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Abstract: We study the problem of finding probability densities that match given European
call option prices. To allow prior information about such a density to be taken into account,
we generalise the algorithm presented in Neri and Schneider (Appl. Math. Finance 2013)
to find the maximum entropy density of an asset price to the relative entropy case. This is
applied to study the impact of the choice of prior density in two market scenarios. In the
first scenario, call option prices are prescribed at only a small number of strikes, and we
see that the choice of prior, or indeed its omission, yields notably different densities. The
second scenario is given by CBOE option price data for S&P500 index options at a large
number of strikes. Prior information is now considered to be given by calibrated Heston,
Schöbel–Zhu or Variance Gamma models. We find that the resulting digital option prices
are essentially the same as those given by the (non-relative) Buchen–Kelly density itself. In
other words, in a sufficiently liquid market, the influence of the prior density seems to vanish
almost completely. Finally, we study variance swaps and derive a simple formula relating
the fair variance swap rate to entropy. Then we show, again, that the prior loses its influence
on the fair variance swap rate as the number of strikes increases.
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1. Introduction

Many financial derivatives are valued by calculating their expected payoff under the risk-neutral
measure. For path-independent derivatives, the expectation can be obtained by integrating the product
of the payoff function and the density.

If a pricing model has been chosen for a market in which many derivative products are actively quoted,
then often, due to the limited number of model parameters, this model will be unable to perfectly match
the market quotes, and a compromise must be made during model calibration by using some kind of
“best-fit” criterion.

If no model has been chosen, one can try to imply from the market data for a given maturity a
probability density function that leads, by integration as described above, exactly back to the quoted
prices. However, unless the market is perfectly liquid, there will be infinitely many densities that match
the price quotes, and some criterion for the selection of the density will have to be applied. One such
criterion is to choose the density that maximises uncertainty or, in another word, entropy. The idea is
that between two densities matching the constraints imposed by the market prices, the one that is more
uncertain—where “uncertain” means, very roughly speaking, spreading probability over a large interval
instead of assigning it to just a few points, where possible—should be chosen. In general, applying the
criterion of entropy delivers convincing results. For example, on the unit interval [0, 1], if no constraints
are given, the density with the greatest entropy—the maximum entropy density (MED)—is the uniform
density. On the positive real numbers [0,∞), if the mean is given as the only constraint, the entropy
maximiser is the exponential density. There is no entropy maximiser over the real numbers R, but if the
mean and variance are imposed as constraints, then the density with largest entropy is a normal density.

A third approach, which we will use to combine the two approaches described above, is to take a
density p, which may be near to matching some imposed constraints, as a prior density and to then find
a density q that is “as close” as possible to p and exactly matches these constraints. The criterion we
will employ to measure the “distance” between the densities q and p is that of relative entropy. Since we
are trying to depart as little as possible from the prior p, our goal will be to find the minimum relative
entropy density (MRED) q that matches the given constraints. Of course, if the prior p already matches
the constraints, then we can take as our solution q = p, since the relative entropy of p with respect to
itself is zero.

The concept of entropy has its origins in the works of Boltzmann [1] in Statistical Mechanics and
Shannon [2] in Information Theory. Relative entropy was introduced by Kullback and Leibler [3] and
is also known as the Kullback–Leibler information number I = I(q‖p) or I-Divergence [4]. To see
applications of relative entropy to a wide range of areas such as combinatorial optimisation, simulation
or machine learning, readers are referred to the book by Rubinstein and Kroese [5].

In Finance, too, entropy has become a popular tool. Buchen and Kelly [6] and Stutzer [7]
(see also [8–10]) were the first to apply the optimisation of entropy and relative entropy to the estimation
of the distribution of an underlying asset from given option prices. As a prior density in the relative
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entropy approach, Buchen and Kelly take a Black–Scholes log-normal density, whereas Stutzer uses
historical returns to obtain a discrete density. As Buchen and Kelly, and in contrast to Stutzer, we
consider the continuous case. However, we consider densities coming from a larger class of models.

Borwein et al. [11] analyse the non-relative Buchen–Kelly approach in the framework of partially
finite convex programming, legitimise the formal calculations involving Lagrange multipliers, and
provide an analysis of the constraints. In a brief conclusion, they remark on how their analysis can
be extended to the case when a given density is taken as prior information.

Orozco Rodriguez and Santosa [12] analyse the stability of the algorithm presented in [11]. Since
an explicit dual function only exists in the non-relative case, they restrict their analysis to maximisation
of Boltzmann–Shannon entropy. They also point out the instability of the Buchen–Kelly algorithm.
We tried their examples with the algorithm introduced by Neri and Schneider [13] and experienced no
instability issues. In the present work, we generalise the algorithm of [13] to the relative entropy case.

Frittelli [14] studies the existence of the minimal entropy martingale measure (MEMM) in an
incomplete market and relates its density to exponential utility functions. Fujiwara and Miyahara [15]
study the existence and form of the MEMM in the context of geometric Lévy processes and obtain results
relating the MEMM price of a contingent claim to its utility indifference price for an exponential utility
function. In both cases, the MEMM is minimal in the sense of the relative entropy distance to a given
prior measure.

Avellaneda et al. [16] present an algorithm to calibrate a volatility surface to option prices quoted
in the market, which is based on minimising the relative entropy distance of an arbitrage-free diffusion
process to a prior diffusion.

Gulko [17–19] develops a framework based on entropy maximisation and derives models to price
stock and bond options. Brody et al. [20,21] use entropy maximisation to obtain option pricing formulas
and focus on option Greeks, and in particular on option gamma. In [22], they consider the maximisation
of Rényi entropy to obtain power-law densities instead of piece-wise exponential densities. The choice
of the parameter defining the Rényi entropy gives an extra degree of freedom, which allows to control
the tails of the density. However, they do not consider prior densities and relative entropy minimisation.

Surveys of applications of entropy in finance are given by Hawkins [23] and, more recently, Zhou,
Cai and Tong [24].

In the study we carry out in this paper, the prior density function of the asset price for a fixed
maturity is given by a model, such as the Black–Scholes model or the Heston stochastic volatility model.
Depending on the model in question, this prior density will be either directly available in analytical form
(in the case of the Black–Scholes model a log-normal distribution), or have to be obtained numerically
(in case of the Heston model via Fourier inversion). The algorithms we propose to calculate the MRED
q (with respect to p) satisfying some constraints given by European option prices are extensions of the
two algorithms presented in [13,25].

In the first case, the option data consists of call and digital call prices (Section 3), and in the second
case only of call prices (Section 4). If only the call prices are imposed, say n of them, the problem
consists in finding the minimum of a real-valued, convex function (the relative entropy function) in n
variables. If one additionally imposes the n prices of digital options at the same strikes, the problem
simplifies to a sequence of n one-dimensional root-finding problems. The multi-dimensional algorithm
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makes use of the single-dimensional one by fixing the set of call prices, defining a parameter space Ω

for arbitrage-free digital prices, and then finding the unique density in this family with the smallest
relative entropy.

The models we take to generate our prior densities are presented in Section 5, together with a review
of the characteristic function pricing approach and the corresponding Fourier transform techniques. In
addition to the two models already mentioned above, we also consider the Schöbel–Zhu stochastic
volatility model and the Variance Gamma model.

