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Abstract: We investigate the asymptotic construction of constant-risk Bayesian predictive
densities under the Kullback–Leibler risk when the distributions of data and target variables
are different and have a common unknown parameter. It is known that the Kullback–Leibler
risk is asymptotically equal to a trace of the product of two matrices: the inverse of the Fisher
information matrix for the data and the Fisher information matrix for the target variables.
We assume that the trace has a unique maximum point with respect to the parameter. We
construct asymptotically constant-risk Bayesian predictive densities using a prior depending
on the sample size. Further, we apply the theory to the subminimax estimator problem and
the prediction based on the binary regression model.
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1. Introduction

Let x(N) = (x1, · · · , xN) be independentN data distributed according to a probability density, p(x|θ),
that belongs to a d-dimensional parametric model, {p(x|θ) : θ ∈ Θ}, where θ = (θ1, · · · , θd) is an
unknown d-dimensional parameter and Θ is the parameter space. Let y be a target variable distributed
according to a probability density, q(y|θ), that belongs to a d-dimensional parametric model, {q(y|θ) :
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θ ∈ Θ} with the same parameter, θ. Here, we assume that the distributions of the data and the target
variables, p(x|θ) and q(y|θ), are different. For simplicity, we assume that the data and the target variables
are independent, given by θ.

We construct predictive densities for target variables based on the data. We measure the performance
of the predictive density, q̂(y;x(N)), by the Kullback–Leibler divergence, D(q(·|θ), q̂(·;x(N))), from the
true density, q(y|θ), to the predictive density, q̂(y;x(N)):

D(q(·|θ), q̂(·;x(N))) =

∫
q(y|θ) log

q(y|θ)
q̂(y;x(N))

dy.

Then, the risk function, R(θ, q̂(y;x(N))), of the predictive density, q̂(y;x(N)), is given by:

R(θ, q̂(y;x(N))) =

∫
p(x(N)|θ)D(q(·|θ), q̂(·;x(N)))dx(N)

=

∫
p(x(N)|θ)

∫
q(y|θ) log

q(y|θ)
q̂(y;x(N))

dydx(N).

For the construction of predictive densities, we consider the Bayesian predictive density defined by:

q̂π(y|x(N)) =

∫
q(y|θ)p(x(N)|θ)π(θ;N)dθ∫
p(x(N)|θ)π(θ;N)dθ

,

where π(θ;N) is a prior density for θ, possibly depending on the sample size, N . Aitchison [1] showed
that, for a given prior density, π(θ;N), the Bayesian predictive density, q̂π(y|x(N)), is a Bayes solution
under the Kullback–Leibler risk. Based on the asymptotics as the sample size goes to infinity, Komaki [2]
and Hartigan [3] showed its superiority over any plug-in predictive density, q(y|θ̂), with any estimator, θ̂.
However, there remains a problem of prior selection for constructing better Bayesian predictive densities.
Thus, a prior, π(θ;N), must be chosen based on an optimality criterion for actual applications.

Among various criteria, we focus on a criterion of constructing minimax predictive densities under the
Kullback–Leibler risk. For simplicity, we refer to the priors generating minimax predictive densities as
minimax priors. Minimax priors have been previously studied in various predictive settings; see [4–8].
When the simultaneous distributions of the target variables and the data belong to the submodel of
the multinomial distributions, Komaki [7] shows that minimax priors are given as latent information
priors maximizing the conditional mutual information between target variables and the parameter given
the data. However, the explicit forms of latent information priors are difficult to obtain, and we need
asymptotic methods, because they require the maximization on the space of the probability measures
on Θ.

Except for [7], these studies on minimax priors are based on the assumption that the distributions,
p(x|θ) and q(y|θ), are identical. Let us consider the prediction based on the logistic regression model
where the covariates of the data and the target variables are not identical. In this predictive setting, the
assumption that the distributions, p(x|θ) and q(y|θ), are identical is no longer valid.

We focus on the minimax priors in predictions where the distributions, p(x|θ) and q(y|θ), are different
and have a common unknown parameter. Such a predictive setting has traditionally been considered in
statistical prediction and experiment design. It has recently been studied in statistical learning theory;
for example, see [9]. Predictive densities where the distributions, p(x|θ) and q(y|θ), are different and
have a common unknown parameter are studied by [10–13].
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Let gXij (θ) be the (i, j)-component of the Fisher information matrix of the distribution, p(x|θ), and let
gYij (θ) be the (i, j)-component of the Fisher information matrix of the distribution, q(y|θ). Let gX,ij(θ)
and gY,ij(θ) denote the (i, j)-components of their inverse matrices. We adopt Einstein’s summation
convention: if the same indices appear twice in any one term, it implies summation over that index from
one to d. For the asymptotics below, we assume that the prior densities, π(θ;N), are smooth.

