a special case of F−geometry. Further, we introduce
(F,G)−metric and (F,G)−connections using the embedding F and a positive smooth function G.

In Section 3, a necessary and sufficient condition for two (F,G)−connections to be dual with
respect to the (F,G)−metric is derived and we prove that Amari’s 0−connection is the only self
dual F−connection with respect to the Fisher information metric. Then we prove that the set of all
positive finite measures on X , for a finite X , has an F−affine manifold structure for any embedding F .
In Section 4, invariance properties of the geometric structures are discussed. We prove that the Fisher
information metric and Amari’s α−connections are invariant under both the transformation of the
parameter and the transformation of the random variable. Further we show that Amari’s α−connections
are the only F−connections that are invariant under both the transformation of the parameter and the
transformation of the random variable.

Let (X,B) be a measurable space, where X is a non-empty subset of R and B is the σ-field of subsets
of X . Let RX be the space of all real valued measurable functions defined on (X,B). Consider an
n−dimensional statistical manifold S = {p(x; ξ) / ξ = [ξ1, ..., ξn] ∈ E ⊆ Rn}, with coordinates
ξ = [ξ1, ..., ξn], defined on X . S is a subset of P(X), the set of all probability measures on X given by

P(X) := {p : X −→ R / p(x) > 0 (∀ x ∈ X);

∫
X

p(x)dx = 1}. (1)

The tangent space to S at a point pξ is given by

Tξ(S) = {
n∑
i=1

αi∂i / α
i ∈ R} where ∂i =

∂

∂ξi
. (2)

Define `(x; ξ) = log p(x; ξ) and consider the partial derivatives { ∂`
∂ξi

= ∂i` ; i = 1, ...., n} which are
called scores. For the statistical manifold S, ∂i`’s are linearly independent functions in x for a fixed ξ.
Let T 1

ξ (S) be the n-dimensional vector space spanned by n functions {∂i` ; i = 1, ...., n} in x. So

T 1
ξ (S) = {

n∑
i=1

Ai∂i` / A
i ∈ R}. (3)
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Then there is a natural isomorphism between these two vector spaces Tξ(S) and T 1
ξ (S) given by

∂i ∈ Tξ(S)←→ ∂i`(x; ξ) ∈ T 1
ξ (S). (4)

Obviously, a tangent vector A =
∑n

i=1A
i∂i ∈ Tξ(S) corresponds to a random variable A(x) =∑n

i=1A
i∂i`(x; ξ) ∈ T 1

ξ (S) having the same components Ai. Note that Tξ(S) is the differentiation
operator representation of the tangent space, while T 1

ξ (S) is the random variable representation of the
same tangent space. The space T 1

ξ (S) is called the 1-representation of the tangent space.
Let A and B be two tangent vectors in Tξ(S) and A(x) and B(x) be the 1−representations of A and B
respectively. We can define an inner product on each tangent space Tξ(S) by

gξ(A,B) =< A,B >ξ = Eξ[A(x)B(x)] =

∫
A(x)B(x)p(x; ξ)dx. (5)

Especially the inner product of the basis vectors ∂i and ∂j is

gij(ξ) = < ∂i, ∂j >ξ = Eξ[∂i` ∂j`] =

∫
∂i`(x; ξ)∂j`(x; ξ)p(x; ξ)dx. (6)

Note that g =<,> defines a Riemannian metric on S called the Fisher information metric.
On the Riemannian manifold (S, g =<,>), define n3 functions Γijk by

Γijk(ξ) = Eξ[(∂i∂j`(x; ξ))(∂k`(x; ξ))]. (7)

These functions Γijk uniquely determine an affine connection∇ on S by

Γijk(ξ) =< ∇∂i∂j, ∂k >ξ . (8)

∇ is called the 1−connection or the exponential connection.
Amari [2] defined a one parameter family of functions called the α−embeddings given by

Lα(p) =

{
2

1−αp
1−α
2 α 6= 1

log p α = 1
(9)

Using these, we can define n3 functions Γαijk by

Γαijk =

∫
∂i∂jLα(p(x; ξ))∂kL−α(p(x; ξ))dx (10)

These Γαijk uniquely determine affine connections∇α on the statistical manifold S by

