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Abstract: Using a recently discovered method for producing random symbol sequences with
prescribed transition counts, we present an exact null hypothesis significance test (NHST) for
mutual information between two random variables, the null hypothesis being that the mutual
information is zero (i.e., independence). The exact tests reported in the literature assume that
data samples for each variable are sequentially independent and identically distributed (iid).
In general, time series data have dependencies (Markov structure) that violate this condition.
The algorithm given in this paper is the first exact significance test of mutual information that
takes into account the Markov structure. When the Markov order is not known or indefinite,
an exact test is used to determine an effective Markov order.
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1. Introduction

Mutual information is an information theoretic measure of dependency between two random
variables [1]. Unlike correlation, which characterizes linear dependence, mutual information is
completely general. The mutual information (in bits) of two discrete random variables X and Y is
defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log2

(
p(x, y)

p(x)p(y)

)
. (1)

Zero dependence occurs if and only if p(x, y) = p(x)p(y); otherwise I(X;Y ) is a positive quantity.
In this article we are interested in the case that the marginal and joint probabilities are not known

beforehand, but are approximated from data, so that estimates of I(X;Y ) will not be exactly zero when
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X and Y are independent. Thus, in order to make a decision as to whether I(X;Y ) > 0, a significance
test is necessary. A significance test allows an investigator to specify the stringency for rejection of the
null hypothesis I(X;Y ) = 0.

The problem of determining significance of dependency can be formulated as a chi-squared test [2]
or as an exact test (such as Fisher’s test [3] or permutation tests [4]). The great advantage of exact tests
is that they are valid for small datasets; chi-squared tests are only valid in the asymptotic limit of infinite
data. Unfortunately, the exact tests reported in the literature assume that consecutive data samples are
drawn independently from identical distributions (iid). In general, time series data have dependencies
(Markov structure) that violate this condition. In this paper we give the first exact significance test of
mutual information that takes into account Markov structure.

2. Testing the Significance of the Null Hypothesis I(X;Y ) = 0

To introduce the need for a significance test, suppose the random variables X and Y are the values
obtained from the rolls of a pair of six-sided dice, each die independent from the other and equally likely
to land on any of its six sides. In the limit of infinite data, the mutual information between X and Y

computed using Equation (1) is zero. However, what should we expect for a small number of rolls, say, 75?
In Figure 1 we plot the result of a numerical simulation of 10, 000 trials of 75 rolls each; the

horizontal axis is I(X;Y ) and the vertical axis is the probability distribution. The marginals p(x) and
p(y) in Equation (1) are estimated by counting the number of occurrences of each of the six symbols
{1, 2, 3, 4, 5, 6} for each die and dividing by the total size of the dataset (75). Similarly, the joint
probability p(x, y) is obtained by counting the number of occurrences of each of the possible die value
pairs, symbols {(1, 1), (1, 2), . . . , (6, 6)}, divided by the total dataset size. Bias correction is typically
employed in practice [7]; however the issue of estimation accuracy is separate from significance testing.
The procedure we give here for significance testing is applicable for any choice of bias correction.

Figure 1. Mutual information between a pair of independent dice rolled 75 times.
Distribution computed from Equation (1) over 10, 000 trials (solid line). The dashed line
indicates significance level α = 0.05. Open circles are estimates of the distribution from
10, 000 permutation surrogates of a single trial.
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The most probable value of mutual information is 0.3 bits/roll, which—if we did not know
better—might seem significant considering that the total uncertainty in one die roll is
log2 6 ≈ 2.585 bits.

The true significance of I , however, can only be determined knowing the distribution I(X;Y ) for
independent dice (solid line, Figure 1). Knowing this distribution, we would not regard a measurement
of I = 0.3 as being significant, since the values of I around 0.3 are, in fact, the most probable to occur
when X and Y are independent.