In Section 6 we study two market scenarios. In the first one, we take a log-normal Black–Scholes and
a Heston density as our priors and calculate the MREDs that match given call prices. We then compare
option prices to those obtained with an MED, and also to those obtained with another log-normal
density that matches the constraints, and observe that the price differences can be substantial. In the
second scenario, we take S&P500 call option prices from the CBOE. This market is very liquid, and
for the maturity we consider we have quotes for a large set of strikes. We calibrate a Heston model, a
Schöbel–Zhu model and a Variance Gamma model to this data and use the densities generated by these
models as prior densities. Then, we calculate the three MREDs for these priors, and compare the digital
option prices they give to those given by the original models, those given by an MED, and finally the
market prices themselves, which are available in this case. We observe that it makes almost no difference
which model is chosen for the prior, and that all three MREDs essentially agree with the MED.

In Section 7 we study variance swaps and the fair swap rate. Assuming that the underlying asset
follows a diffusion process without jumps, it is possible to relate this rate to the price of a log-contract. A
formula linking it to an integral over call and put prices at varying strikes is also well known ([26–28]).
Here, we establish a simple formula (Corollary 2) that relates the fair variance swap rate to entropy.
We then give an explicit formula (see Equation (38)) for the fair variance swap rate in the case of a
(non-relative) MED in terms of the assumed drift rate and the density’s parameters. In the relative
entropy case, we calculate the fair rate numerically and show that for MREDs constrained by data at
very few strikes the prior density can have a significant impact on the fair rate. However, as in the
examples given in Section 6, the impact of the prior density diminishes rapidly as data at more strikes
are added as constraints. Finally, Section 8 concludes the article.

2. Relative Entropy and Option Prices

In this section we review the concept of relative entropy, which can be regarded as a way of measuring
the “distance” between two given densities. Our goal is to apply this measure to the following problem:
Given a prior density p, coming for example from a model that fits well, but not exactly, European option
prices observed in the market, how can we deform this density in such a way that it exactly matches these
prices but stays as close as possible to the original density under the criterion of relative entropy?
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2.1. Relative Entropy

For two probability distributions Q and P , the relative entropy of Q with respect to P is defined by

H(Q‖P ) =


∫

ln
∂Q

∂P
dQ =

∫
∂Q

∂P
ln
∂Q

∂P
dP, Q� P,

∞ else,

(1)

where ∂Q/∂P is the Radon–Nikodým derivative.
From the inequality S lnS ≥ S − 1 we have

H(Q‖P ) =

∫
∂Q

∂P
ln
∂Q

∂P
dP ≥

∫ (
∂Q

∂P
− 1

)
dP =

∫
dQ−

∫
dP = 0.

We also have H(Q‖P ) = 0 if, and only if, Q = P . However, relative entropy is not a metric
since, in general, H(Q‖P ) 6= H(P‖Q), and the triangle inequality is not satisfied either. Even the
symmetric function H(Q‖P ) + H(P‖Q) does not define a metric, since it still does not satisfy the
triangle inequality [29].

The Csiszár–Kullback inequality [30,31] relates relative entropy to distance between densities in the
sense of the L1(0,∞) norm:

‖q − p‖L1 :=

∫ ∞
0

|q(S)− p(S)|dS ≤
√

2H(q‖p),

where
H(q‖p) =

∫
q(S) ln

q(S)

p(S)
dS =

∫
q(S)

pS)
ln
q(S)

p(S)
p(S)dS (2)

is the same definition as Equation (1) above in terms of densities, which means in particular that
convergence in the sense of relative entropy implies L1-convergence.

2.2. Minimiser Matching Option Prices

We now give a precise formulation of the minimisation problems that we want to solve. Let p be the
prior density on [0,∞), which is assumed to be strictly positive almost everywhere.

For a fixed underlying asset and maturity T , we are given undiscounted prices C̃1, ..., C̃n of call
options at strictly increasing strikes K1 < · · · < Kn. For notational convenience, we introduce the
“strikes” K0 := 0 and Kn+1 :=∞ and make the convention that C̃0 is the forward asset price for time T
and C̃n+1 = 0.

In Section 4 we will determine a density q for the underlying asset price S(T ) at maturity that
minimises relative entropy H(q‖p) under the constraints

Eq
[
(S(T )−Ki)

+
]

= C̃i, i.e.,
∫ ∞
Ki

(S −Ki)q(S)dS = C̃i ∀i = 0, ..., n. (3)
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Before that, in Section 3, we shall assume that undiscounted digital option prices D̃1, ..., D̃n on the
same asset, maturity and strikes are also given and we look for q that, in addition, verifies the constraints

Eq
[
I{S(T )>Ki}

]
= D̃i, i.e.,

∫ ∞
Ki

q(S)dS = D̃i ∀i = 0, ..., n. (4)

Again, for ease of notation, we make the convention that D̃0 = 1 and D̃n+1 = Kn+1D̃n+1 = 0.

Notice that the constraints Equations (3) and (4) for i = 0 are consistent with the fact that q is a
density (its integral is 1) and the martingale condition

Eq [S(T )] =

∫ ∞
0

Sq(S)dS = C̃0.

3. Minimiser Matching Call and Digital Option Prices

In this section we review some results stated in [25] and provide the base arguments required to prove
them in case a prior density p is given and call and digital options prices are prescribed.

In addition, we show how the algorithm presented in [25] can be efficiently implemented. We do
not assume that p is given analytically, and therefore the implementation requires numerical integration.
However, the availability of the digital prices allows for an efficient solution locally in each “bucket”,
i.e., interval [Ki, Ki+1), via a one-dimensional Newton–Raphson rootfinder.

Formally applying the Lagrange multipliers theorem, as in [6], it can be “proven” (rigorously
speaking, the Lagrange multipliers theorem cannot be applied since the relative entropy functional is
nowhere continuous [11]) that if q minimises relative entropy in respect to p, then the Radon–Nikodým
derivative g := ∂Q/∂P = q/p is piecewise exponential. More precisely, on each interval [Ki, Ki+1) the
density q is given by

q(S) = g(S)p(S) = αie
βiSp(S), (5)

where αi, βi ∈ R, αi > 0 are parameters that still have to be determined using the following two
constraints imposed by the option data, which are an equivalent reformulation of the constraints
Equations (3) and (4) given above, but allow for an easy solution.

The first constraint follows directly from Equation (4) and is given by

αi

∫ Ki+1

Ki

eβiSp(S)dS = D̃i − D̃i+1, ∀i = 0, ..., n.

from which we have

αi =
D̃i − D̃i+1∫ Ki+1

Ki
eβiSp(S)dS

∀i = 0, ..., n. (6)

The second constraint also follows directly from Equations (3) and (4) and is given by

αi

∫ Ki+1

Ki

SeβiSp(S)dS = (C̃i +KiD̃i)− (C̃i+1 +Ki+1D̃i+1), ∀i = 0, ..., n.
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Notice that the right hand side of the equation above is the undiscounted price of an “asset-or-nothing”
derivative that pays the asset price itself if it finishes between the two strikes Ki and Ki+1 at maturity
and zero otherwise. Substituting αi from Equation (6) gives∫ Ki+1

Ki
SeβiSp(S)dS∫ Ki+1

Ki
eβixp(S)dS

=
(C̃i +KiD̃i)− (C̃i+1 +Ki+1D̃i+1)

D̃i − D̃i+1

, (7)

which we use as an implicit equation for βi.
Later we shall rigorously show that, under non-arbitrage conditions, such αi and βi (for i = 0, ..., n)

exists and that q given by Equation (5) is indeed a relative entropy minimiser with respect to the prior
density p, but firstly we need some preliminary definitions and results.