Γαijk = < ∇α
∂i
∂j, ∂k > (11)

which are called α−connections.
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2. F−Geometry of a Statistical Manifold

On a statistical manifold S, the Fisher information metric and exponential connection are defined
using the log embedding. In a similar way, α−connections are defined using a one parameter family of
functions, the α−embeddings. In general, we can give other geometric structures on S using different
embeddings of the manifold S into the space of random variables RX .
Let F : (0,∞) −→ R be an injective function that is at least twice differentiable. Thus we have
F ′(u) 6= 0, ∀ u ∈ (0,∞). F is an embedding of S into RX that takes each p(x; ξ) 7−→ F (p(x; ξ)).
Denote F (p(x; ξ)) by F (x; ξ) and ∂iF can be written as

∂iF (x; ξ) = p(x; ξ)F ′(p(x; ξ))∂i`(p(x; ξ)). (12)

It is clear that ∂iF (x; ξ); i = 1, ..., n are linearly independent functions in x for fixed ξ since
∂i`(p(x; ξ)); i = 1, .., n are linearly independent. Let TF (pξ)F (S) be the n-dimensional vector space
spanned by n functions ∂iF ; i = 1, ...., n in x for fixed ξ. So

TF (pξ)F (S) = {
n∑
i=1

Ai∂iF / Ai ∈ R} (13)

Let the tangent space TF (pξ)(F (S)) to F (S) at the point F (pξ) be denoted by T Fξ (S). There is a natural
isomorphism between the two vector spaces Tξ(S) and T Fξ (S) given by

∂i ∈ Tξ(S)←→ ∂iF (x; ξ) ∈ T Fξ (S). (14)

T Fξ (S) is called the F−representation of the tangent space Tξ(S).
For any A =

∑n
i=1A

i∂i ∈ Tξ(S), the corresponding A(x) =
∑n

i=1A
i∂iF ∈ T Fξ (S) is called the

F−representation of the tangent vector A and is denoted by AF (x). Note that T Fξ (S) ⊆ TF (pξ)(RX).
Since RX is a vector space, its tangent space TF (pξ)(RX) can be identified with RX . So T Fξ (S) ⊆ RX .

Definition 2.1. F−expectation of a random variable f with respect to the distribution p(x; ξ) is
defined as

EF
ξ (f) =

∫
f(x)

1

p(F ′(p))2
dx. (15)

We can use this F−expectation to define an inner product in RX by

< f, g >F
ξ = EF

ξ [f(x)g(x)], (16)

which induces an inner product on Tξ(S) by

< A,B >F
ξ = EF

ξ [AF (x)BF (x)] ; A,B ∈ Tξ(S). (17)

Proposition 2.2. The induced metric <,>F on S is the Fisher information metric g =<,> on S.
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Proof. For any basis vectors ∂i, ∂j ∈ Tξ(S)

< ∂i, ∂j >
F
ξ = EF

ξ [∂iF ∂jF ]

=

∫
∂iF ∂jF

1

p(F ′(p))2
dx

=

∫
(p F ′(p) ∂i`) (p F ′(p) ∂j`)

1

p(F ′(p))2
dx (18)

=

∫
∂i` ∂j` p(x; ξ) dx

= Eξ[∂i` ∂j`]

= gij(ξ)

= < ∂i, ∂j >ξ .

So the metric <,>F on S induced by the embedding F of S into RX is the Fisher information metric
g =<,> on S.

We can induce a connection on S using the embedding F .
Let πF|pξ : RX −→ T Fξ (S) be the projection map.

Definition 2.3. The connection induced by the embedding F on S, the F−connection, is defined as

∇F
∂i
∂j = πF|pξ(∂i∂jF )

=
∑
n

∑
m

gmn < ∂i∂jF, ∂mF >F
ξ ∂n. (19)

where [gmn(ξ)] is the inverse of the Fisher information matrix G(ξ) = [gmn(ξ)]. Note that the
F−connections are symmetric.