The logic we are describing is that of a null hypothesis significance test (NHST) for mutual
information, the null hypothesis being that the mutual information is zero. The probability of obtaining
the measured I(X;Y ) value, or one larger, is the p-value, and the p-value at which we reject the null
hypothesis is the significance level, typically denoted by α. A significance level of α = 0.05 means that
we reject the null hypothesis if the p-value is less than or equal to 0.05. For the dice example, rejection
would occur at I ≥ 0.42 if α = 0.05.

To be clear, the p-value is the probability, assuming the null hypothesis, of the mutual information
attaining its observed value or larger. (It is not the probability of the null hypothesis being correct.) While
a very small p-value leads one to reject the null hypothesis of independence, a large p-value only implies
that the data is consistent with the null hypothesis, not that the null hypothesis should be accepted. In
addition, the significance threshold for rejection is entirely up to the investigator to decide.

3. Generating the Mutual Information Distribution from Surrogates

To perform an NHST we need to know the distribution of the test statistic given the null hypothesis.
In general, this distribution is not known a priori, but in some cases it can be estimated from the data.
Fortunately, the mutual information NHST lends itself to resampling methods [8,9]. Resampling is a
procedure that creates multiple datasets—referred to hereafter as surrogates—from the original data.
The null hypothesis distribution is extracted from the surrogate data. For an exact NHST, surrogates
need to meet two conditions: (1) the null hypothesis must be true for the surrogates; and (2) in every
other way they should be like the original data.

In the case of dice, these conditions can be met exactly by randomly permuting the elements of X
and Y . Permutation destroys any dependence that may have existed between the datasets but preserves
symbol frequencies. Referring to Figure 1, the solid line is the actual distribution of I estimated
from 10, 000 trials of 75 data points each. The open circles are the null hypothesis distribution estimated
from 10, 000 permutation surrogates of a single time series of 75 data points. We have chosen a data
length for which the permutation surrogates recreate the actual distribution well; in contrast, if the
original dataset is very small or atypical, the null hypothesis distribution obtained using surrogates will
depart from the true distribution.

Also shown in Figure 1 is the significance level, α = 0.05 (dashed line), occurring at approximately
I = 0.42. Measured I values that are equal to or greater than 0.42 (shaded region) require rejection of
the null hypothesis that the dice are independent. Notice that α = 0.05 implies a five per cent chance
of incorrectly rejecting the null hypothesis, known as a Type I error. Lowering the significance level
reduces the Type I error rate, but also reduces the sensitivity of the test. In any case, an ideal NHST
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test will have a Type I error rate equal to the significance level. For the independent die scenario, we
repeated the experiment 10, 000 times and found 503 rejections of the null hypothesis, compared with
the expected number of rejections 10, 000× 0.05 = 500.

An equivalent way to compute exact p-values is to create a set of contingency tables and use Fisher’s
exact test [3,6]. The elements cij of the contingency table are the number of times (xn, yn) = (i, j) are
observed in the data. Here subscript n is used to indicate x, y pairs that occur at the same time. The table
elements, along with the row and column sums, define the joint and marginal probabilities, respectively,
and therefore the mutual information I . The probability of obtaining the observed contingency table
is equal to the number of possible sequences having the observed contingency table divided by the
number of possible sequences having the observed row and column sums. For iid data, the probability of
obtaining a particular table is given by the hypergeometric distribution. Finally, the p-value is obtained
by summing up the probabilities of all tables with I values equal to or greater than the observed I value.

In this context, counting tables is equivalent to counting sequences with fixed marginals, neither of
which is remotely practical except for very small data sets. For the case of 75 rolls of a fair 6-sided
die, the number of permutation surrogates is in the order of 1053. In contrast to Fisher’s exact test,
the permutation test requires only a uniform sampling from the set of sequences with fixed marginals,
rather than a full enumeration. The exact p-value is approximated as the fraction of samples that have
mutual information equal to or greater than the observed I . In the limit of infinite surrogate samples the
approximated p-value equals the exact p-value. In practice, 10, 000 surrogates are sufficient to perform
the NHST when α = 0.05.

