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Abstract: In this note we introduce some divergence-based model selection criteria. These
criteria are defined by estimators of the expected overall discrepancy between the true
unknown model and the candidate model, using dual representations of divergences and
associated minimum divergence estimators. It is shown that the proposed criteria are
asymptotically unbiased. The influence functions of these criteria are also derived and some
comments on robustness are provided.
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1. Introduction

The minimum divergence approach is a useful technique in statistical inference. In recent years,
the literature dedicated to the divergence-based statistical methods has grown substantially and the
monographs of Pardo [1] and Basu et al. [2] are important references that present developments
and applications in this field of research. Minimum divergence estimators and related methods have
received considerable attention in statistical inference because of their ability to reconcile efficiency and
robustness. Among others, Beran [3], Tamura and Boos [4], Simpson [5,6] and Toma [7] proposed
families of parametric estimators minimizing the Hellinger distance between a nonparametric estimator
of the observations density and the model. They showed that those estimators are both asymptotically
efficient and robust. Generalizing earlier work based on the Hellinger distance, Lindsay [8] and Basu and
Lindsay [9] have investigated minimum divergence estimators, for both discrete and continuous models.
Some families of estimators based on approximate divergence criteria have also been considered; see
Basu et al. [10]. Broniatowski and Keziou [11] have introduced a minimum divergence estimation
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method based on a dual representation of the divergence between probability measures. Their estimators,
called minimum dual divergence estimators, are defined in a unified way for both continuous and
discrete models. They do not require any prior smoothing and include the classical maximum likelihood
estimators as a benchmark. Robustness properties of these estimators have been studied in [12,13].

In this paper we apply estimators of divergences in dual form and corresponding minimum dual
divergence estimators, as presented by Broniatowski and Keziou [11], in the context of model selection.

Model selection is a method for selecting the best model among candidate models. A model
selection criterion can be considered as an approximately unbiased estimator of the expected overall
discrepancy, a nonnegative quantity that measures the distance between the true unknown model and a
fitted approximating model. If the value of the criterion is small, then the approximated candidate model
can be chosen.

Many model selection criteria have been proposed so far. Classical model selection criteria
using least square error and log-likelihood include the Cp-criterion, cross-validation (CV), the
Akaike information criterion (AIC) based on the well-known Kullback–Leibler divergence, Bayesian
information criterion (BIC), a general class of criteria that also estimates the Kullback–Leibler
divergence (GIC). These criteria have been proposed by Mallows [14], Stone [15], Akaike [16],
Schwarz [17] and Konishi and Kitagawa [18], respectively. Robust versions of classical model selection
criteria, which are not strongly affected by outliers, have been firstly proposed by Ronchetti [19],
Ronchetti and Staudte [20]. Other references on this topic can be found in Maronna et al. [21]. Among
the recent proposals for model selection we recall the criteria presented by Karagrigoriou et al. [22],
the divergence information criteria (DIC) introduced by Mattheou et al. [23]. The DIC criteria use the
density power divergences introduced by Basu et al. [10].

In the present paper, we apply the same methodology used for AIC, and also for DIC, to a general class
of divergences including the Cressie–Read divergences [24] in order to obtain model selection criteria.
These criteria also use dual forms of the divergences and minimum dual divergence estimators. We show
that the criteria are asymptotically unbiased and compute the corresponding influence functions.

The paper is organized as follows. In Section 2 we recall the duality formula for divergences, as well
as the definitions of associated dual divergence estimators and minimum dual divergence estimators,
together with their asymptotic properties, all these being necessary in the next section where we define
new criteria for model selection. In Section 3, we apply the same methodology used for AIC to the
divergences in dual form in order to develop criteria for model selection. We define criteria based on
estimators of the expected overall discrepancy and prove their asymptotic unbiasedness. The influence
functions of the proposed criteria are also derived. In Section 4 we present some conclusions.

2. Minimum Dual Divergence Estimators

2.1. Examples of Divergences

Let ϕ be a non-negative convex function defined from (0,∞) onto [0,∞] and satisfying ϕ(1) = 0.
Also extend ϕ at 0 defining ϕ(0) = lim

x↓0
ϕ(x). Let (X ,B) be a measurable space and P be a probability
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measure (p.m.) defined on (X ,B). Following Rüschendorf [25], for any p.m. Q absolutely continuous
(a.c.) w.r.t. P , the divergence between Q and P is defined by

D(Q,P ) :=

∫
ϕ

(
dQ

dP

)
dP. (1)

When Q is not a.c. w.r.t. P, we set D(Q,P ) =∞. We refer to Liese and Vajda [26] for an overview
on the origin of the concept of divergence in statistics.