Lemma 2.4. The F−connection and its components can be written in terms of scores as

∇F
∂i
∂j =

∑
n

∑
m

gmnEξ

[
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂m`)

]
∂n (20)

and

ΓFijk(ξ) = Eξ

[
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂k`)

]
(21)

Proof. From Equation (12), we have

∂i∂jF = pF ′(p)∂i∂j`+ [pF ′(p) + p2F ′′(p)] ∂i` ∂j`. (22)

Therefore

< ∂i∂jF, ∂mF >F
ξ =

∫
∂i∂jF ∂mF

1

p(F ′(p))2
dx

=

∫ (
pF ′(p)∂i∂j`+ [pF ′(p) + p2F ′′(p)] ∂i` ∂j`

) ∂m`

F ′(p)
dx (23)

=

∫ (
∂i∂j` ∂m`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j` ∂m`

)
pdx

= Eξ

[
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂m`)

]
.
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Hence we can write

∇F
∂i
∂j = πF|pξ(∂i∂jF )

=
∑
n

∑
m

gmnEξ

[
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂m`)

]
∂n. (24)

Then we have the Christoffel symbols of the F−connection

Γnij =
∑
m

gmnEξ

[
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂m`)

]
(25)

and components of the F−connection are given by

ΓFijk(ξ) =< ∇F
∂i
∂j, ∂k >ξ= Eξ

[
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂k`)

]
. (26)

Theorem 2.5. Amari’s α−geometry is a special case of the F−geometry.

Proof. Let F (p) = Lα(p), Lα(p) is the α−embedding of Amari.
The components Γαijk of the α−connection are given by

Γαijk(ξ) = < ∇α
∂i
∂j, ∂k >ξ

= Eξ

[
(∂i∂j`+

1− α
2

∂i` ∂j`)(∂k`)

]
. (27)

From Equation (26), when F (p) = Lα(p)

we have

F ′(p) = L′α(p) = p−( 1+α
2 ) (28)

F ′′(p) = L′′α(p) = −1 + α

2
p−( 3+α

2 ). (29)

Then we get

1 +
pF ′′(p)

F ′(p)
= 1 +

pL′′α(p)

L′α(p)
=

1− α
2

(30)

Hence

ΓFijk(ξ) =< ∇F
∂i
∂j, ∂k >ξ = Eξ

[
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂k`)

]
= Eξ

[
(∂i∂j`+

1− α
2

∂i` ∂j`)(∂k`)

]
(31)

= Γαijk(ξ)

which are the components of the α−connection. Hence F−connection reduces to α−connection.
Thus we obtain that α−geometry is a special case of F−geometry.
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Remark 2.6. Burbea [14] introduced the concept of weighted Fisher information metric using a positive
continuous function. We use this idea to define weighted F−metric and weighted F−connections. Let
G : (0,∞) −→ R be a positive smooth function and F be an embedding, define (F,G)−expectation of
a random variable with respect to the distribution pξ as

EF,G
ξ (f) =

∫
f(x)

G(p)

p(F ′(p))2
dx. (32)

Define (F,G)−metric <,>F,G
ξ in Tpξ(S) by

< ∂i, ∂j >
F,G
ξ = EF,G

ξ [∂iF ∂jF ]

=

∫
∂iF ∂jF

G(p)

p(F ′(p))2
dx (33)

=

∫
∂i` ∂j` G(p) p dx

= Eξ[G(p) ∂i` ∂j`].

Define (F,G)−connection as

ΓF,Gijk = < ∇F,G
∂i
∂j, ∂k >ξ

= Eξ

[(
(∂i∂j`+ (1 +

pF ′′(p)

F ′(p)
)∂i` ∂j`)(∂k`)

)
(G(p))

]
. (34)

When G(p) = 1, (F,G)−connection reduces to the F−connection and the metric <,>F,G reduces to
the Fisher information metric. This is a more general way of defining Riemannian metrics and affine
connections on a statistical manifold.

3. Dual Affine Connections

Definition 3.1. Let M be a Riemannian manifold with a Riemannian metric g. Two affine connections,
∇ and∇∗ on the tangent bundle are said to be dual connections with respect to the metric g if

Zg(X, Y ) = g(∇ZX, Y ) + g(X,∇∗ZY ) (35)

holds for any vector fields X, Y, Z on M .