4. Accounting for Markov Structure

Permutation surrogates preserve single symbol frequencies but not multiple symbol (or word)
frequencies. For the dice roll distributions, which are iid, this approach is perfectly adequate, but in
general we must take into account that future states may depend on present and past states. For example,
let us endow a pair of dice with a Markov property, i.e., the result of the next roll for each die depends
probabilistically on its present roll. Suppose we use the following 6× 6 transition probability matrix for
each die:

T =



0.5 0.25 0 0 0 0.25

0.25 0.5 0.25 0 0 0

0 0.25 0.5 0.25 0 0

0 0 0.25 0.5 0.25 0

0 0 0 0.25 0.5 0.25

0.25 0 0 0 0.25 0.5


, (2)

where Tij is the transition probability of going from state i to state j. Inspecting T we see that
each die has probability 0.5 of repeating the result of the last roll, probability 0.25 of turning up one
higher than the last roll, and 0.25 probability of being one lower. The entropy rate for each Markov die
is 1.5 bits/roll.
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Figure 2. Mutual information between a pair of independent Markov dice rolled 150 times.
Distribution computed from Equation (1) over 10, 000 trials (solid line). Open circles are
the distribution estimated from permutation surrogates. Open triangles are the distribution
estimated from surrogates of Markov order one.
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We use simulation to discover the true distribution for I(X;Y ) assuming the null hypothesis, this
time using 10, 000 trials of 150 rolls each. The results are plotted in Figure 2. As before, the solid line is
the true null distribution and the open circles represent the null distribution obtained from permutation
surrogates of a single time series. In this case, the permutation distribution, being biased towards smaller
values, does not fit the true distribution. Using permutation surrogates, the most probable observed
mutual information value (I ≈ 0.2) would lead to an incorrect rejection of the null hypothesis at
significance level α = 0.05. This error is due to the fact that the permutation surrogates do not preserve
the Markov structure of the original data and thus do not meet the second condition for exactness.

To create an exact test, the surrogates need to be constrained such that not only single symbol counts
but also the counts of consecutive symbol pairs are preserved. By preserving the counts of both single
and consecutive symbol pairs, the transition probability of the surrogate sequences is made identical to
that of the observed sequence.

To be more general, let xk = xn, xn−1, . . . , xn−k ∈ Xk+1 denote a (k + 1)-length word and let
N(xk) be the number of such words appearing the data. A surrogate of Markov order k is one that has
exactly the same N(xk) as the original data. A surrogate of Markov order zero is obtained by simple
permutation. In the Appendix, we provide an efficient algorithm for producing surrogate sequences with
prescribed word counts N(xk) for any k ≥ 0. For an exact test of the I(X;Y ) = 0 null hypothesis, the
Markov order of the surrogates must match the order of the data.

Knowing that our Markov dice are order one, we generate the correct null hypothesis distribution
from surrogates of order one (Figure 2, open triangles). Performing 1000 trials using order-preserving
surrogates we found 44 Type I errors, which is in line with the expected number of 1000 × 0.05 = 50.
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Importantly, the permutation test, which does not preserve Markov order, resulted in 489 Type I errors!
Using permutation NHSTs in the presence of Markov structure yields invalid inferences.

The algorithm described in the Appendix can be simply modified to enumerate every sequence of
a given Markov order and given marginals. The exact p-value is the fraction of such sequences that
have mutual information greater than or equal to the observed I . More usefully, the algorithm can also
provide uniform sampling of the set of such sequences so that the first few digits of the exact p-value can
be obtained quickly. To the best of our knowledge, this is the only practical method for performing an
exact significance test of the null hypothesis that I(X;Y ) = 0 when the processes are not iid.

5. Finding the Markov Order

Our algorithm enables the investigator to produce surrogates of a given order but introduces another
issue: finding the Markov order of the data. To illustrate, let us take the X and Y processes to be
independent instantiations of the logistic map, zn+1 = rzn(1−zn), where r = 3.827 is in the intermittent
chaos regime (Figure 3). For the purpose of computing the mutual information using Equation (1), we
partition the interval [0, 1] into 10 equally sized bins and collect statistics from time series of 250 samples.
Unlike the previous example, the partitioned logistic map data does not correspond to a Markov process
of definite order.