On the asymptotics as the sample sizeN goes to infinity, we construct the asymptotically constant-risk
prior, π(θ;N), in the sense that the asymptotic risk:

R(θ, q̂π(y|x(N))) =
1

N
R1(θ, q̂π(y|x(N))) +

1

N
√
N
R2(θ, q̂π(y|x(N))) +O(N−2)

is constant up to O(N−2). Since the proper prior with the constant risk is a minimax prior for any finite
sample size, the asymptotically constant-risk prior relates to the minimax prior; in Section 4, we verify
that the asymptotically constant-risk prior agrees with the exact minimax prior in binomial examples.

When we use the prior, π(θ), independent of the sample size, N , it is known that the N−1-order term,
R1(θ, q̂π(y|x(N))), of the Kullback–Leibler risk is equal to the trace, gX,ij(θ)gYij (θ). If the trace does not
depend on the parameter, θ, the construction of the asymptotically constant-risk prior is parallel to [6];
see also [13].

However, we consider the settings where there exists a unique maximum point of the trace,
gX,ij(θ)gYij (θ); for example, these settings appear in predictions based on the binary regression model,
where the covariates of the data and the target variables are not identical. In the settings, there do not
exist asymptotically constant-risk priors among the priors independent of the sample size,N . The reason
is as follows: we consider the prior, π(θ), independent of the sample size,N . Then, the Kullback–Leibler
risk of the Bayesian predictive density is expanded as:

R(θ, q̂π(y|x(N))) =
1

2N
gYij (θ)g

X,ij(θ) + O(N−2).

Since, in our settings, the first-order term, gYij (θ)g
X,ij(θ), is not constant, the prior independent of the

sample size, N , is not an asymptotically constant-risk prior.
When there exists a unique maximum point of the trace, gX,ij(θ)gYij (θ), we construct the

asymptotically constant-risk prior, π(θ;N), up to O(N−2), by making the prior dependent on the sample
size, N , as:

π(θ;N)

|gX(θ)|1/2
∝ {f(θ)}

√
Nh(θ),

where f(θ) and h(θ) are the scalar functions of θ independent of N and |gX(θ)| denotes the determinant
of the Fisher information matrix, gX(θ).

The key idea is that, if the specified parameter point has more undue risk than the other parameter
points, then the more prior weights should be concentrated on that point.

Further, we clarify the subminimax estimator problem based on the mean squared error from the
viewpoint of the prediction where the distributions of data and target variables are different and have
a common unknown parameter. We obtain the improvement achieved by the minimax estimator over
the subminimax estimators up to O(N−2). The subminimax estimator problem [14,15] is the problem
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that, at first glance, there seems to exist asymptotically dominating estimators of the minimax estimator.
However, any relationship between such subminimax estimator problems and predictions have not been
investigated, and further, in general, the improvement by the minimax estimator over the subminimax
estimators has not been investigated.

2. Information Geometrical Notations

In this section, we prepare the information geometrical notations; see [16] for details. We abbreviate
∂/∂θi to ∂i, where the indices, i, j, k, . . ., run from one to d. Similarly, we abbreviate ∂2/∂θi∂θj ,
∂3/∂θi∂θj∂θk and ∂4/∂θi∂θj∂θk∂θl to ∂ij , ∂ijk and ∂ijkl, respectively. We denote the expectations
of the random variables, X , Y and X(N), by EX [·], EY [·] and EX(N) [·], respectively. We denote their
probability densities by p(x|θ), q(y|θ) and p(x(N)|θ), respectively.

We define the predictive metric proposed by Komaki [13] as:

g̊ij(θ) = gXik(θ)gY,kl(θ)gXlj (θ).

When the parameter is one-dimensional, gθθ(θ) denotes Fisher information and gθθ(θ) denotes its inverse.

Let
e

Γ X
ij,k(θ) and

m

Γ X
ij,k(θ) be the quantities given by:

e

Γ X
ij,k(θ) := EX [∂ij log p(x|θ)∂k log p(x|θ)]

and:

m

Γ X
ij,k(θ) :=

∫
1

p(x|θ)
[∂ijp(x|θ)∂kp(x|θ)]dx.