Theorem 3.2. Let F,H be two embeddings of statistical manifold S into the space RX of random
variables. Let G be a positive smooth function on (0,∞). Then the (F,G)−connection ∇F,G and
the (H,G)−connection∇H,G are dual connections with respect to the (F,G)−metric iff the functions F
and H satisfy

H ′(p) =
G(p)

pF ′(p)
. (36)

We call such an embedding H as a G−dual embedding of F .
The components of the dual connection∇H,G can be written as

ΓH,Gijk =

∫ (
∂i∂j`+ (

pG′(p)

G(p)
− pF ′′(p)

F ′(p)
)∂i` ∂j`

)
∂k` G(p)p dx. (37)
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Proof. ∇F,G and ∇H,G are dual connections with respect to the G−metric means,

∂k < ∂i, ∂j >
F,G=< ∇F,G

∂k
∂i, ∂j >

F,G + < ∂i,∇H,G
∂k

∂j >
F,G . (38)

for any basis vectors ∂i, ∂j, ∂k ∈ Tξ(S).

∂k < ∂i, ∂j >
F,G =

∫
∂k∂j` ∂i` pG(p)dx+

∫
∂k∂i` ∂j` pG(p)dx

+

∫
(1 +

pG′(p)

G(p)
)∂i` ∂j` ∂k` pG(p)dx. (39)

< ∇F,G
∂k
∂i, ∂j >

F,G + < ∂i,∇H,G
∂k

∂j >
F,G =

∫
∂k∂i` ∂j` pG(p)dx

+

∫
1 +

pF ′′(p)

F ′(p)
∂i` ∂j` ∂k` pG(p)dx

+

∫
1 +

pH ′′(p)

H ′(p)
∂i` ∂j` ∂k` pG(p)dx

+

∫
∂k∂j` ∂i` pG(p)dx (40)

Then the condition (38) holds iff∫
[2 +

pF ′′(p)

F ′(p)
+
pH ′′(p)

H ′(p)
]∂i` ∂j` ∂k` pG(p)dx =∫

[1 +
pG′(p)

G(p)
]∂i` ∂j` ∂k` pG(p)dx (41)

⇐⇒ [2 +
pF ′′(p)

F ′(p)
+
pH ′′(p)

H ′(p)
] = 1 +

pG′(p)

G(p)
. (42)

⇐⇒ 1 +
pH ′′(p)

H ′(p)
=
pG′(p)

G(p)
− pF ′′(p)

F ′(p)
(43)

⇐⇒ H ′′(p)

H ′(p)
=
G′(p)

G(p)
− F ′′(p)

F ′(p)
− 1

p
⇐⇒ H ′(p) =

G(p)

pF ′(p)
. (44)

Hence ∇F,G and ∇H,G are dual connections with respect to the (F,G)−metric iff Equation (36) holds.
From Equation (43), we can rewrite the components of dual connection∇H,G as

ΓH,Gijk =

∫ (
∂i∂j`+ (

pG′(p)

G(p)
− pF ′′(p)

F ′(p)
)∂i` ∂j`

)
∂k` G(p)p dx. (45)

Corollary 3.3. Amari’s 0−connection is the only self dual F−connection with respect to the Fisher
information metric.

Proof. From Theorem 3.2, for G(p) = 1 the F−connection ∇F and the H−connection ∇H are dual
connections with respect to the Fisher information metric iff the functions F and H satisfy

H ′(p) =
1

pF ′(p)
(46)
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Thus the F−connection∇F is self dual iff the embedding F satisfies the condition

F ′(p) =
1

pF ′(p)
⇐⇒ F ′(p) = p−(

1
2
) ⇐⇒ F (p) = 2p

1
2 = L0(p). (47)

That is, Amari’s 0−connection is the only self dual F−connection with respect to the Fisher
information metric.

So far, we have considered the statistical manifold S as a subset of P(X), the set of all probability
measures on X . Now we relax the condition

∫
p(x)dx = 1, and consider S as a subset of P̃(X), which

is defined by

P̃(X) := {p : X −→ R / p(x) > 0 (∀ x ∈ X);

∫
X

p(x)dx <∞}. (48)

Definition 3.4. Let M be a Riemannian manifold with a Riemannian metric g. Let ∇ be an affine
connection on M . If there exists a coordinate system [θi] of M such that ∇∂i∂j = 0 then we say that ∇
is flat, or alternatively M is flat with respect to ∇, and we call such a coordinate system [θi] an affine
coordinate system for∇.