A commonly used family of divergences is the so-called “power divergences” or Cressie–Read
divergences. This family is defined by the class of functions

x ∈ R∗+ 7→ ϕγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)
(2)

for γ ∈ R \ {0, 1} and ϕ0(x) := − log x + x − 1, ϕ1(x) := x log x − x + 1 with ϕγ(0) = lim
x↓0

ϕγ(x),

ϕγ(∞) = lim
x→∞

ϕγ(x), for any γ ∈ R. The Kullback–Leibler divergence (KL) is associated with ϕ1,

the modified Kullback–Leibler (KLm) to ϕ0, the χ2 divergence to ϕ2, the modified χ2 divergence (χ2
m)

to ϕ−1 and the Hellinger distance to ϕ1/2. We refer to [11] for the modified versions of χ2 and KL
divergences.

Some applied models using divergence and entropy measures can be found in Toma and
Leoni-Aubin [27], Kallberg et al. [28], Preda et al. [29] and Basu et al. [2], among others.

2.2. Dual Form of a Divergence and Minimum Divergence Estimators

Let {Fθ, θ ∈ Θ} be an identifiable parametric model, where Θ is a subset of Rp. We assume that for
any θ ∈ Θ, Fθ has density fθ with respect to some dominating σ-finite measure λ. Consider the problem
of estimating the unknown true value of the parameter θ0 on the basis of an i.i.d. sample X1, . . . , Xn

with the law Fθ0 .
In the following, D(fθ, fθ0) denotes the divergence between fθ and fθ0 , namely

D(fθ, fθ0) :=

∫
ϕ

(
fθ
fθ0

)
fθ0dλ. (3)

Using a Fenchel duality technique, Broniatowski and Keziou [11] have proved a dual representation
of divergences. The main interest on this duality formula is that it leads to a wide variety of estimators, by
a plug-in method of the empirical measure evaluated to the data set, without making use of any grouping,
nor smoothing.

We consider divergences, defined through differentiable functions ϕ, that we assume to satisfy
(C.0) There exists 0 < δ < 1 such that for all c ∈ [1− δ, 1 + δ], there exist numbers c1, c2, c3 such that

ϕ(cx) ≤ c1ϕ(x) + c2|x|+ c3, ∀ x ∈ R. (4)

Condition (C.0) holds for all power divergences, including KL and KLm divergences.
Assuming that D(fθ, fθ0) is finite and that the function ϕ satisfies the condition (C.0), the dual

representation holds

D(fθ, fθ0) = sup
α∈Θ

∫
m(α, θ, x)fθ0(x)dx, (5)
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with

m(α, θ, x) :=

∫
ϕ̇

(
fθ(z)

fα(z)

)
fθ(z)dz −

{
ϕ̇

(
fθ(x)

fα(x)

)
fθ(x)

fα(x)
− ϕ

(
fθ(x)

fα(x)

)}
, (6)

where ϕ̇ is the notation for the derivative of ϕ, the supremum in Equation (5) being uniquely attained in
α = θ0, independently on θ.

We mention that the dual representation Equation (5) of divergences has been obtained independently
by Liese and Vajda [30].

Naturally, for fixed θ, an estimator of the divergence D(fθ, fθ0) is obtained by replacing Equation (5)
by its sample analogue. This estimator is exactly

D̂(fθ, fθ0) := sup
α∈Θ

1

n

n∑
i=1

m(α, θ,Xi), (7)

the supremum being attained for

α̂(θ) := arg sup
α∈Θ

1

n

n∑
i=1

m(α, θ,Xi). (8)

Formula (8) defines a class of estimators of the parameter θ0 called dual divergence estimators.
Further, since

inf
θ∈Θ

D(fθ, fθ0) = D(fθ0 , fθ0) = 0 (9)

and since the infimum in the above display is unique, a natural definition of estimators of the parameter
θ0, called minimum dual divergence estimators, is provided by

θ̂ := arg inf
θ∈Θ

D̂(fθ, fθ0) = arg inf
θ∈Θ

sup
α∈Θ

1

n

n∑
i=1

m(α, θ,Xi). (10)

For more details on the dual representation of divergences and associated minimum dual divergence
estimators, we refer to Broniatowski and Keziou [11].