Using these quantities, the e-connection and m-connection coefficients with respect to the parameter, θ,
for the model, {p(x|θ) : θ ∈ Θ}, are given by:

e

Γ X,k
ij (θ) := gX,lk(θ)

e

Γ X
ij,l(θ)

and:

m

Γ X,k
ij (θ) := gX,kl(θ)

m

Γ X
ij,l(θ),

respectively.
The (0, 3)-tensor, TXijk(θ), is defined by:

TXijk(θ) := EX [∂i log p(x|θ)∂j log p(x|θ)∂k log p(x|θ)].

The tensor, TXijk(θ), also produces a (0, 1)-tensor:

TXi (θ) := TXijk(θ)g
X,jk(θ).

In the same manner, the information geometrical quantities,
e

Γ Y
ij,k(θ),

m

Γ Y
ij,k(θ) and T Yijk(θ), are defined

for the model, {q(y|θ) : θ ∈ Θ}.
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Let Mk
ij(θ) be a (1, 2)-tensor defined by:

Mk
ij(θ) :=

m

Γ Y,k
ij (θ)−

m

Γ X,k
ij (θ).

For a derivative, (∂1v(θ), · · · , ∂dv(θ)), of the scalar function, v(θ), the e-covariant derivative is
given by:

e

∇i∂jv(θ) := ∂ijv(θ)−
e

Γ X,k
ij (θ)∂kv(θ).

3. Asymptotically Constant-Risk Priors When the Distributions of Data and Target Variables
Are Different

In this section, we consider the settings where the trace, gX,ij(θ)gYij (θ), has a unique maximum point.
We construct the asymptotically constant-risk prior under the Kullback–Leibler risk in the sense that the
asymptotic risk up to O(N−2) is constant. We find asymptotically constant-risk priors up to O(N−2)

in two steps: first, expand the Kullback–Leibler risks of Bayesian predictive densities; second, find the
prior having an asymptotically constant risk using this expansion.

From now on, we assume the following two conditions for the prior, π(θ;N):

(C1) The prior, π(θ;N), has the form:

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f(θ) + log h(θ)},

where f(θ) and h(θ) are smooth scalar functions of θ independent of N .

(C2) The unique maximum point of the scalar function, f(θ), is equal to the unique maximum point of
the trace, gX,ij(θ)gYij (θ).

Based on Conditions (C1) and (C2), we expand the Kullback–Leibler risk of a Bayesian predictive
density up to O(N−2).

Theorem 1. The Kullback–Leibler risk of a Bayesian predictive density based on the prior, π(θ;N),
satisfying Condition (C1), is expanded as:

R(θ, q̂π(y|x(N)))

=
1

2N
gYij (θ)g

X,ij(θ) +
1

2N
g̊ij(θ)∂i log f(θ)∂j log f(θ)− 1

N
√
N
T Yijk(θ)g

X,ij(θ)gX,kl(θ)∂l log f(θ)

+
1

N
√
N
g̊ij(θ)

e

∇i∂j log f(θ) +
1

N
√
N
g̊ij(θ)gX,kl(θ)

{
e

∇i∂k log f(θ)

}
∂j log f(θ)∂l log f(θ)

− 1

3N
√
N
T Yijk(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N
gYkl(θ)M

l
ij(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N
gX,ij(θ)gYkl(θ)g

X,kl(θ)Mm
ij (θ)∂m log f(θ) +

1

N
√
N
g̊ij(θ)Mk

ij(θ)∂k log f(θ)

+
1

2N
√
N
g̊ij(θ)TXi (θ)∂j log f(θ) +

1

2N
√
N
gX,im(θ)gYij (θ)g

X,kl(θ)M j
kl(θ)∂m log f(θ)

+
1

N
√
N
g̊ij(θ)∂i log f(θ)∂j log h(θ) + O(N−2). (1)
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The proof is given in the Appendix. The first term in (1) represents that the precision of the
estimation is determined by the geometric quantity of the data, gX,ij(θ), and the metric of the parameter
is determined by the geometric quantity of the target variables, gYij (θ). Note that each term in (1) is
invariant under the reparametrization.