Definition 3.5. Let S = {p(x; ξ) / ξ = [ξ1, ..., ξn] ∈ E ⊆ Rn} be an n−dimensional statistical
manifold. If for some coordinate system [θi]; i = 1, ..., n

∂i∂jF (p(x; θ)) = 0 (49)

then we can see from Equation (19) that [θi] is an F−affine coordinate system and that S = {pθ} is
F−flat. We call such S as an F−affine manifold.
The condition (49) is equivalent to the existence of the functions C,F1, .., Fn on X such that

F (p(x; θ)) = C(x) +
n∑
i=1

θiFi(x) (50)

Theorem 3.6. For any embedding F , P̃(X) is an F−affine manifold for finite X .

Proof. LetX = {x1, ...., xn} be a finite set constituted by n elements. Let Fi : X −→ R be the functions
defined by Fi(xj) = δij for i, j = 1, .., n. Let us define n coordinates [θi] by

θi = F (p(xi)) (51)

Then we get F (p(x)) =
∑n

i=1 θ
iFi(x). Therefore P̃(X) is an F−affine manifold for any

embedding F (p).

Remark 3.7. Zhang [13] introduced ρ-representation, which is a generalization of α-representation
of Amari. Zhang’s geometry is defined using this ρ-representation together with a convex function.
Zhang also defined the ρ-affine family of density functions and discussed its dually flat structure. The
F−geometry defined using a general F -representation is different from the Zhang’s geometry. The
metric defined in the F -embedding approach is the Fisher information metric and the Riemannian metric
defined using the ρ-representation is different from the Fisher information metric. The F -connections
defined are not in general dually flat and are different from the dual connections defined by Zhang.
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Remark 3.8. On a statistical manifold S , we introduced a dualistic structure (g,∇F ,∇H), where g is the
Fisher information metric and ∇F ,∇H are the dual connections with respect to the Fisher information
metric. Since F -connections are symmetric, the manifold S is flat with respect to ∇F iff S is flat with
respect to∇H . Thus if S is flat with respect to∇F , then (S, g,∇F ,∇H) is a dually flat space. The dually
flat spaces are important in statistical estimation [4].

4. Invariance of the Geometric Structures

For the statistical manifold S = {p(x; ξ) | ξ ∈ E ⊆ Rn}, the parameters are merely labels attached
to each point p ∈ S, hence the intrinsic geometric properties should be independent of these labels.
Consequently, it is natural to consider the invariance properties of the geometric structures under suitable
transformations of the variables in a statistical manifold. Here we can consider two kinds of invariance
of the geometric structures; covariance under re-parametrization of the parameter of the manifold and
invariance under the transformations of the random variable [15]. Now let us investigate the invariance
properties of the F -geometric structures defined in Section 2.

4.1. Covariance under Re-Parametrization

Let [θi] and [ηj] be two coordinate systems on S, which are related by an invertible transformation
η = η(θ). Let us denote ∂i = ∂

∂θi
and ∂j = ∂

∂ηj
. Let the coordinate expressions of the metric g be given

by gij =< ∂i, ∂j > and g̃ij =< ∂i, ∂j >. Let the components of the connection ∇ with respect to the
coordinates [θi] and [ηj] be given by Γijk, Γ̃ijk respectively.

Then the covariance of the metric g and the connection∇ under the re-parametrization means,

g̃ij =
∑
m

∑
n

∂θm

∂ηi

∂θn

∂ηj
gmn (52)

Γ̃ijk =
∑
m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk
Γmnh +

∑
m,h

∂θh

∂ηk

∂2θm

∂ηi∂ηj
gmh (53)

Lemma 4.1. The Fisher information metric g is covariant under re-parametrization.