2.3. Asymptotic Properties

Broniatowski and Keziou [11] have proved both the weak and the strong consistency, as well as
the asymptotic normality for the classes of estimators α̂(θ), α̂(θ̂) and θ̂. Here, we shortly recall those
asymptotic results that will be used in the next sections. The following conditions are considered.

(C.1) The estimates θ̂ and α̂(θ̂) exist.
(C.2) supα,θ∈Θ | 1n

∑n
i=1m(α, θ,Xi)−

∫
m(α, θ, x)fθ0(x)dx| tends to 0 in probability.

(a) for any positive ε, there exists some positive η such that for any α ∈ Θ with ‖α− θ0‖ > ε and for
all θ ∈ Θ it holds that

∫
m(α, θ, x)fθ0(x)dx <

∫
m(θ0, θ, x)fθ0(x)dx− η.

(b) there exists some neighborhood Nθ0 of θ0 such that for any positive ε, there exists some positive
η such that for all α ∈ Nθ0 and all θ ∈ Θ satisfying ‖θ − θ0‖ > ε, it holds that

∫
m(α, θ0, x)fθ0(x)dx <∫

m(α, θ, x)fθ0(x)dx− η.

(C.3) There exists some neighborhood Nθ0 of θ0 and a positive function H with
∫
H(x)fθ0(x)dx

finite, such that for all α ∈ Nθ0 , ‖m(α, θ0, X)‖ ≤ H(X) in probability.
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(C.4) There exists a neighborhood Nθ0 of θ0 such that the first and the second order partial derivatives
with respect to α and θ of ϕ̇

(
fθ(x)
fα(x)

)
fθ(x) are dominated on Nθ0 ×Nθ0 by some λ-integrable functions.

The third order partial derivatives with respect to α and θ of m(α, θ, x) are dominated on Nθ0 ×Nθ0 by
some Pθ0-integrable functions (where Pθ0 is the probability measure corresponding to the law Fθ0).

(C.5) The integrals
∫
‖ ∂
∂α
m(θ0, θ0, x)‖2fθ0(x)dx,

∫
‖ ∂
∂θ
m(θ0, θ0, x)‖2fθ0(x)dx,∫

‖ ∂2
∂2α

m(θ0, θ0, x)‖fθ0(x)dx,
∫
‖ ∂2
∂2θ
m(θ0, θ0, x)‖fθ0(x)dx,

∫
‖ ∂2

∂θ∂α
m(θ0, θ0, x)‖fθ0(x)dx are finite and

the Fisher information matrix I(θ0) :=
∫ ḟθ0 (z)ḟ tθ0

(z)

fθ0 (z)
dz is nonsingular, t denoting the transpose.

Proposition 1. Assume that conditions (C.1)–(C.3) hold. Then
(a) supθ∈Θ ‖α̂(θ)− θ0‖ tends to 0 in probability.
(b) θ̂ converges to θ0 in probability.
If (C.1)–(C.5) are fulfilled, then
(c)
√
n(θ̂ − θ0) and

√
n(α̂(θ̂) − θ0) converge in distribution to a centered p-variate normal random

variable with covariance matrix I(θ0)−1.

For discussions and examples about the fulfillment of conditions (C.1)–(C.5), we refer to
Broniatowski and Keziou [11].

3. Model Selection Criteria

In this section, we apply the same methodology used for AIC to the divergences in dual form in order
to develop model selection criteria. Consider a random sample X1, . . . , Xn from the distribution with
density g (the true model) and a candidate model fθ from a parametric family of models (fθ) indexed
by an unknown parameter θ ∈ Θ, where Θ is a subset of Rp. We use divergences satisfying (C.0) and
denote for simplicity the divergence D(fθ, g) between fθ and the true density g by Wθ.

3.1. The Expected Overall Discrepancy

The target theoretical quantity that will be approximated by an asymptotically unbiased estimator is
given by

E[Wθ̂] = E[Wθ|θ = θ̂] (11)

where θ̂ is a minimum dual divergence estimator defined by Equation (10). The same divergence is used
for both Wθ and θ̂. The quantity E[Wθ̂] can be viewed as the average distance between g and (fθ) and it
is called the expected overall discrepancy between g and (fθ).