Remark 1. For the subsequent theorem, it is important that at the point, θf , maximizing the scalar
function, log f(θ), R(θf , q̂π(y|xN)) is given by:

R(θf , q̂π(y|xN))

=
1

2N
sup
θ∈Θ
{gX,ij(θ)gYij (θ)}+

1

N
√
N
g̊ij(θf )∂ij log f(θf ) + O(N−2). (2)

The N−3/2-order term of this risk is common whenever we use the same scalar function, log f(θ). This
term is negative because of the definition of the point, θf . Under Condition (C2), θf is equal to the
unique maximum point, θmax, of the trace, gX,ij(θ)gYij (θ).

Based on (1) and (2), we construct asymptotically constant-risk priors using the solutions of the partial
differential equations.

Theorem 2. Suppose that the scalar functions, log f̃(θ) and log h̃(θ), satisfy the following conditions:

(A1) log f̃(θ) is the solution of the Eikonal equation given by:

g̊ij(θ)∂i log f̃(θ)∂j log f̃(θ) = gX,ij(θmax)gYij (θmax)− gX,ij(θ)gYij (θ), (3)

where θmax is the unique maximum point of the scalar function, gX,ij(θ)gYij (θ).

(A2) log h̃(θ) is the solution of the first-order linear partial equation given by:

g̊ij∂i log f̃(θ)∂j log h̃(θ) = −g̊ij(θ)
e

∇i∂j log f̃(θ)

− g̊ij(θ)gX,kl(θ)
{

e

∇i∂k log f̃(θ)

}
∂j log f̃(θ)∂l log f̃(θ)

+ T Yijk(θ)g
X,ij(θ)gX,kl(θ)∂l log f̃(θ)

+
1

3
T Yijk(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f̃(θ)∂t log f̃(θ)∂u log f̃(θ)

− 1

2
gYkl(θ)M

l
ij(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f̃(θ)∂t log f̃(θ)∂u log f̃(θ)

− 1

2
gX,ij(θ)gYkl(θ)g

X,kl(θ)Mm
ij (θ)∂m log f̃(θ)− g̊ij(θ)Mk

ij(θ)∂k log f̃(θ)

− 1

2
g̊ij(θ)TXi (θ)∂j log f̃(θ)− 1

2
gX,im(θ)gYij (θ)g

X,kl(θ)M j
kl(θ)∂m log f̃(θ)

+ g̊ij(θmax)∂ij log f̃(θmax). (4)

Let π(θ;N) be the prior that is constructed as:

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f̃(θ) + log h̃(θ)}.
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Further, suppose that log f̃(θ) satisfies Condition (C2).
Then, the Bayesian predictive density based on the prior, π(θ;N), has the asymptotically smallest

constant risk up to O(N−2) among all priors with the form (C1).

Proof. First, we consider the prior, φ(θ;N), constructed as:

φ(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f̃(θ)}.

From Theorem 1, the Kullback–Leibler risk, R(θ, q̂φ(y|x(N))), based on the prior, φ(θ;N), is given by:

R(θ, q̂φ(y|x(N))) =
1

2N
gX,ij(θmax)gYij (θmax) + o(N−1). (5)

This is constant up to o(N−1).
Suppose that there exists another prior, ϕ(θ;N), constructed as:

ϕ(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f(θ)},

and the Bayesian predictive density based on the prior, ϕ(θ;N), has the asymptotically constant risk:

R(θ, q̂ϕ(y|x(N))) =
k

2N
+ o(N−1).

From Theorem 1, the prior ϕ(θ;N) must satisfy the equation:

g̊ij(θ)∂i log f(θ)∂j log f(θ) = k − gX,ij(θ)gYij (θ).

The left-hand side of the above equation is non-negative, because the matrix, g̊ij(θ), is positive-definite.
Hence, the infimum of the constant, k, is equal to gX,ij(θmax)gYij (θmax). From (5), the N−1-order term
of the risk based on the prior, φ(θ;N), achieves the infimum, gX,ij(θmax)gYij (θmax). Thus, the Bayesian
predictive density based on the prior, φ(θ;N), has the asymptotically smallest constant risk up to o(N−1).

Second, we consider the prior, π(θ;N), constructed as:

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f̃(θ) + log h̃(θ)}.

The above argument ensures that the prior, π(θ;N), has the asymptotically smallest constant risk up
to o(N−1). Thus, we only have to check if the N−3/2-order term of the risk is the smallest constant.
From (2), the N−3/2-order term of the risk at the point, θmax, is unchanged by the choice of the
scalar function, log h(θ). In other words, the constant N−3/2-order term must agree with the quantity,
g̊ij(θmax)∂ij log f̃(θmax). From Theorem 1, if we choose the prior, π(θ;N), the N−3/2-order term of the
risk is the smallest constant, and it agrees with the quantity, g̊ij(θmax)∂ij log f̃(θmax). Thus, the prior,
π(θ;N), has the asymptotically smallest constant risk up to O(N−2).