Figure 3. A typical trajectory of the logistic map, r = 3.827.
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In Figure 4 we plot the distribution of I(X;Y ) computed from 10, 000 trials of two independent
logistic maps, r = 3.827, 250 iterations per trial (solid line). Subplots (a)–(e) show distribution estimates
from surrogates of Markov orders k = 0, 1, 2, 3, 4, respectively (dashed lines).

For the 250-sample logistic map data, the null distribution estimate improves up to order two and
then degrades gradually thereafter, based on the root mean square error between the estimated and actual
distributions.
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Figure 4. Distribution of I(X;Y ) computed from 10, 000 trials of two independent logistic
maps, r = 3.827, 250 iterations per trial (solid line). Subplots (a)–(e) show distribution
estimates from surrogates of Markov orders k = 0, 1, 2, 3, 4, respectively (dashed lines).
The root mean square error between the actual and estimated distribution is shown in
each plot.
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What is needed is a method for selecting the optimal order. Fortunately, this is the context in which
the order-preserving surrogates were originally developed [5]. In short, to compute the p-value of the
null hypothesis that a process is order k, the distribution of a (k + 1)-order test statistic is obtained
from an ensemble of order k surrogates. The p-value is the probability of obtaining a test statistic equal
to or more extreme than the one observed. A convenient test statistic is the block entropy of the next
highest order

Hk+1 =
∑

xk+1∈Xk+2

p(xk+1) log2 p(x
k+1). (3)

Note that because entropy is reduced by the presence of higher order structure, the p-value is the
probability of obtaining a block entropy less than or equal to the observed value. For further explanation,
see [5].
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The results of the significance tests for orders k = 0, 1, 2, 3, 4 are shown in Figure 5. The horizontal
axes are the block entropies for length k+2 words. The heavy vertical line indicates the observed block
entropy and the bars represent the distribution of the entropies obtained from the surrogates of order k.
The p-value, shown next to the vertical line, is the fraction of the surrogate block entropy distribution
that lies below the observed block entropy.

Figure 5. Markov order tests for a logistic map, r = 3.827, 250 iterations. Subplots (a)–(e)
show histograms of block entropies Hk+1(X), k = 0, 1, 2, 3, 4, respectively, computed from
10, 000 surrogates of order k. The histograms represent the distribution of Hk+1(X) given
the null hypothesis that the data is order k. The observed value of Hk+1(X) is indicated by
the heavy vertical line in each case. The p-values, shown next to the vertical lines, are the
fraction of the distribution that is equal to or less than the observed block entropy. Orders
k = 0, 1 have zero probability and can therefore be rejected as candidate orders for this data.
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Using the standard significance level (α = 0.05), the zeroth and first order hypotheses are rejected,
whereas the significance test fails to reject second through fourth order hypotheses. To select an adequate
order but prevent over-fitting, we propose choosing the lowest order in which the p-value equals or
exceeds the significance level. Note that this test should be performed for each process because different
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orders may be required for X and Y . In this trial, second order was selected for both processes, but only
the X data order tests are shown.

Using this methodology to select the Markov orders, we repeated the exact NHST I(X;Y ) = 0,
where X and Y are generated from independent logistic maps, 1000 times and found 54 Type I errors,
compared with the expected number of 1000× 0.05 = 50. For the X data, the order test selected second
order 576 times, third order 369 times, fourth order 45 times, fifth 8 times, and first and sixth order once
each. Because the sampled logistic map data does not have a definite Markov order, the effective order
will vary sensitively depending on the sample. In spite of the variation, the above methodology achieves
a near ideal Type I error rate.