The next Lemma gives the gradient vector and the Hessian matrix of Wθ and is useful for evaluating
the expected overall discrepancy E[Wθ̂] through Taylor expansion. We denote by ḟθ and f̈θ the first and
the second order derivative of fθ with respect to θ, respectively. We assume the following conditions
allowing derivation under the integral sign.

(C.6) There exists a neighborhood Nθ of θ such that∫
sup
u∈Nθ

∥∥∥∥ ∂∂u
[
ϕ

(
fu
g

)]∥∥∥∥ gdλ <∞. (12)
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(C.7) There exists a neighborhood Nθ of θ such that∫
sup
u∈Nθ

∥∥∥∥ ∂∂u
[
ϕ̇

(
fu
g

)
ḟu

]∥∥∥∥ dλ <∞. (13)

Lemma 1. Assume that conditions (C.6) and (C.7) hold. Then, the gradient vector ∂
∂θ
Wθ of Wθ is

given by ∫
ϕ̇

(
fθ
g

)
ḟθdλ (14)

and the Hessian matrix ∂2

∂2θ
Wθ is given by

∫ [
ϕ̈

(
fθ
g

)
ḟθḟ

t
θ

g
+ ϕ̇

(
fθ
g

)
ḟθ

]
dλ. (15)

The proof of this Lemma is straightforward, therefore it is omitted.
Particularly, when using Cressie–Read divergences, the gradient vector ∂

∂θ
Wθ of Wθ is given by

1

γ − 1

∫ (
fθ(z)

g(z)

)γ−1

ḟθ(z)dz, if γ ∈ R\{0, 1} (16)

−
∫

g(z)

fθ(z)
ḟθ(z)dz, if γ = 0 (17)∫

log

(
fθ(z)

g(z)

)
ḟθ(z)dz, if γ = 1 (18)

and the Hessian matrix ∂2

∂2θ
Wθ is given by∫ (

fθ(z)

g(z)

)γ−1
ḟθ(z)ḟ tθ(z)

fθ(z)
dz +

1

γ − 1

∫ (
fθ(z)

g(z)

)γ−1

f̈θ(z)dz, if γ ∈ R\{0, 1} (19)∫
g(z)

f 2
θ (z)

ḟθ(z)ḟ tθ(z)dz −
∫

g(z)

fθ(z)
f̈θ(z)dz, if γ = 0 (20)∫

log

(
fθ(z)

g(z)

)
f̈θ(z)dz +

∫
ḟθ(z)ḟ tθ(z)

fθ(z)
dz, if γ = 1. (21)

When the true model g belongs to the parametric model (fθ), hence g = fθ0 , the gradient vector and
the Hessian matrix of Wθ evaluated in θ = θ0 simplify to[

∂

∂θ
Wθ

]
θ=θ0

= 0 (22)[
∂2

∂2θ
Wθ

]
θ=θ0

= ϕ̈(1)I(θ0). (23)

The hypothesis that the true model g belongs to the parametric family (fθ) is the assumption made
by Akaike [16]. Although this assumption is questionable in practice, it is useful because it provides the
basis for the evaluation of the expected overall discrepancy (see also [23]).

Proposition 2. When the true model g belongs to the parametric model (fθ), assuming that conditions
(C.6) and (C.7) are fulfilled for g = fθ0 and θ = θ0, the expected overall discrepancy is given by

E[Wθ̂] = Wθ0 +
ϕ̈(1)

2
E[(θ̂ − θ0)tI(θ0)(θ̂ − θ0)] + E[Rn], (24)
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where Rn = o(‖θ̂ − θ0‖2) and θ0 is the true value of the parameter.

Proof. By applying a Taylor expansion to Wθ around the true parameter θ0 and taking θ = θ̂, on the
basis of Equations (22) and (23), we obtain

Wθ̂ = Wθ0 +
ϕ̈(1)

2
(θ̂ − θ0)tI(θ0)(θ̂ − θ0) + o(‖θ̂ − θ0‖2). (25)

Then Equation (24) is proved.

3.2. Estimation of the Expected Overall Discrepancy

In this section we construct an asymptotically unbiased estimator of the expected overall discrepancy,
under the hypothesis that the true model g belongs to the parametric family (fθ).