Remark 2. In Theorem 2, we choose log f̃(θ), satisfying Condition (C2) among the solutions of (A1).
We consider the model with a one-dimensional parameter, θ. There are four possibilities to the solutions
of (A1):√

g̊θθ(θ)∂θ log f̃(θ) =

{
±
√
gX,θθ(θmax)gYθθ(θmax)− gX,θθ(θ)gYθθ(θ) if θ ≤ θmax,

±
√
gX,θθ(θmax)gYθθ(θmax)− gX,θθ(θ)gYθθ(θ) if θ ≥ θmax,
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where the double-sign corresponds. From the concavity around θmax as suggested by (C2), we choose
log f̃(θ) as the solution of the following equation:

√
g̊θθ(θ)∂θ log f̃(θ) =

{ √
gX,θθ(θmax)gYθθ(θmax)− gX,θθ(θ)gYθθ(θ) if θ ≤ θmax,

−
√
gX,θθ(θmax)gYθθ(θmax)− gX,θθ(θ)gYθθ(θ) if θ ≥ θmax.

(6)

Integrating both sides of Equation (6), the unique function, log f̃(θ), is obtained.

Remark 3. Compare the Kullback–Leibler risk based on the asymptotically constant-risk prior, π(θ;N),
with that based on the prior, λ(θ), independent of the sample size, N . From Theorem 1 and Theorem 2,
the Kullback–Leibler risk based on the asymptotically constant-risk prior, π(θ;N), is given as:

R(θ, q̂π(y|x(N))) =
1

2N
gX,ij(θmax)gYij (θmax)

+
1

N
√
N
g̊ij(θmax)∂ij log f̃(θmax) + O(N−2). (7)

In contrast, the Kullback–Leibler risk based on the prior, λ(θ), is given as:

R(θ, q̂λ(y|x(N))) =
1

2N
gX,ij(θ)gYij (θ) + O(N−2). (8)

The N−1-order term in (8) is under the N−1-order term in (7); although the N−3/2-order term in (8)
does not exist, the N−3/2-order term in (7) is negative. Thus, the maximum of the risk based on the
asymptotically constant-risk prior, π(θ;N), is smaller than that of the risk based on the prior, λ(θ). This
result is consistent with the minimaxity of selecting the prior that constructs the predictive density with
the smallest maximum of the risk.

4. Subminimax Estimator Problem Based on the Mean Squared Error

In this section, we refer to the subminimax estimator problem based on the mean squared error, from
the viewpoint of the prediction where the distributions of data and target variables are different and have
a common unknown parameter. First, we give a brief review of subminimax estimator problem through
the binomial example.

Example . Let us consider the binomial estimation based on the mean squared error, RMSE(θ, θ̂). For
any finite sample size, N , the Bayes estimator, θ̂π, based on the Beta prior, π(θ;N) ∝ θ

√
N/2−1(1 −

θ)
√
N/2−1, is minimax under the mean squared error. The mean squared error of the minimax Bayes

estimator, θ̂π, is given by:

RMSE(θ, θ̂π) =
N

4(
√
N +N)2

=
1

4N
− 1

2N
√
N

+ O(N−2). (9)

In contrast, the mean squared error of the maximum likelihood estimator, θ̂MLE, is given by:

RMSE(θ, θ̂MLE) =
θ(1− θ)

N
.

We compare the two estimators, θ̂π and θ̂MLE. In the comparison of the N−1-order terms of the
mean squared errors, it seems that the maximum likelihood estimator, θ̂MLE, dominates the minimax
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Bayes estimator, θ̂π. In other words, the N−1-order term of RMSE(θ, θ̂MLE) is not greater than that of
RMSE(θ, θ̂π) for every θ ∈ Θ, and the equality holds when θ = 1/2. This seeming paradox is known as
the subminimax estimator problem; see [14,17,18] for details. See also [15] for the conditions that such
problems do not occur in estimation.

However, this paradox does not mean the inferiority of the minimax Bayes estimator. This is because,
although the mean squared error of the minimax Bayes estimator, θ̂π, has the negativeN−3/2-order term,
the mean squared error of the maximum likelihood estimator, θ̂MLE, does not have the N−3/2-order term.
Hence, in comparison to the mean squared errors up to O(N−2), the maximum of the mean squared
error, RMSE(θ, θ̂π), is below the maximum of the mean squared error, RMSE(θ, θ̂MLE).