We define the cumulant generating functions c0, ..., cn, from R to R ∪ {∞}, by

ci(β) := ln

(∫ Ki+1

Ki

eβSp(S)dS

)
. (8)

Notice that ci(β) < ∞, for i < n and β ∈ R, since p ∈ L1(Ki, Ki+1) and the exponential function
belongs to L∞(Ki, Ki+1). For i = n, the integral is over [Kn,∞) and we can have cn(β) = ∞.
However, cn(0) <∞ and if eβ̂Sp(S) belongs to L1(Kn,∞), then so does eβSp(S) for β < β̂. Therefore,
the interior of ci’s effective domain is an interval of the form (−∞, β∗) for some β∗ ≥ 0 and, for i < n,
β∗ =∞. Moreover, c′′i > 0.

Proposition 1. For i < n, ci is twice differentiable and strictly convex in (−∞, β∗). Moreover, its first
and second derivatives are given by

c′i(β) =

∫ Ki+1

Ki
SeβSp(S)dS∫ Ki+1

Ki
eβSp(S)dS

(9)

and

c′′i (β) =

∫ Ki+1

Ki
S2eβSp(S)dS

∫ Ki+1

Ki
eβSp(S)dS −

(∫ Ki+1

Ki
SeβSp(S)dS

)2
(∫ Ki+1

Ki
eβSp(S)dS

)2 (10)

for all β ∈ (−∞, β∗).

Proof. Through standard arguments using the Mean Value Theorem and Lebesgue’s Dominated
Convergence Theorem, one can show that for any m ∈ Z ∩ [0,∞), the function

w(β) :=

∫ Ki+1

Ki

SmeβSp(S)dS

is differentiable in (−∞, β∗) and its derivative can be obtained by differentiating under the integral sign.
The differentiability of ci and c′i together with Equations (9) and (10) follows immediately.

Now we shall prove that c′′i > 0. We start by noticing that∫ Ki+1

Ki

∫ Ki+1

Ki

(S −R)2eβ(S+R)p(S)p(R)dSdR > 0. (11)
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Hence,

1

2

∫ Ki+1

Ki

∫ Ki+1

Ki

(S2 +R2)eβ(S+R)p(S)p(R)dSdR >

∫ Ki+1

Ki

∫ Ki+1

Ki

SReβ(S+R)p(S)p(R)dSdR.

The left hand side of this last inequality can be rewritten as

1

2

∫ Ki+1

Ki

∫ Ki+1

Ki

S2eβ(S+R)p(S)p(R)dSdR +
1

2

∫ Ki+1

Ki

∫ Ki+1

Ki

R2eβ(S+R)p(S)p(R)dSdR,

or, simply as∫ Ki+1

Ki

∫ Ki+1

Ki

S2eβ(S+R)p(S)p(R)dSdR =

∫ Ki+1

Ki

S2eβSp(S)dS

∫ Ki+1

Ki

eβRp(R)dR

=

∫ Ki+1

Ki

S2eβSp(S)dS

∫ Ki+1

Ki

eβSp(S)dS,

whereas its right hand side is equal to

(∫ Ki+1

Ki

SeβSp(S)dS

)(∫ Ki+1

Ki

ReβRp(R)dR

)
=

(∫ Ki+1

Ki

SeβSp(S)dS

)2

.

Therefore, the inequality (11) is equivalent to c′′i > 0.

Introducing

K̄i :=
(C̃i +KiD̃i)− (C̃i+1 +Ki+1D̃i+1)

D̃i − D̃i+1

(12)

and using Equation (8) we can rewrite Equations (6) and (7) in the simpler forms

c′i(βi) = K̄i, (13)

αi = pie
−ci(βi). (14)

Equation (13) is easily solved for βi with the Newton–Raphson method using Equations (9) and (10).
Once the density q has been obtained in this manner, i.e., αi, βi have been calculated for i = 0, ..., n,
we can calculate European option prices using numerical integration.

The next results give the existence and uniqueness of such βi and, consequently, αi.

Lemma 1. Let m ∈ Z ∩ [0,∞). Then, for any K ∈ (Ki, Ki+1) we have

lim
β→∞

∫ K
Ki
SmeβSp(S)dS∫ Ki+1

K
SmeβSp(S)dS

= lim
β→−∞

∫ Ki+1

K
SmeβSp(S)dS∫ K

Ki
SmeβSp(S)dS

= 0.

Proof. We shall consider only the limit when β → ∞ since the other is treated analogously. Choose L
and M such that K < L < M < Ki+1. Then, we have

0 ≤
∫ K
Ki
SmeβSp(S)dS∫ Ki+1

K
SmeβSp(S)dS

≤
∫ K
Ki
SmeβSp(S)dS∫M

L
SmeβSp(S)dS

.
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Applying the First Mean Value Theorem for Integration yields S1 ∈ [Ki, K] and S2 ∈ [L,M ]

such that

eβS1

∫ K

Ki

Smp(S)dS =

∫ K

Ki

SmeβSp(S)dS and eβS2

∫ M

L

Smp(S)dS =

∫ M

L

SmeβSp(S)dx.

Therefore

0 ≤
∫ K
Ki
SmeβSp(S)dS∫ Ki+1

K
SmeβSp(S)dS

≤
eβS1

∫ K
Ki
Smp(S)dS

eβS2
∫M
L
Smp(S)dS

= Ceβ(S1−S2),

where C > 0 does not depend on β. Since S1 − S2 ≤ K − L < 0, the result follows.

Proposition 2. We have limβ→∞ c
′
i(β) = Ki+1 and limβ→−∞ c

′
i(β) = Ki.

Proof. Here again, we only consider the first limit since the other is treated analogously. For all
K ∈ (Ki, Ki+1) we have

c′i(β) =

∫ Ki+1

Ki
SeβSp(S)dS∫ Ki+1

Ki
eβSp(S)dS

=


(∫ K

Ki
SeβSp(S)dS

)(∫ Ki+1

K
Seβxp(S)dS

)−1
+ 1(∫ K

Ki
eβSp(S)dS

)(∫ Ki+1

K
eβSp(S)dS

)−1
+ 1

·∫ Ki+1

K
SeβSp(S)dS∫ Ki+1

K
eβSp(S)dS

.

Using the previous Lemma, we obtain that the term inside square brackets goes to 1 as β →∞. Now
we shall consider the last term above and show that, by choosing a suitable K, it is as close to Ki+1 as
we want.

Firstly, we assume i < n. Then Ki+1 < ∞ and, given a small ε > 0, we choose K = Ki+1 − ε.
The First Mean Value Theorem for Integration gives S1 ∈ [Ki+1 − ε,Ki+1] such that

∫ Ki+1

Ki+1−ε Se
βSp(S)dS∫ Ki+1

Ki+1−ε e
βSp(S)dS

=
S1

∫ Ki+1

Ki+1−ε e
βSp(S)dS∫ Ki+1

Ki+1−ε e
βSp(S)dS

= S1.