Proof. The components of the Fisher information metric with respect to the coordinate system [θi] are
given by

gij(θ) = < ∂i, ∂j >θ =

∫
∂ip(x; θ)∂jp(x; θ)

1

p(x; θ)
dx. (54)

Let p̃(x; η) = p(x; θ(η)). Then the components of the Fisher information metric with respect to the
coordinate system [ηj] are given by

g̃ij(η) = < ∂i, ∂j >η =

∫
∂ip̃(x; η)∂j p̃(x; η)

1

p̃(x; η)
dx. (55)

Since

∂ip̃(x; η) =
∑
m

∂θm

∂ηi

∂p(x; θ(η))

∂θm
(56)
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we can write

g̃ij(η) =

∫
∂ip̃(x; η)∂j p̃(x; η)

1

p̃(x; η)
dx

=

∫ ∑
m

∂θm

∂ηi

∂p(x; θ)

∂θm

∑
n

∂θn

∂ηj

∂p(x; θ)

∂θn
1

p(x; θ)
dx (57)

=
∑
m

∑
n

∂θm

∂ηi

∂θn

∂ηj

∫
∂mp(x; θ)∂np(x; θ)

1

p(x; θ)
dx.

=

[∑
m

∑
n

∂θm

∂ηi

∂θn

∂ηj
gmn(θ)

]
θ=θ(η)

Lemma 4.2. The F−connection∇F is covariant under re-parametrization.

Proof. Let the components of ∇F with respect to the coordinates [θi] and [ηj] be given by Γijk,
Γ̃ijk respectively.
Let p̃(x; η) = p(x; θ(η)). Let us denote log p(x; θ) by `(x; θ) and log p̃(x; η) by ˜̀(x; η).
The components of the F−connection∇F with respect to the coordinate system [θi] are given by

Γijk =

∫ (
∂i∂j`(x; θ) + (1 +

pF ′′(p)

F ′(p)
)∂i`(x; θ) ∂j`(x; θ)

)
∂k`(x; θ)p(x; θ)dx (58)

The components of∇F with respect to the coordinate system [ηj] are given by

Γ̃ijk =

∫ (
∂i∂j ˜̀(x; η) + (1 +

p̃F ′′(p̃)

F ′(p̃)
)∂i ˜̀(x; η) ∂j ˜̀(x; η)

)
∂k ˜̀(x; η)p̃(x; η)dx (59)

We can write

∂i ˜̀(x; η) =
∑
m

∂θm

∂ηi

∂`(x; θ(η))

∂θm
(60)

Then

∂i∂j ˜̀(x; η) =
∑
m,n

∂θm

∂ηi

∂θn

∂ηj

∂2`(x; θ(η))

∂θm∂θn
+
∑
m

∂2θm

∂ηi∂ηj

∂`(x; θ(η))

∂θm
(61)

∂i ˜̀(x; η) ∂j ˜̀(x; η) =
∑
m,n

∂θm

∂ηi

∂θn

∂ηj

∂`(x; θ(η))

∂θm
∂`(x; θ(η))

∂θn
(62)

∂k ˜̀(x; η) =
∑
h

∂θh

∂ηk

∂`(x; θ(η))

∂θh
(63)

Hence we get

Γ̃ijk =

∫ ∑
m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∂2`(x; θ(η))

∂θm∂θn
∂`(x; θ(η))

∂θh
p(x; θ(η))dx+

∫ ∑
m,h

∂2θm

∂ηi∂ηj

∂θh

∂ηk

∂`(x; θ(η))

∂θm
∂`(x; θ(η))

∂θh
p(x; θ(η))dx+ (64)

∫
(1 +

pF ′′(p)

F ′(p)
)
∑
m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∂`(x; θ(η))

∂θm
∂`(x; θ(η))

∂θn
∂`(x; θ(η))

∂θh
p(x; θ(η))dx
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=
∑
m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∫
∂2`(x; θ(η))

∂θm∂θn
∂`(x; θ(η))

∂θh
p(x; θ(η))dx+

∑
m,h

∂2θm

∂ηi∂ηj

∂θh

∂ηk

∫
∂`(x; θ(η))

∂θm
∂`(x; θ(η))

∂θh
p(x; θ(η))dx+

∑
m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∫
(1 +

pF ′′(p)

F ′(p)
)
∂`(x; θ(η))

∂θm
∂`(x; θ(η))

∂θn
∂`(x; θ(η))

∂θh
p(x; θ(η))dx

=
∑
m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk
Γmnh +

∑
m,h

∂θh

∂ηk

∂2θm

∂ηi∂ηj
gmh

Hence we showed that F−connections are covariant under re-parametrization of the parameter. The
covariance under re-parametrization actually means that the metric and connections are coordinate
independent. Hence we obtained that the F−geometry is coordinate independent.