Next, we construct the asymptotically constant-risk prior in the estimation based on the mean squared
error when the subminimax estimator problem occurs, from the viewpoint of the prediction. We consider
the priors, π(θ;N), satisfying (C1). From Lemma 5 in the Appendix, the mean squared error of the
Bayes estimator, θ̂π, is equal to the Kullback–Leibler risk of the θ̂π-plugin predictive density, q(y|θ̂π), by
assuming that the target variable, y, is a d-dimensional Gaussian random variable with the mean vector,

θ, and unit variance. Note that gYij (θ) = 1,
m

Γ Y
ij,k = 0 and

e

Γ Y
ij,k = 0 for i, j, k = 1, · · · , d. Thus, if

gYij (θ)g
X,ij(θ) = Σd

i=1g
X,ii(θ) has a unique maximum point, we obtain the asymptotically constant-risk

prior, π(θ;N), up to O(N−2) from Lemma 4 in the Appendix and Theorem 2.
Finally, we compare the mean squared error of the asymptotically constant-risk Bayes estimator, θ̂π,

with that of the maximum likelihood estimator, θ̂MLE. The mean squared error of the asymptotically
constant-risk Bayes estimator, θ̂π, is given as:

RMSE(θ, θ̂π) =
1

N

d

Σ
i=1

gX,ii(θmax) +
2

N
√
N

Σd
k=1g

X,ik(θmax)gX,jk(θmax)∂ij log f̃(θmax) + O(N−2).

In contrast, the mean squared error of the maximum likelihood estimator, θ̂MLE, is given as:

RMSE(θ, θ̂MLE) =
1

N
Σd
i=1g

X,ii(θ) + O(N−2).

See [16,19].
Thus, the maximum of the mean squared error of the asymptotically constant-risk Bayes estimator

is smaller than that of estimators by the improvement of order N−3/2 in proportion to the Hessian of
the scalar function, log f̃(θ), at θmax. In the prediction where the trace, gX,ij(θ)gYij (θ), has a unique
maximum point, the same improvement holds (Remark 3).

Example revisited . Using the above results, we consider the binomial estimation based on the mean
squared error from the viewpoint of the prediction. The geometrical quantities to be used are given by:

gXθθ(θ) =
1

θ(1− θ)
, gYθθ(θ) = 1,

m

Γ X
θθ,θ(θ) = 0,

m

Γ Y
θθ,θ(θ) = 0,

e

Γ X
θθ,θ(θ) = − 1− 2θ

θ2(1− θ)2
,

e

Γ Y
θθ,θ(θ) = 0,

TXθθθ(θ) =
1− 2θ

θ2(1− θ)2
, and T Yθθθ(θ) = 0,
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respectively. Since
m

Γ X,θ
θθ ,

m

Γ Y,θ
θθ and T Yθθθ vanish, the asymptotically constant-risk prior in the estimation

is identical to the asymptotically constant-risk prior in the prediction; compare Theorem 1 with the
expansion of gY,ij(θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)] in Lemma 4 in the Appendix.

In this example, Equation (3) is given by:

θ2(1− θ)2{∂θ log f̃(θ)}2 =

√
1

4
− θ(1− θ),

and the solution, log f̃(θ), is (1/2) log{θ(1 − θ)}. Here, the second-order derivative of the function,
log f̃(θ), is given by:

∂θθ log f̃(θ) = −1− 2θ + 2θ2

2θ2(1− θ)2
.

From this, Equation (4) is given by:

1

2
θ(1− θ)(1− 2θ)∂θ log h̃(θ) + θ2 − θ = −1

4
,

and the solution, log h̃(θ), is (1/2) log{θ(1 − θ)}. Hence, the asymptotically constant-risk prior,
π(θ;N), is a Beta prior with the parameters, α =

√
N/2 and β =

√
N/2. Note that the

asymptotically constant-risk prior coincides with the exact minimax prior. Since gX,θθ(θmax) = 1/2

and gX,θθ(θmax)∂θθ log f̃(θmax) = −1, the mean squared error of the asymptotically constant-risk Bayes
estimator, θ̂π, agrees with (9) up to O(N−2).