Now, for i = n, we have Ki+1 =∞ and∫∞
K
SeβSp(S)dS∫∞

K
eβSp(S)dS

≥
K
∫∞
K
eβSp(S)dS∫∞

K
eβSp(S)dS

= K.

Hence, the term above goes to Ki+1 =∞ as K goes to∞.

Corollary 1. For all i = 0, ..., n, under the non-arbitrage condition Ki < K̄i < Ki+1, where K̄i is
defined in Equation (12), there exists a unique solution βi ∈ R of Equation (13).

Proof. Proposition 1 gives that c′i is continuous and the last Proposition states that limβ→−∞ c
′
i(β) = Ki

and limβ→∞ c
′
i(β) = Ki+1. Hence the existence follows from the Intermediate Value Theorem.

Additionally, Proposition 1 also gives that c′i is strictly increasing and the uniqueness follows.
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Theorem 1. For all i = 0, ..., n, let αi and βi be defined by Equations (13) and (14). Then q : [0,∞)→
R given by

q(S) = αie
βiSp(S) ∀S ∈ [Ki, Ki+1)

minimises H(q||p).

Proof. This is shown just as Theorem 2.6 in [25] by using Theorem 2.5 by Csiszár also stated there.

3.1. The Special Case of Non-Relative Entropy

The non-relative entropy can be seen as special case of the relative entropy for which no prior p is
given or, roughly speaking, the prior is given by Lebesgue-measure p ≡ 1. Then Equation (8) reduces to
the following analytic expression:

ci(β) =



ln

(
eβKi+1 − eβKi

β

)
for i < n and β 6= 0,

ln(Ki+1 −Ki) for i < n and β = 0,

ln

(
−e

βKi

β

)
for i = n and β < 0,

and the first and second derivatives given in Equations (9) and (10) reduce to

c′i(β) =



Ki+1e
βKi+1 −Kie

βKi

eβKi+1 − eβKi
− 1

β
for i < n and β 6= 0,

Ki+1 +Ki

2
for i < n and β = 0,

Ki −
1

β
for i = n and β < 0,

and

c′′i (β) =



−(Ki+1 −Ki)
2 eβ(Ki+1+Ki)

(eβKi+1 − eβKi)2
+

1

β2
for i < n and β 6= 0,

(Ki+1 −Ki)
2

12
for i < n and β = 0,

1

β2
for i = n and β < 0.

Using these expressions instead of Equations (8)–(10) allows for numerical integration to be avoided
in an implementation in this case.
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4. Minimiser Matching Call Option Prices

Buchen and Kelly describe in [6] a multi-dimensional Newton–Raphson algorithm to find the
maximum entropy distribution (MED) if only call prices are given as constraints. The entropy H of
a probability density q over [0,∞) is given by

H(q) = −
∫ ∞
0

q(S) ln q(S)dS.

In [13], we show how the results of [25] together with the Legendre transform can be applied to
obtain a fast and more robust Newton–Raphson algorithm to calculate the Buchen–Kelly MED. The
main reason that the algorithm is more stable is that the Hessian matrix has a very simple tridiagonal
form. In Section II.A of their paper, Buchen and Kelly also consider the case of “minimum cross entropy”
(which we call relative entropy here) for a given prior density.

We now show how essentially the same algorithm as that in [13] can be applied to the relative entropy
case. The next proposition consolidates and generalises the results of Section 4 of [13], describing the
entropy H , the gradient vector and the Hessian matrix to the case in which a prior density p is given.

Arbitrage free digital prices must lie between left and right call spread prices, i.e.,

− C̃i − C̃i−1
Ki −Ki−1

> D̃i > −
C̃i+1 − C̃i
Ki+1 −Ki

, ∀i = 1, ..., n, (15)

where the rightmost quantity for i = n must be read as zero.
We introduce the set Ω ⊂ Rn of all D̃ = (D̃1, ..., D̃n) ∈ Rn verifying Equation (15). Note that

Ω is an open n-dimensional rectangle. Define qD̃ as the density obtained as in Theorem 1 for given
(undiscounted) digital prices D̃.

Proposition 3. For all D̃ ∈ Ω the relative entropy of qD̃ with respect to p can be expressed as

H(qD̃‖p) =
n∑
i=0

pi ln pi +
n∑
i=0

pic
∗
i (K̄i),

where c∗i is the Legendre transform of ci, pi := D̃i − D̃i+1 and K̄i is given by Equation (12).
As a function of digital prices, H : Ω→ R is strictly convex, twice differentiable and, for all D̃ ∈ Ω,

we have
∂H

∂D̃i

(D̃) = ln gD̃(Ki+)− ln gD̃(Ki−), ∀i = 1, ..., n,

where gD̃ := qD̃/p and

gD̃(Ki−) := lim
S→K−

i

gD̃(S) = αi−1e
βi−1Ki and gD̃(Ki+) := lim

S→K+
i

gD̃(S) = αie
βiKi ,

with αi and βi given by Equations (13) and (14), for all i = 0, ..., n.
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In addition, the Hessian matrix at any D̃ ∈ Ω is symmetric and tridiagonal with entries given by

∂2H

∂D̃2
i

(D̃) =
1

pi−1
+

1

pi
+

(Ki − K̄i−1)
2

pi−1c′′i−1(βi−1)
+

(K̄i −Ki)
2

pic′′i (βi)
, ∀i = 1, ..., n,

∂2H

∂D̃i∂D̃i+1

(D̃) = − 1

pi
+

(K̄i −Ki)(Ki+1 − K̄i)

pic′′i (βi)
, ∀i = 1, ..., n− 1.

Proof. Let gD̃ := qD̃/p be the piecewise-exponential Radon–Nikodým derivative given in Theorem 1.
We have

H(qD̃‖p) =

∫ Ki+1

Ki

qD̃(S) ln
qD̃(S)

p(S)
dS = lnαi

∫ Ki+1

Ki

qD̃(S)dS + βi

∫ Ki+1

Ki

SqD̃(S)dS,

since gD̃(S) = αie
βiS on [Ki, Ki+1). Then using Equations (13) and (14) the proof goes through as the

proofs of Theorem 4.1, Theorem 4.2, Lemma 5.1 and Proposition 5.2 from [13] given there by using the
generalised versions of ci and c∗i introduced above and observing the absence of the minus sign in the
definition of relative entropy.

Notice that pi and K̄i are given purely in terms of option prices, for all i = 0, ..., n, and so isH(qD̃‖p).
Notice also that if the prior density p already matches the call prices, then αi = 1 and βi = 0 for all
i = 0, ..., n. From the relationship c∗i (K̄i) = βiK̄i−ci(βi), it follows that, in this case, c∗i (K̄i) = −ci(βi).
Since ln pi = lnαi + ci(βi) = −c∗i (K̄i), the proposition above gives that H(qD̃‖p) = 0, as expected.

The expression for the derivative of H gives that if D̃ minimises H (i.e., D̃ is a root of the gradient of
H), then gD̃ is continuous. Furthermore, the MRED qD̃ = gD̃p has the same points of discontinuity as p.

Using these last results, essentially the same Newton–Raphson algorithm as in [13] can be applied
to find the relative entropy minimiser q. The only differences are that the functions c′′0, ..., c′′n must be
replaced by their relative entropy versions Equation (10) in the Hessian matrix of Proposition 3, and that
in each iteration step, for a given set of digital prices, the algorithm of Section 3 must be used to calculate
the MRED, instead of its non-relative version.