4.2. Invariance Under the Transformation of the Random Variable

Amari and Nagaoka [4] defined the invariance of Riemannian metric and connections on a statistical
manifold under a transformation of the random variable as follows,

Definition 4.3. Let S = {p(x; ξ) | ξ ∈ E ⊆ Rn} be a statistical manifold defined on a sample space
X . Let x, y be random variables defined on sample spaces X, Y respectively and φ be a transformation
of x to y. Assume that this transformation induces a model S ′ = {q(y; ξ) | ξ ∈ E ⊆ Rn} on Y .
Let λ : S −→ S ′ be a diffeomorphism defined as

λ(pξ) = qξ (65)

Let g =<>, g′ =<>′ be two Riemannian metrics defined on S and S ′ respectively. Let ∇,∇′ be two
affine connections on S and S ′ respectively. Then the invariance properties are given by

< X, Y >p = < λ∗(X), λ∗(Y ) >′λ(p) ∀ X, Y ∈ Tp(S) (66)

λ∗(∇XY ) = ∇′λ∗(X)λ∗(Y ) (67)

where λ∗ is the push forward map associated with the map λ, which is defined by

λ∗(X)λ(p) = (dλ)p(X) (68)

Now we discuss the invariance properties of the F−geometry under suitable transformations of the
random variable. Let us restrict ourselves to the case of smooth one-to-one transformations of the random
variable that are in fact statistically interesting. Amari and Nagaoka [4] mentioned a transformation, the
sufficient statistic of the parameter of the statistical model, which is widely used in statistical estimation.
In fact the one-to-one transformations of the random variable are trivial examples of sufficient statistic.

Consider a statistical manifold S = {p(x; ξ) | ξ ∈ E ⊆ Rn} defined on a sample space X . Let φ be
a smooth one-to-one transformation of the random variable x to y. Then the density function q(y; ξ) of
the induced model S ′ takes the form

q(y : ξ) = p(w(y); ξ)w′(y) (69)
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where w is a function such that x = w(y) and φ′(x) = 1
w′(φ(x))

.
Let us denote log q(y; ξ) by `(qy) and log p(x; ξ) by `(px).

Lemma 4.4. The Fisher information metric and Amari’s α-connections are invariant under smooth
one-to-one transformations of the random variable.

Proof. Let φ be a smooth one-to-one transformation of the random variable x to y.
From Equation (69)

p(x; ξ) = q(φ(x); ξ)φ′(x) (70)

∂i`(qy) = ∂i`(pw(y)) (71)

∂i`(qφ(x)) = ∂i`(px) (72)

The Fisher information metric g′ on the induced manifold S ′ is given by

g′ij(qξ) =

∫
Y

∂i`(qy) ∂j`(qy) q(y; ξ)dy

=

∫
X

∂i`(qφ(x)) ∂j`(qφ(x)) q(φ(x); ξ) φ′(x)dx (73)

=

∫
X

∂i`(px) ∂j`(px) p(x; ξ)dx

= gij(pξ)

which is the Fisher information metric on S.
The components of Amari’s α−connections on the induced manifold S ′ are given by

Γ́αijk(qξ) =

∫
Y

∂i∂j`(qy) ∂k`(qy) q(y; ξ)dy +∫
Y

1− α
2

∂i`(qy) ∂j`(qy) ∂k`(qy) q(y; ξ)dy

=

∫
X

∂i∂j`(qφ(x)) ∂k`(qφ(x)) q(φ(x); ξ)φ′(x)dx +∫
X

1− α
2

∂i`(qφ(x)) ∂j`(qφ(x)) ∂k`(qφ(x)) q(φ(x); ξ)φ′(x)dx (74)

=

∫
X

∂i∂j`(px) ∂k`(px) p(x; ξ)dx +∫
X

1− α
2

∂i`(px) ∂j`(px) ∂k`(px) p(x; ξ)dx

= Γαijk(pξ)

which are the components of Amari’s α−connections on the manifold S. Thus we obtained that
the Fisher information metric and Amari’s α-connections are invariant under smooth one-to-one
transformations of the random variable.

Now we prove that α-connections are the only F−connections that are invariant under smooth
one-to-one transformations of the random variable.
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Theorem 4.5. Amari’s α-connections are the only F−connections that are invariant under smooth one-
to-one transformations of the random variable.