For a given θ ∈ Θ, a natural estimator of Wθ is

Qθ := sup
α∈Θ

1

n

n∑
i=1

m(α, θ,Xi) =
1

n

n∑
i=1

m(α̂(θ), θ,Xi), (26)

where m(α, θ, x) is given by formula (6), which can also be expressed as

Qθ =

∫
ϕ̇

(
fθ(z)

fα̂(θ)(z)

)
fθ(z)dz − 1

n

n∑
i=1

{
ϕ̇

(
fθ(Xi)

fα̂(θ)(Xi)

)
fθ(Xi)

fα̂(θ)(Xi)
− ϕ

(
fθ(Xi)

fα̂(θ)(Xi)

)}
(27)

using the sample analogue of the dual representation of the divergence.
The following conditions allow derivation under the integral sign for the integral term of Qθ.
(C.8) There exists a neighborhood Nθ of θ such that∫

sup
u∈Nθ

∥∥∥∥ ∂∂u
[
ϕ̇

(
fu
fα̂(u)

)
fu

]∥∥∥∥ dλ <∞. (28)

(C.9) There exists a neighborhood Nθ of θ such that∫
sup
u∈Nθ

∥∥∥∥∥ ∂∂u
[
ϕ̈

(
fu
fα̂(u)

){
fu
fα̂(u)

ḟu −
(

fu
fα̂(u)

)2

· ∂
∂u
α̂(u) · ḟα̂(u)

}
+ ϕ̇

(
fu
fα̂(u)

)
ḟu

]∥∥∥∥∥ dλ <∞.

(29)

Lemma 2. Under (C.8) and (C.9), the gradient vector and the Hessian matrix of Qθ are

∂

∂θ
Qθ =

1

n

n∑
i=1

∂

∂θ
m(α̂(θ), θ,Xi) (30)

∂2

∂2θ
Qθ =

1

n

n∑
i=1

∂2

∂2θ
m(α̂(θ), θ,Xi). (31)

Proof. Since

Qθ =
1

n

n∑
i=1

m(α̂(θ), θ,Xi) (32)



Entropy 2014, 16 2693

derivation yields

∂

∂θ
Qθ =

∂

∂θ
α̂(θ)

[
1

n

n∑
i=1

∂

∂α
m(α̂(θ), θ,Xi)

]
+

1

n

n∑
i=1

∂

∂θ
m(α̂(θ), θ,Xi). (33)

Note that, by its very definition, α̂(θ) is a solution of the equation

1

n

n∑
i=1

∂

∂α
m(α, θ,Xi) = 0 (34)

taken with respect to α, therefore

∂

∂θ
Qθ =

1

n

n∑
i=1

∂

∂θ
m(α̂(θ), θ,Xi). (35)

On the other hand,

∂2

∂2θ
Qθ =

∂

∂θ
α̂(θ)

[
1

n

n∑
i=1

∂

∂θ∂α
m(α̂(θ), θ,Xi)

]
+

1

n

n∑
i=1

∂2

∂2θ
m(α̂(θ), θ,Xi) (36)

=
1

n

n∑
i=1

∂2

∂2θ
m(α̂(θ), θ,Xi). (37)

Proposition 3. Under conditions (C.1)–(C.3) and (C.8)–(C.9) and assuming that the integrals∫
‖ ∂2
∂2θ
m(θ0, θ0, x)‖fθ0(x)dx,

∫
‖ ∂3

∂2θ∂α
m(θ0, θ0, x)‖fθ0(x)dx and

∫
‖ ∂3
∂3θ
m(θ0, θ0, x)‖fθ0(x)dx are fi-

nite, the gradient vector and the Hessian matrix of Qθ evaluated in θ = θ̂ satisfy[
∂

∂θ
Qθ

]
θ̂

= 0 (38)[
∂2

∂2θ
Qθ

]
θ̂

= ϕ̈(1)I(θ0) + oP (1). (39)

Proof. By the very definition of θ̂, the equality (38) is verified. For the second relation, we take θ = θ̂

in Equation (31) and obtain [
∂2

∂2θ
Qθ

]
θ̂

=
1

n

n∑
i=1

∂2

∂2θ
m(α̂(θ̂), θ̂, Xi). (40)