5. Probability Densities for Characteristic Function Models

In this section, we look at four models that are popular in equity derivatives pricing. Our aim is to
use the densities they give for the stock price at a fixed maturity as prior densities. In two of the models
we have chosen, the Black–Scholes model and the Variance Gamma model, the density is analytically
available. In the other two, the Heston and the Schöbel–Zhu stochastic volatility models, it is not. We
therefore give a brief overview of these models and show how to calculate their densities in each case.

Let p̃ be the density of x(T ) := lnS(T ). To simplify notation, we will usually write x and S,
respectively, when it is clear from the context that we have fixed the maturity T . Then the density p of S
itself is given by

p(S) =
1

S
p̃(lnS),

since
∫ ln a

−∞ p̃(x)dx =
∫ a
0
p̃(lnS) 1

S
dS =

∫ a
0
p(S)dS by change-of-variables formula.
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If the characteristic function φ of p̃, given by

φ(u) := E
[
eiux
]

=

∫ ∞
−∞

eiuxp̃(x)dx, (16)

is known, as in the Heston [32] or Schöbel–Zhu [33] stochastic volatility models, then p̃ can be obtained
via Fourier inversion:

p̃(x) =
1

2π

∫ ∞
−∞

e−iuxφ(u)du.

Since p̃ is a real-valued function, it follows from Equation (16) that φ(−u) = φ(u), and we have

p̃(x) =
1

2π

∫ ∞
0

e−iuxφ(u)du+
1

2π

∫ ∞
0

eiuxφ(−u)du

=
1

π

∫ ∞
0

<
[
e−iuxφ(u)

]
du, (17)

where <[z] = (z+ z)/2 denotes the real part of a complex number z. It can immediately be seen that an
anti-derivative of p̃ is given by

P̃0(x) = − 1

2π

∫ ∞
−∞

e−iux

iu
φ(u)du.

Furthermore, it can be shown in a similar way as the Fourier Inversion Theorem itself, that
limx→−∞ P̃0(x) = −1

2
and limx→∞ P̃0(x) = 1

2
, and therefore the function

P̃ (x) =
1

2
− 1

2π

∫ ∞
−∞

e−iux

iu
φ(u)du

=
1

2
− 1

π

∫ ∞
0

<
[
e−iuxφ(u)

iu

]
du

gives an expression for the distribution function.
For pricing, we use the general formulation of Bakshi and Madan [34]. This can be used for a large

class of characteristic function models that contains the Heston, Schöbel–Zhu and Variance Gamma
models (see Section 2 in [34], in particular Case 2 on p. 218). We have S > K if, and only if, x > lnK.

Let

Π1 := 1− P̃S(lnK) =
1

2
+

1

π

∫ ∞
0

<
[
e−iu lnKφ(u− i)

iuφ(−i)

]
du, (18)

Π2 := 1− P̃ (lnK) =
1

2
+

1

π

∫ ∞
0

<
[
e−iu lnKφ(u)

iu

]
du, (19)

represent the probabilities of S finishing in-the-money at time T in case the stock S itself or a risk-free
bond is used as numéraire, respectively. From Equation (16) we can see that φ(−i) = E [ex] = E [S],
so that the quotient

φ(u− i)
φ(−i)

=

∫ ∞
−∞

eiux
S

E [S]
p̃(x)dx

contains the appropriate change of measure.
The price C of a European call option on a stock paying a dividend yield d is then obtained through

the formula
C = e−dTSΠ1 − e−rTKΠ2, (20)
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and the price D of a European digital call option prices through

D = e−rTΠ2, (21)

where r is the risk-free, continuously-compounded interest rate.
The integrals in Equations (17)–(19) must of course be truncated at some point a, which depends on

the decay of the characteristic function of the model considered.

5.1. The Black–Scholes Model

Let the parameters r, d and T be given as above, and let σ > 0 be the volatility of the stock price.
In the Black–Scholes model, the logarithm x(t) := lnS(t) follows the SDE

dx(t) = (r − d− 1

2
σ2)dt+ σdW (t), x(0) = lnS(0).

Define µ := x(0) +
(
r − d− 1

2
σ2
)
T .

The density of x := x(T ) is normal and given by

p̃(x) =
1√

2πσ2T
e−

(x−µ)2

2σ2T . (22)

The characteristic function of p̃ has a very simple form and is given by

φ(u) = eiuµ−
1
2
u2σ2T . (23)

Of course it is faster to use Equation (22) directly instead of Equations (23) and (17), but comparing
these two methods lets one measure the additional computational burden.

5.2. The Heston Model

One of the most popular models for derivative pricing in equity and foreign exchange (FX) markets
is the stochastic volatility model introduced by Heston [32]. Let x(t) := lnS(t). The model is given, in
the risk-neutral measure, by the following two SDE’s:

dx(t) = (r − d− 1

2
v(t))dt+

√
v(t)dW1(t), x(0) = lnS(0), (24)

dv(t) = (κθ − (κ+ λ)v(t))dt+ σ
√
v(t)dW2(t), v(0) = v0, (25)

where 〈dW1(t), dW2(t)〉 = ρdt. The variance rate v follows a Cox–Ingersoll–Ross square-root
process [35].

The parameter λ represents the market price of volatility risk. Since we are only interested in pricing,
we always set λ = 0 in what follows (see Chapter 2 in Gatheral [28]).

Heston calculates the characteristic function solution, but as pointed out in [33], there is a (now
well-known) issue when taking the complex logarithm. To be clear, we therefore give the formulation of
the characteristic function that we use.

Define

b := κ+ λ, d1 :=
√

(iρσu− b)2 + σ2u(i+ u), d2 := −d1 and g :=
b− iρσu+ d2
b− iρσu− d2

. (26)
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Introducing

C := (r − d)uiT +
κθ

σ2

(
(b− iρσu+ d2)T − 2 ln

1− ged2T

1− g

)
,

D :=
b− iρσu+ d2

σ2

1− ed2T

1− ged2T
,

the characteristic function of x(T ) is then given as

φ(u) = eC+Dv(0)+iux(0). (27)

Since implementations of the complex square-root usually return the root with non-negative real part
(d1), the key is simply to take the other root (d2), as is done in Equation (26). As shown in [36,37], this
takes care of the whole issue.

5.3. The Schöbel–Zhu Model

The Schöbel–Zhu model [33] is an extension of the Stein and Stein stochastic volatility model [38]
with correlation ρ 6= 0 allowed (see also [39,40]). It is described, in the risk-neutral measure, by the
following two SDE’s:

dx(t) = (r − d− 1

2
v2(t))dt+ v(t)dW1(t), x(0) = lnS(0), (28)

dv(t) = κ(θ − v(t))dt+ σdW2(t), v(0) = v0, (29)

where 〈dW1(t), dW2(t)〉 = ρdt. The volatility v follows a mean-reverting Ornstein–Uhlenbeck process.
The characteristic function for this model is given by Schöbel and Zhu in [33]. As Lord and Kahl

point out (Section 4.2 in [37]), similar attention has to be paid when taking the complex logarithm in
this model’s characteristic function as in Heston’s. By directly relating the two characteristic functions
(Equation 4.14 on p.682 of [37]), they show how the Schöbel–Zhu model can also be implemented safely.
In the case study in Section 6.2 presented in the following section with SPX option data and a maturity
of less than half a year, however, we observed no problems with the characteristic function originally
proposed by Schöbel and Zhu.