Proof. Let φ be a smooth one-to-one transformation of the random variable x to y.
The components of the F−connection of the induced manifold S ′ are

Γ́Fijk(qξ) =

∫
Y

(
∂i∂j`(qy) + (1 +

qF ′′(q)

F ′(q)
)∂i`(qy) ∂j`(qy)

)
∂k`(qy) q(y; ξ)dy

=

∫
X

∂i∂j`(px) ∂k`(px) p(x; ξ)dx+ (75)∫
X

(1 +
q(φ(x); ξ)F ′′(q(φ(x); ξ))

F ′(q(φ(x); ξ))
)∂i`(px) ∂j`(px) ∂k`(px) p(x; ξ)dx.

and the components of the F−connection of the manifold S are

ΓFijk(pξ) =

∫
X

∂i∂j`(px) ∂k`(px) p(x; ξ)dx+∫
X

(1 +
p(φ(x); ξ)F ′′(p(x; ξ))

F ′(p(x; ξ))
)∂i`(px) ∂j`(px) ∂k`(px) p(x; ξ)dx. (76)

Then by equating the components Γ́Fijk(qξ), ΓFijk(pξ) of the F−connection, we get∫
q(φ(x); ξ)F ′′(q(φ(x); ξ))

F ′(q(φ(x); ξ))
∂i`(px) ∂j`(px) ∂k`(px) p(x; ξ)dx =∫

p(x; ξ)F ′′(p(x; ξ))

F ′(p(x; ξ))
∂i`(px) ∂j`(px) ∂k`(px) p(x; ξ)dx (77)

Then it follows that the condition for F−connection to be invariant under the transformation φ is
given by

pF ′′(p)

F ′(p)
= k, (78)

where k is a real constant.
Hence it follows from the Euler’s homogeneous function theorem that the function F ′ is a positive
homogeneous function in p of degree k. So

F ′(λp) = λkF ′(p) for λ > 0. (79)

Since F ′ is a positive homogeneous function in the single variable p, without loss of generality
we can take,

F ′(p) = pk. (80)

Therefore

F (p) =

{
pk+1

k+1
k 6= −1

log p k = −1
(81)

Let

k =
−(1 + α)

2
, α ∈ R. (82)
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we get

F (p) =

{
2

1−αp
1−α
2 α 6= 1

log p α = 1
(83)

which is nothing but Amari’s α−embeddings Lα(p). Hence we obtain that Amari’s α−connections
are the only F−connections that are invariant under smooth one-to-one transformations of the
random variable.

Remark 4.6. In Section 2, we defined (F,G)-connections using a general embedding function F and a
positive smooth function G. We can show that (F,G)-connection is invariant under smooth one-to-one
transformation of the random variable when G(p) = c, where c is a real constant and F (p) = Lα(p)

(proof is similar to that of Theorem 4.5). The notion of (F,G)−metric and (F,G)−connection provides
a more general way of introducing geometric structures on a manifold. We were able to show that
the Fisher information metric (up to a constant) and Amari’s α−connections are the only metric and
connections belonging to this class that are invariant under both the transformation of the parameter
and the one-to-one transformation of the random variable.

5. Conclusions

The Fisher information metric and Amari’s α−connections are widely used in the theory of
information geometry and have an important role in the theory of statistical estimation. Amari’s
α−connections are defined using a one parameter family of functions, the α−embeddings.
We generalized this idea to introduce geometric structures on a statistical manifold S. We considered
a general embedding function F of S into RX and obtained a geometric structure on S called the
F−geometry. Amari’s α−geometry is a special case of F−geometry. A more general way of
defining Riemannian metrics and affine connections on a statistical manifold S is given using a positive
continuous function G and the embedding F .

Amari’s α−geometry is the only F−geometry that is invariant under both the transformation of
the parameter and the random variable or equivalently under the sufficient statistic. We can relax
the condition of invariance under the sufficient statistic and can consider other statistically significant
transformations as well, which then gives an F−geometry other than α−geometry that is invariant under
these statistically significant transformations. We believe that the idea of F−geometry can be used in
the further development of the geometric theory of q-exponential families. We look forward to studying
these problems in detail later.
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