6. Conclusions

In summary, we have described an exact significance test for I(X;Y ) = 0 that can be performed for
data of any Markov order. There are two parts: (1) an exact test for selecting the appropriate orders of the
X and Y data, and (2) an efficient method for generating order-preserving X and Y surrogates. While
a complete enumeration of all order-preserving surrogates is possible (thus giving the exact p-value to
all digits), we show how to implement uniform sampling for efficiently determining the first few digits
of the p-value. The new method should be used in place of a permutation test any time non-iid data is
suspected. We avoided any discussion of entropy bias corrections [7] or bin sizing strategies because
these choices do not affect the implementation of the significance test. In the Appendix we give the
details of the algorithms needed to generate the order-preserving surrogates.

As a final comment, we wish to point out that this exact test is not sufficient for conditional mutual
information quantities, such as transfer entropy [12], although permutation tests are presently being
used for this purpose. Permutation tests assume zero mutual information, whereas conditional mutual
information quantities can be zero even when mutual information is not. An exact test for conditional
mutual information remains an outstanding problem.
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Appendix

We now present the procedure for producing random symbol sequences with prescribed word counts
(following [5]). MATLAB code is available for generating surrogates by this method [10].

Let Γ be the set of sequences that have the word transition count matrix F and begin with state u and
end with state v. The number of sequences in Γ is given by Whittle’s formula [11]:
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Nuv(F ) =
ΠiFi·!

ΠijFij!
Cvu (4)

where Fi· is the sum of row i and Cvu is the (v, u)-th cofactor of the matrix

F ∗
ij =

δij − Fij/Fi· if Fi· > 0,

δij if Fi· = 0.
(5)

As an example, consider the following sequence of twelve binary observations:

x = {0 1 1 0 1 0 1 1 1 0 0 1}. (6)

The sequence x has u = 0, v = 1 and transition count

F =

(
1 4

3 3

)
. (7)

From Equation (5) we compute

F ∗ =

(
4
5

−4
5

−1
2

1
2

)
(8)

and C10 = 4/5. Substituting into Equation (4) gives

N01(F ) =
5! · 6!

3! · 3! · 4!
· 4
5
= 80. (9)

The cardinality of the set Γ(x) is therefore 80.
From Whittle’s formula we can construct a sequence with a prescribed transition count. Let the

sequence y = {y1 . . . yN} be a member of Γ starting with y1 = u, ending with yN = v, and having the
transition count matrix F . The candidates for the second element y2 are the set {w|Fy1w > 0}. For each
candidate w we compute Nwv(F

′), the number of sequences left. Here F ′
ij = Fij − δy1w is the original

transition count matrix less the candidate transition. We choose a candidate randomly in proportion to
the number of sequences left; a path that leads to a small number of possible sequences is chosen less
frequently than one that leads to a large number. Thus

Pr(y2 = w) =
Nwv(F

′)

Ny1v(F )
. (10)

Once y2 is chosen, F is reset to the appropriate F ′ and the process is repeated for y3 and so on until yN−1

is reached.
Returning to our example, we have y1 = 0, yN = 1, y12 = 1, and w = {0, 1}. The two choices for y2

lead to the following number of remaining sequences:

N01

(
0 4

3 3

)
= 20,

N11

(
1 3

3 3

)
= 60. (11)
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Therefore y2 = 0 is chosen with 20/80 = 1/4 probability and y2 = 1 with 3/4 probability. By weighting
our choice at each step using Whittle’s formula, we guarantee that invalid sequences are not selected and
that all valid sequences are selected with uniform probability.

If a complete list of all valid sequences is desired, then modify the algorithm to follow every path that
has a non-zero probability.

References

1. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 1991.
2. Greenwood, P.E.; Nikulin, M.S. A Guide to Chi-Squared Testing; Wiley: New York, NY, USA,

1996.
3. Fisher, R.A. On the interpretation of χ2 from contingency tables and the calculation of P . J. R.

Stat. Soc. 1922, 85, 87–94.
4. Good, P. Permutation, Parametric, and Bootstrap Tests; Springer: New York, NY, USA, 2005.
5. Pethel, S.D.; Hahs, D.W. Exact significance test for Markov order. Physica D 2014, 269, 42–47.
6. Agresti, A. A survey of exact inference for contingency tables. Stat. Sci. 1992, 7, 131–153.
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