5. Application to the Prediction of the Binary Regression Model under the Covariate Shift

In this section, we construct asymptotically constant-risk priors in the prediction based on the binary
regression model under the covariate shift; see [10].

We consider that we predict a binary response variable, y, based on the binary response variables,
x(N). We assume that the target variable, y, and the data, x(N), follow the logistic regression models with
the same parameter, β, given by:

log
Πx

1− Πx

= α + zβ

and:

log
Πy

1− Πy

= α̃ + z̃β,

where Πx is the success probability of the data and Πy is the success probability of the target variable.
Let α and α̃ denote known constant terms, and let β denote the common unknown parameter. Further,
we assume that the covariates, z and z̃, are different.

Using the parameter θ = Πx, we convert this predictive setting to binomial prediction where the data,
x, and the target variable, y, are distributed according to:

p(x|θ) :=

{
θ if x = 1,

1− θ if x = 0,



Entropy 2014, 16 3036

and:

q(y|θ) :=

 eα̃−z̃z
−1αθz̃z

−1
/
{

(1− θ)z̃z−1
+ eα̃−z̃z

−1αθz̃z
−1
}

if y = 1,

(1− θ)z̃z−1
/
{

(1− θ)z̃z−1
+ eα̃−z̃z

−1αθz̃z
−1
}

if y = 0,

respectively. We obtain two Fisher information for x and y as:

gXθθ(θ) =
1

θ(1− θ)

and:

gYθθ(θ) =

(
z̃

z

)2

e−α̃+z̃z−1α (1− θ)z̃z−1−2θz̃z
−1−2

{θz̃z−1 + e−α̃+z̃z−1α(1− θ)z̃z−1}2 ,

respectively.
For simplicity, we consider the setting where z = 1, z̃ = 2 and α = α̃ = 0. The geometrical quantities

for the model, {p(x|θ) : θ ∈ Θ}, are given by:

gXθθ(θ) =
1

θ(1− θ)
,

m

Γ X
θθ,θ(θ) = 0,

e

Γ X
θθ,θ(θ) = − 1− 2θ

θ2(1− θ)2
, and TXθθθ(θ) =

1− 2θ

θ2(1− θ)2
,

respectively. In the same manner, the geometrical quantities for the model, {q(y|θ) : θ ∈ Θ}, are given
by:

gYθθ(θ) =
4

{(1− θ)2 + θ2}2
,

m

Γ Y
θθ,θ(θ) = 4

(1− 2θ)(1 + 2θ − 2θ2)

θ(1− θ){(1− θ)2 + θ2}3
,

e

Γ Y
θθ,θ(θ) = −4

1− 2θ

θ(1− θ){(1− θ)2 + θ2}2
, and T Yθθθ(θ) = 8

1− 2θ

θ(1− θ){(1− θ)2 + θ2}3
,

respectively.
Using these quantities, Equation (3) is given by:

4
θ2(1− θ)2

{θ2 + (1− θ)2}2 (∂θ log f̃(θ))2 = 4− 4
θ(1− θ)

{θ2 + (1− θ)2}2 .

By noting that the maximum point of gX,θθ(θ)gYθθ(θ) is 1/2, the solution, log f̃(θ), of this equation is
given by:

log f̃(θ) = 2
√

1− θ + θ2 + log{θ(1− θ)}
− log(2− θ + 2

√
1− θ + θ2)− log(1 + θ + 2

√
1− θ + θ2).

Using this solution, we obtain the solution of Equation (4) given by:

log h̃(θ) =
1

6

[
− 1

1− θ
− 1

θ
− 12θ(1− θ)− 12

√
3
√

1− θ + θ2

+(3− 6
√

3){log θ + log(1− θ)} − 3 log(1− θ + θ2) + 10 log{(1− θ)2 + θ2}
−6 log(

√
3 + 2

√
1− θ + θ2) + 6

√
3 log{1 + (1− θ) + 2

√
1− θ + θ2}

+6
√

3 log{1 + θ + 2
√

1− θ + θ2}
]
.
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The asymptotically constant-risk priors for the different sample sizes are shown in Figure 1. The prior
weight is found to be more concentrated to 1/2 as the sample size, N , grows.

In this example, we obtain the Kullback–Leibler risk of the Bayesian predictive density based on the
asymptotically constant-risk prior, π(θ;N), as:

R(θ, q̂π(y|x(N))) =
2

N
− 4
√

3

N
√
N

+ O(N−2).