5.4. The Variance Gamma Model

The Variance Gamma (VG) process was introduced in [41,42]. The density for x = lnS(T ) is given
explicitly in Theorem 1 in [41]. Define x0 = lnS(0),

ω :=
1

ν
ln(1− θν − 1

2
σ2ν) and x̃ = x− x0 − (r − d+ ω)T.

Then the density p̃ is given by

p̃(x) =
2 exp(θx̃/σ2)

νT/ν
√

2πσΓ(T
ν

)
·

(
x̃2

2σ2

ν
+ θ2

) T
2ν
− 1

4

·KT
ν
− 1

2

(
1

σ2

√
x̃2
(

2σ2

ν
+ θ2

))
, (30)

where Γ is the Gamma-function and K is the modified Bessel function of the second kind.
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If the parameter ν is set to zero, the characteristic function of p reduces to the Black–Scholes one
given in Equation (23). Otherwise, it is given by

φ(u) = eiu(x0+(r−d+ω)T )
(

1− iθνu+
1

2
σ2u2ν

)−T
ν

. (31)

Lord and Kahl show (Section 4.1 in [37]) that this formulation of the characteristic function is safe.
Again, as with the Black–Scholes model, since both the density and the characteristic function are

available, it is possible to compare the two different methods Equation (30) vs. Equations (31) and (17).

6. Two Numerical Examples

6.1. A Fictitious Market and Black–Scholes and Heston Prior Densities

In our first example, we take a hypothetical market with r = d = 0, T = 1, S = F = 100, in which
call option prices are given by the Black–Scholes formula with volatility σ = 0.25. As prior densities,
we take

• pBS , a Black–Scholes log-normal density, but this time with volatility σp = 0.20,

• pH , a Heston density, with parameters κ = 1, θ = 0.04, ρ = −0.3, σ = 0.25, v0 = 0.04,
which leads to implied volatilities of 0.2418, 0.2125, 0.1923, 0.1855, 0.1884 at strikes
60, 80, 100, 120, 140, respectively.

We calculate the Buchen–Kelly MED (Lebesgue prior), using the algorithm presented in [13], and
the two Buchen–Kelly MREDs with priors pBS and pH , using the generalised algorithm presented in
Section 4, and compare the resulting call and digital option prices to see the influence of the priors. Note
that to obtain the density of the Heston model, we evaluate the integral in Equation (17) up to a = 250.

The different call and digital option prices are reported in Table 1. The densities were calculated using
call prices at strikes

• K0 = 0, K1 = 100

• K0 = 0, K1 = 60, K2 = 100, K3 = 140

• K0 = 0, K1 = 60, K2 = 80, K3 = 100, K4 = 120, K5 = 140

as respective constraints. These strikes are the ones in boldface in Table 1.
We see that in the first case, where we had only the forward and an at-the-money call option

as constraints, there are significant differences in both call and digital prices. The presence of the
log-normal prior density makes MRED BS call prices cheaper compared with the original BS prices.
Of course, under the prior density itself, call prices were cheaper because of the lower volatility, and this
effect seems to persist. We also see that the fatter (exponential) tails of the MED translate into higher
prices of deeply in- or out-of-the-money call options when compared with the other two densities.

However, as we add call prices at more strikes as constraints, the differences become smaller. In the
third part of Table 1, the prices of both call and digital options are clearly converging.
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Table 1. Comparison of call and digital prices.

Strike
Call Prices Digital Prices

MED BK MRED BS MRED Heston MED BK MRED BS MRED Heston

20 80.0538 80.0000 80.0000 0.9936 1.0000 1.0000
40 60.3244 60.0000 60.0094 0.9766 1.0000 0.9979
60 41.1698 40.0637 40.3043 0.9316 0.9841 0.9595
80 23.5389 21.9716 22.5717 0.8124 0.7758 0.7828
100 9.9476 9.9476 9.9476 0.4962 0.4420 0.4763
120 3.6684 3.6071 3.3294 0.1830 0.2039 0.1977
140 1.3528 1.0596 1.0051 0.0675 0.0693 0.0593
160 0.4989 0.2688 0.3239 0.0249 0.0192 0.0175
180 0.1840 0.0621 0.1171 0.0092 0.0047 0.0056

20 80.0000 80.0000 80.0000 1.0000 1.0000 1.0000
40 60.0015 60.0003 60.0012 0.9997 0.9998 0.9996
60 40.1454 40.1454 40.1454 0.9669 0.9753 0.9715
80 22.5812 22.0890 22.3433 0.7743 0.7818 0.7770
100 9.9476 9.9476 9.9476 0.4646 0.4424 0.4633
120 3.7041 3.7051 3.5189 0.1945 0.1976 0.1926
140 1.2139 1.2139 1.2139 0.0705 0.0707 0.0617
160 0.3800 0.3569 0.4669 0.0221 0.0227 0.0207
180 0.1190 0.0961 0.2067 0.0069 0.0065 0.0077

20 80.0001 80.0000 80.0000 1.0000 1.0000 1.0000
40 60.0033 60.0002 60.0014 0.9994 0.9999 0.9996
60 40.1454 40.1454 40.1454 0.9726 0.9727 0.9726
80 22.2656 22.2656 22.2656 0.7794 0.7781 0.7804
100 9.9476 9.9476 9.9476 0.4510 0.4499 0.4510
120 3.7059 3.7059 3.7059 0.1971 0.1961 0.1958
140 1.2139 1.2139 1.2139 0.0700 0.0711 0.0689
160 0.3834 0.3545 0.4105 0.0221 0.0227 0.0211
180 0.1211 0.0948 0.1564 0.0070 0.0064 0.0071

6.2. SPX Option Prices and Heston, Schöbel–Zhu and VG Prior Densities

In our second example, we look at call (ticker symbol SPX) and digital (BSZ) options on the Standard
and Poor’s 500 stock index [43]. The market data is from 18 July 2011. We consider those options
that expire on 17 December 2011 and calibrate a Heston, Schöbel–Zhu and VG model, respectively, to
call prices for 15 strikes 900, 950, ...1550, 1600 at constant intervals of 50 using a Levenberg–Marquardt
least-squares method ([39,44]). To evaluate the densities via Equation (17), we use aHeston = aSZ = 250

and aV G = 1000. The model parameters we obtained are given in Table 2.
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Table 2. Model parameters.

Parameter Heston SZ VG

κ 0.8568 1.6316 n/a
θ 0.0800 0.1731 −0.2808
ρ −0.8016 −0.8031 n/a
σ 0.5473 0.3249 0.1535
v0 0.0421 0.1887 n/a
ν n/a n/a 0.3638

Figure 1 shows the market implied volatility skew and the volatility skews generated by the three
models. Apart from the last two strikes at 1550 and 1600, the fit looks quite good in all three cases:

Figure 1. Graphs of the four volatility skews.

Using formulas for the densities directly, if available, or otherwise the numerical inversion formula
given in Equation (17), we plot the densities for S(T ) given by these models in Figure 2:

Figure 2. Graphs of the three model densities.
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The Heston and Schöbel–Zhu densities are almost indistinguishable from one another, whereas the
VG density has a somewhat different shape with a slightly thinner right tail.