A Taylor expansion of 1
n

∑n
i=1

∂2

∂2θ
m(α, θ,Xi) as function of (α, θ) around to (θ0, θ0) yields

1

n

n∑
i=1

∂2

∂2θ
m(α̂(θ̂), θ̂, Xi) =

1

n

n∑
i=1

∂2

∂2θ
m(θ0, θ0, Xi) +

[
1

n

n∑
i=1

∂2

∂2θ∂α
m(θ0, θ0, Xi)

]
·

·(α̂(θ̂)− θ0) +

[
1

n

n∑
i=1

∂3

∂3θ
m(θ0, θ0, Xi)

]
(θ̂ − θ0) + o(

√
‖α̂(θ̂)− θ0‖2 + ‖θ̂ − θ0‖2).

Using the fact that
∫
‖ ∂2
∂2θ
m(θ0, θ0, x)‖fθ0(x)dx is finite, the weak law of large numbers leads to

1

n

n∑
i=1

∂2

∂2θ
m(θ0, θ0, Xi)

P→ ϕ̈(1)I(θ0). (41)
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Then, since (α̂(θ̂) − θ0) = oP (1) and (θ̂ − θ0) = oP (1), and taking into account that∫
‖ ∂3

∂2θ∂α
m(θ0, θ0, x)‖fθ0(x)dx and

∫
‖ ∂3
∂3θ
m(θ0, θ0, x)‖fθ0(x)dx are finite, we deduce that

1

n

n∑
i=1

∂2

∂2θ
m(α̂(θ̂), θ̂, Xi) = ϕ̈(1)I(θ0) + oP (1). (42)

Thus we obtain Equation (39).

In the following, we suppose that conditions of Proposition 1, Proposition 2 and Proposition 3 are
all satisfied. These conditions allow obtaining an asymptotically unbiased estimator of the expected
overall discrepancy.

Proposition 4. When the true model g belongs to the parametric model (fθ), the expected overall
discrepancy evaluated at θ̂ is given by

E[Wθ̂] = E[Qθ̂ + ϕ̈(1)(θ̂ − θ0)tI(θ0)(θ̂ − θ0) +Rn], (43)

where Rn = o(‖θ0 − θ̂‖2).

Proof. A Taylor expansion of Qθ around to θ̂ yields

Qθ = Qθ̂ + (θ − θ̂)t
[
∂

∂θ
Qθ

]
θ̂

+
1

2
(θ − θ̂)t

[
∂2

∂2θ
Qθ

]
θ̂

(θ − θ̂) + o(‖θ − θ̂‖2) (44)

and using Proposition 3, we have

Qθ = Qθ̂ +
1

2
(θ − θ̂)t[ϕ̈(1)I(θ0) + oP (1)](θ − θ̂) + o(‖θ − θ̂‖2). (45)

Taking θ = θ0, for large n, it holds

Qθ0 = Qθ̂ +
ϕ̈(1)

2
(θ0 − θ̂)tI(θ0)(θ0 − θ̂) + o(‖θ0 − θ̂‖2) (46)

and consequently

E[Qθ0 ] = E[Qθ̂] +
ϕ̈(1)

2
E[(θ0 − θ̂)tI(θ0)(θ0 − θ̂)] + E[Rn], (47)

where Rn = o(‖θ0 − θ̂‖2).
According to Proposition 2 it holds

E[Wθ̂] = Wθ0 +
ϕ̈(1)

2
E[(θ̂ − θ0)tI(θ0)(θ̂ − θ0)] + E[Rn]. (48)

Note that

E[Qθ] = E

[
sup
α∈Θ

1

n

n∑
i=1

m(α, θ,Xi)

]
= sup

α∈Θ
E

[
1

n

n∑
i=1

m(α, θ,Xi)

]
= sup

α∈Θ
E [m(α, θ,Xi)] = sup

α∈Θ

∫
m(α, θ, x)fθ0(x)dx = Wθ. (49)

Then, combining Equation (48) with Equations (49) and (47), we get

E[Wθ̂] = E[Qθ̂ + ϕ̈(1)(θ̂ − θ0)tI(θ0)(θ̂ − θ0) +Rn]. (50)
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Proposition 4 shows that an asymptotically unbiased estimator of the expected overall discrepancy is
given by

Qθ̂ + ϕ̈(1)(θ̂ − θ0)tI(θ0)(θ̂ − θ0). (51)

According to Proposition 1,
√
n(θ̂ − θ0) is asymptotically distributed as Np(0, I(θ0)−1).