Table 3 shows the sum of squared errors
∑15

i=1(σ
SPX
i − σ̂modeli )2 between the market (SPX) implied

volatilities and the model implied volatilities. The relative entropy H(q‖p) can be seen as an alternative
measure of fit, since by Equation (2) it measures how much the prior density p needs to be deformed to
obtain a density q that perfectly matches the given market data. Interestingly, the Heston model fits best
under either criterion, but the order of the Schöbel–Zhu and VG models is reversed in the two cases.

Table 3. Squared errors and relative entropy H(h‖p).

Model: Heston SZ VG∑
(σi − σ̂i)2: 1.59× 10−4 1.86× 10−4 1.74× 10−4

Relative Entropy: 0.1311 0.1315 0.1374

Finally, digital prices are reported in Table 4. There are noticeable differences between market prices
(although these must be taken with a pretty big pinch of salt due to the poor liquidity and large bid-ask
spreads), the Buchen–Kelly prices and the prices given by the three models. However, regarding the three
relative entropy distributions obtained using the different model priors, it seems that the effect of the prior
density on digital prices is negligible: all three MREDs basically agree with the Buchen–Kelly MED.

Table 4. Digital prices.

Strike Market (Mid) Call Spreads MED BK Heston MRED Heston SZ MRED SZ VG MRED VG

900 0.9500 0.9560 0.9609 0.9682 0.9612 0.9678 0.9612 0.9687 0.9607
950 0.9500 0.9540 0.9544 0.9532 0.9544 0.9527 0.9544 0.9537 0.9544
1000 0.9400 0.9335 0.9432 0.9325 0.9433 0.9319 0.9433 0.9331 0.9432
1050 0.9100 0.8935 0.8830 0.9048 0.8830 0.9041 0.8830 0.9052 0.8830
1100 0.8800 0.8685 0.8695 0.8683 0.8695 0.8675 0.8695 0.8679 0.8695
1150 0.8300 0.8250 0.8409 0.8207 0.8409 0.8198 0.8409 0.8191 0.8409
1200 0.7700 0.7555 0.7520 0.7595 0.7520 0.7585 0.7520 0.7560 0.7520
1250 0.6850 0.6810 0.6893 0.6809 0.6893 0.6797 0.6893 0.6759 0.6893
1300 0.5850 0.5745 0.5797 0.5792 0.5797 0.5783 0.5797 0.5756 0.5797
1350 0.4550 0.4365 0.4386 0.4482 0.4388 0.4481 0.4388 0.4527 0.4383
1400 0.3100 0.2885 0.2855 0.2913 0.2858 0.2924 0.2858 0.3060 0.2867
1450 0.1700 0.1605 0.1505 0.1464 0.1502 0.1489 0.1502 0.1443 0.1485
1500 0.0700 0.0743 0.0714 0.0590 0.0714 0.0616 0.0714 0.0537 0.0718
1550 0.0350 0.0235 0.0121 0.0216 0.0118 0.0230 0.0117 0.0201 0.0118
1600 0.0300 0.0025 0.0009 0.0077 0.0010 0.0082 0.0011 0.0077 0.0010

7. Variance Swaps

In this section we recall the definition of a variance swap and the pricing formula based on replication
through a log contract. (For more details see [26,27,45] and references therein.)

A variance swap is a forward contract on the annualised realised variance of the underlying asset
over a period of time. More precisely, given observation dates t0 < · · · < tm, the realised variance is
defined by

σ2
real :=

252

m

m∑
i=1

[
ln

(
S(ti)

S(ti−1)

)]2
,
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where S(t) denotes the spot price of the underlying asset at time t. The number 252 above is the
annualisation factor and reflects the typical number of business days in a year. The payoff of a variance
swap is given by

N · (σ2
real −Kvar),

where Kvar is the strike price for variance and N is the notional amount of the swap.
Assume that {S(t)}t≥0 follows a stochastic differential equation

dS(t)

S(t)
= µ(t)dt+ σ(t)dB(t), (32)

where {B(t)}t≥0 is a standard Brownian motion and the drift {µ(t)}t≥0 and the volatility {σ(t)}t≥0 are
stochastic processes adapted to the (possibly enlarged) natural filtration FB = (FBt )t≥0 of {B(t)}t≥0.
(The hypothesis on {σ(t)}t≥0 can be relaxed to allow a larger class of processes by enlarging FB to a
filtration H ⊃ FB such that B is an H-martingale and {σ(t)}t≥0 is H-adapted. This formulation then
includes stochastic volatility models that are solutions of multi-dimensional SDEs, and H can be taken
as the natural filtration of the multi-dimensional Brownian motion.)

Typically, Kvar is such that the theoretical price of the variance swap is null at inception and, in this
case, it is said to be the fair variance swap rate and denoted by σ2

fair. The theoretical realised variance
over the period [0, T ], and so σ2

fair, is given by

σ2
fair :=

1

T
E
[∫ T

0

σ(t)2dt

]
.

We shall now derive a formula for σ2
fair based on the price of a log contract, that is, a derivative whose

payoff at maturity T is lnS(T ). Let x(t) := lnS(t) and apply Itô’s formula to obtain

dx(t) =

(
µ(t)− 1

2
σ2(t)

)
dt+ σ(t)dB(t). (33)

Subtracting Equation (33) from Equation (32) gives

dS(t)

S(t)
− dx(t) =

1

2
σ2(t)dt. (34)

Integrating from 0 to T and multiplying by 2/T gives

1

T

∫ T

0

σ2(t)dt =
2

T

∫ T

0

dS(t)

S(t)
− 2

T

∫ T

0

dx(t)

=
2

T

∫ T

0

µ(t)dt+
2

T

∫ T

0

σ(t)dB(t)− 2

T
(x(T )− x(0)).

Finally, taking expectations yields

σ2
fair =

2

T
E
[∫ T

0

µ(t)dt

]
+

2

T
lnS(0)− 2

T
E [lnS(T )] , (35)

since E
[∫ T

0
σ(t)dB(t)

]
= 0. Notice that E [lnS(T )] is the price of a log contract.
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7.1. Maximum Entropy and Variance Swaps

In this section, we shall derive a relationship between the fair swap rate of a variance swap and
the entropy of the underlying asset density. This relationship follows from another one relating the
entropies of the density q of a random variable S and the density of x := lnS, which is the subject of
the next proposition.

Proposition 4. The (non-relative) entropy H(q) of a density q of a random variable S on (0,∞) and the
entropy H̃(q̃) of the density q̃ of x := ln(S) on (−∞,∞) are related by

H̃(q̃)−H(q) = E [x] . (36)

Proof. Recall that the densities q and q̃ are related by

q(S) =
1

S
q̃(lnS) = q̃(x)e−x.

Hence, the change of measure dS = exdx gives

H(q) =

∫ ∞
0

q(S) ln q(S)dS =

∫ ∞
−∞

q̃(x)e−x ln
(
q̃(x)e−x

)
exdx

=

∫ ∞
−∞

q̃(x) ln q̃(x)dx−
∫ ∞
−∞

xq̃(x)dx = H(q̃)− E [x] .