Consequently, n(θ̂−θ0)tI(θ0)(θ̂−θ0) has approximately a χ2
p distribution. Then, taking into account that

no(‖θ̂−θ0‖2) = oP (1), an asymptotically unbiased estimator of n-times the expected overall discrepancy
evaluated at θ̂ is provided by

nQθ̂ + ϕ̈(1)p. (52)

3.3. Influence Functions

In the following, we compute the influence function of the statistics Qθ̂. As it is known, the influence
function is a useful tool for describing the robustness of an estimator. Recall that a map T defined on
a set of distribution functions and parameter space valued is a statistical functional corresponding to an
estimator θ̂ of the parameter θ, if θ̂ = T (Fn), where Fn is the empirical distribution function associated
to the sample. The influence function of T at Fθ is defined by

IF(x;T, Fθ) :=
∂T (F̃εx)

∂ε

∣∣∣∣∣
ε=0

(53)

where F̃εx := (1 − ε)Fθ + εδx, ε > 0, δx being the Dirac measure putting all mass at x. Whenever the
influence function is bounded with respect to x, the corresponding estimator is called robust (see [31]).

Since

Qθ̂ =
1

n

n∑
i=1

m(α̂(θ̂), θ̂, Xi), (54)

the statistical functional corresponding to Qθ̂, which we denote by U(·), is defined by

U(F ) :=

∫
m(TV (F )(F ), V (F ), y)dF (y) (55)

where Tθ(F ) is the statistical functional associated to the estimator α̂(θ) and V (F ) is the statistical
functional associated to the estimator θ̂.

Proposition 5. The influence function of Qθ̂ is

IF(x;U, Fθ0) = ϕ̈(1)
ḟθ0(x)

fθ0(x)
. (56)

Proof. For the contaminated model F̃εx := (1− ε)Fθ0 + εδx, it holds

U(F̃εx) = (1− ε)
∫
m(TV (F̃εx)(F̃εx), V (F̃εx), y)dFθ0(y) + εm(TV (F̃εx)(F̃εx), V (F̃εx), x). (57)

Derivation with respect to ε yields

∂

∂ε
[U(F̃εx)]ε=0 = −

∫
m(θ0, θ0, y)dFθ0(y) +

[∫
∂

∂α
m(θ0, θ0, y)dFθ0(y)

]
∂

∂ε
[TV (F̃εx)(F̃εx)]ε=0 +

+

[∫
∂

∂θ
m(θ0, θ0, y)dFθ0(y)

]
IF(x;V, Fθ0) +m(θ0, θ0, x).
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Note that m(θ0, θ0, y) = 0 for any y and
∫

∂
∂α
m(θ0, θ0, y)dFθ0(y) = 0. Also, some straightforward

calculations give ∫
∂

∂θ
m(θ0, θ0, y)dFθ0(y) = ϕ̈(1)I(θ0). (58)

On the other hand, according to the results presented in [12], the influence function of the minimum dual
divergence estimator is

IF(x;V, Fθ0) = I(θ0)−1 ḟθ0(x)

fθ0(x)
. (59)

Consequently, we obtain Equation (60).

Note that, for Cressie–Read divergences, it holds

IF(x;U, Fθ0) =
ḟθ0(x)

fθ0(x)
(60)

irrespective of the used divergence, since ϕ̈γ(1) = 1, for any γ.
Generally, IF(x;U, Fθ0) is not bounded, therefore the robustness of the statistics Qθ̂, as measured by

the influence function, does not hold.

4. Conclusions

The dual representation of divergences and corresponding minimum dual divergence estimators are
useful tools in statistical inference. The presented theoretical results show that, in the context of model
selection, these tools provide asymptotically unbiased criteria. These criteria are not robust in the sense
of the bounded influence function, but this fact does not exclude the stability of the criteria with respect
to other robustness measures. The computation of Qθ̂ could lead to serious difficulties, for example
when considering various regression models to choose from. Such difficulties are implied by the double
optimization in the criterion. Therefore, from the computation point of view, some other existing model
selection criteria could be preferred. On the other hand, some performant computation techniques,
involving such a double optimization, could arrive in the favor of using these new criteria also. These
problems represent the topic of future research.
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