Corollary 2. Consider an asset whose price S(t) at time t follows Equation (32). Let q be the density
of S(T ), for some T > 0, and q̃ be the density of x(T ) := lnS(T ). Then the fair variance swap rate of
a variance swap maturing at time T is given by

σ2
fair =

2

T
E
[∫ T

0

µ(t)dt

]
+

2

T
lnS(0)− 2

T

(
H̃(q̃)−H(q)

)
. (37)

Proof. This follows immediately from the last proposition and Equation (35).

When the density q of S(T ) is known, the price of a log contract E [lnS(T )] can be computed through
numerical integration. Moreover, when q is the MED, that is, in the non-relative entropy case, we show
how this price can be computed analytically. By definition, the expectation is given by

E [lnS(T )] =

∫ ∞
0

ln(S)q(S)dS =
n∑
i=0

αi

∫ Ki+1

Ki

ln(S)eβiSdS.

For i /∈ {0, n} and βi 6= 0 we have

αi

∫ Ki+1

Ki

ln(S)eβiSdS =
αi
βi

[
eβiS lnS − Ei(βiS)

]Ki+1

Ki
, (38)

where Ei(s) := −
∫∞
−s

e−t

t
dt is the exponential integral function. Note that if βi = 0, then of course∫ Ki+1

Ki

ln(S)eβiSdS =

∫ Ki+1

Ki

ln(S)dS = [S lnS − S]
Ki+1

Ki
.
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The exponential integral function has a pole at 0, and therefore we cannot evaluate Equation (38)
directly at K0 = 0. From the series representation

Ei(s) = γ + ln |s|+
∞∑
k=1

sk

k k!
, s 6= 0,

it follows that we have in the limit

lim
S→0

eβ0S lnS − Ei(β0S) = −γ − ln |β0|,

where γ = 0.5772156649... is the Euler–Mascheroni constant. At the other extreme, at Kn+1 = ∞, we
have in the limit

lim
S→∞

eβnS lnS − Ei(βnS) = 0,

since βn < 0. Putting this together gives a closed formula for Equation (36).

7.2. Numerical Examples

In the first example, the market is given as in Section 6.1 by a Black–Scholes model with volatility σ =

0.25, with the same sets of 1, 3 and 5 strikes. Table 5 shows three quantities obtained from (non-relative)
Buchen–Kelly MEDs fitted to the forward and call prices at these strikes: the fair variance swap rate
σ2
fair, its square-root for comparison with implied volatilities, and the entropy. The average volatility
σfair and the entropy can be seen as two different measures of the dispersion of S(T ). As the number of
strikes increases, σfair and the entropy both decrease, with σfair converging towards the Black–Scholes
volatility σ = 0.25.

Table 5. Fair variance swap rate and entropy.

MED 1 Strike 3 Strikes 5 Strikes

σfair 0.3130 0.2545 0.2506
σ2fair 0.0980 0.0647 0.0628

Entropy 4.6801 4.6165 4.6077

In the second example, we use the same reference market as above, but now we include a prior
Black–Scholes density and calculate the MREDs matching the forward and call prices at 1, 3 and 5

strikes. The prior density is characterised by its volatility σp. Table 6 shows that increasing σp has the
effect of increasing the fair variance swap rate of the MRED. However, we see that as we add more
constraints, this effect is diminished. In the case of 5 strikes, it is barely noticeable. Note that in the
case σp = 0.25 where the prior density already matches the given constraints, the MRED is equal to the
prior, and we recover the volatility of the Black–Scholes process as the square-root of the fair variance
swap rate.
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Table 6. Black–Scholes prior and fair variance swap rate.

Prior MRED 1 Strike MRED 3 Strikes MRED 5 Strikes
BS σp σfair σ2

fair σfair σ2
fair σfair σ2

fair

0.20 0.2427 0.0589 0.2476 0.0613 0.2497 0.0624
0.25 0.2500 0.0625 0.2500 0.0625 0.2500 0.0625
0.30 0.2559 0.0655 0.2514 0.0632 0.2502 0.0626
0.35 0.2608 0.0680 0.2523 0.0637 0.2503 0.0626
0.40 0.2650 0.0702 0.2529 0.0640 0.2503 0.0627
0.45 0.2688 0.0723 0.2533 0.0642 0.2504 0.0627
0.50 0.2723 0.0741 0.2536 0.0643 0.2504 0.0627

In the third example, summarised in Table 7, we proceed as in the second one, but now with a Heston
density as the prior. The Heston parameters are the same as in Section 6.1, i.e., κ = 1, θ = 0.04,

ρ = −0.3, v0 = 0.04, but now we vary the volatility σ of the variance and measure its impact on
the fair variance swap rate of the MRED. In the case of 1 strike, we see clearly that this impact is very
strong. However, we notice again that increasing the number of strikes quickly diminishes the strength
of the impact.

Table 7. Heston prior and fair variance swap rate.

Prior MRED 1 Strike MRED 3 Strikes MRED 5 Strikes
Heston σ σfair σ2

fair σfair σ2
fair σfair σ2

fair

0.10 0.2448 0.0599 0.2485 0.0618 0.2499 0.0624
0.20 0.2506 0.0628 0.2500 0.0625 0.2503 0.0627
0.30 0.2600 0.0676 0.2520 0.0635 0.2506 0.0628
0.40 0.2890 0.0835 0.2535 0.0643 0.2507 0.0629
0.50 0.3237 0.1048 0.2544 0.0647 0.2507 0.0629
0.60 0.3464 0.1200 0.2555 0.0653 0.2508 0.0629
0.70 0.3711 0.1377 0.2565 0.0658 0.2508 0.0629

8. Conclusions

In this article we generalise the algorithm presented in [13] to the relative entropy case. The algorithm
allows for efficient computation of a risk-neutral probability density that exactly gives European call
option prices quoted in the market, while staying as close as possible to a given prior density under the
criterion of relative entropy.

It is not necessary to have an analytic expression for the prior density in question. In practice,
several popular equity and FX models work through their characteristic functions and numerical Fourier
inversion techniques. We pick two of these as examples, namely the Heston and the Schöbel–Zhu
stochastic volatility models, and show how they nevertheless can be used to provide the prior density
and incorporated into our algorithm. In other cases, analytic expressions for the density are available,
such as for the Black–Scholes model and the Variance Gamma model (for example, in C++ this is easily
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implemented using the functions boost::math::tgamma and boost::math::cyl_bessel_k in Boost [46]), and
we also incorporate these into our analysis.

As an application, we study the impact of the choice of prior density. In a first, purely hypothetical
scenario, we assume that only the prices of a few options are quoted. We observe that using a prior
density does indeed lead to significantly different option prices when compared with pricing with a pure
log-normal density or a piece-wise exponential Buchen–Kelly density.

In a second scenario we use option price data for S&P500 index options for a fixed maturity traded
on the CBOE. We calibrate three different models to these data and observe that, although the models
generate noticeably different digital option prices, the prices obtained when using minimum relative
entropy densities, with these models for the prior densities, agree almost perfectly. Furthermore, these
prices are essentially the same as those given by the (non-relative) Buchen–Kelly density itself. In other
words, in a sufficiently liquid market, the effect of the prior density seems to vanish almost completely.

We also study variance swaps and establish a formula that relates their fair swap rate to entropy. In the
case of MEDs, we give an explicit formula for the fair swap rate. In the case of MREDs, we study the
impact of the prior density on the fair swap rate and see that, again, while it has a substantial effect when
constraints exist at only a very small number of strikes, this effect diminishes rapidly as more constraints
are added.
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