We compare this value with the Bayes risk calculated using the Monte Carlo simulation; see Figure 2.
As the sample size, N , grows, the difference appears negligible. Further, we compare this value with the
risk itself calculated by the Monte Carlo simulation; see Figure 3. As the sample size, N , grows, the risk
becomes more constant.

Figure 1. Asymptotically constant-risk prior in the prediction where the data are distributed
according to the binomial distribution, Bin(N, θ), and the target variable is distributed
according to the binomial distribution, Bin(1, θ2/(θ2 + (1− θ)2)).
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Figure 2. Bayes risk based on the asymptotically constant-risk prior in the prediction where
the data are distributed according to the binomial distribution, Bin(N, θ), and the target
variable is distributed according to the binomial distribution, Bin(1, θ2/(θ2 + (1− θ)2)).
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Figure 3. Comparison of the Kullback–Leibler risk calculated using the Monte Carlo
simulations and the asymptotic risk, 2/N − (4

√
3)/(N

√
N), in the prediction where the

data are distributed according to the binomial distribution, Bin(N, θ), and the target variable
is distributed according to the binomial distribution, Bin(1, θ2/(θ2 + (1− θ)2)).
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6. Discussion and Conclusions

We have considered the setting where the quantity, gX,ij(θ)gYij (θ)—the trace of the product of the
inverse Fisher information matrix, gX,ij(θ), and the Fisher information matrix, gYij (θ)—has a unique
maximum point, and we have investigated the asymptotically constant-risk prior in the sense that the
asymptotic risk is constant up to O(N−2).

In Section 3, we have considered the prior depending on the sample size, N , and constructed the
asymptotically constant-risk prior using Equations (3) and (4). In Section 4, we have clarified the
relationship between the subminimax estimator problem based on the mean squared error and the
prediction where the distributions of data and target variables are different. In Section 5, we have
constructed the asymptotically constant-risk prior in the prediction based on the logistic regression model
under the covariate shift.

We have assumed that the trace, gX,ij(θ)gYij (θ), is finite. However, the trace may diverge in the
non-compact parameter space; for example, it diverges under the predictive setting, where the
distribution, q(y|θ), of the target variable is the Poisson distribution and the data distribution, p(x|θ),
is the exponential distribution, with Θ equivalent to R. Therefore, for our future work, in such a setting,
we should adopt criteria other than minimaxity.
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Appendix

We prove Theorem 1. First, we introduce some lemmas for the proof. For the expansion, we follow
the following six steps (the first five steps are arranged in the form of lemmas): the first is to expand the
MAPestimator; the second is to calculate their bias and mean squared error; the third is to expand the
Kullback–Leibler risk using θ̂π-plugin predictive density, q(y|θ̂π); the fourth is to expand the Bayesian
predictive density based on the prior π(θ;N); the fifth is to expand the Bayesian estimator minimizing
the Bayes risk; and the last is to prove Theorem 1 using these lemmas.

We use some additional notations for the expansion. Let θ̂π be the maximum point of the scalar
function log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. Let l(θ|x(N)) denote the log likelihood of the data,
x(N). Let lij(θ|x(N)), lijk(θ|x(N)) and lijkl(θ|x(N)) be the derivatives of order 2, 3 and 4 of the log
likelihood, l(θ|x(N)). Let Hij(θ|x(N)) denote the quantity, lij(θ|x(N)) + NgXij (θ). Let l̃i(θ|x(N)) and
H̃ij(θ|x(N)) denote (1/

√
N)li(θ|x(N)) and (1/

√
N)Hij(θ|x(N)), respectively. In addition, the brackets ( )

denotes the symmetrization: for any two tensors, aij and bij , ai(jbk)l denotes ai(jbk)l = (aijbkl+aikbjl)/2.

Lemma 3. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. Then, the i-th
component of this estimator θ̂π is expanded as follows:

θ̂iπ = θi +
1√
N
gX,ik(θ)l̃k(θ|x(N)) +

1√
N
gX,ik(θ)∂k log f(θ)

+
1

N
gX,ik(θ)H̃km(θ|x(N))gX,mr(θ)l̃r(θ|xN)

+
1

2N
gX,ik(θ)LXkmr(θ)g

X,mq(θ)gX,rs(θ)l̃q(θ|xN)l̃s(θ|x(N))

+
1

N
gX,ik(θ)H̃km(θ|xN)gX,mr(θ)∂r log f(θ)

+
1

N
gX,ik(θ)LXkmr(θ)g

X,mq(θ)gX,rs(θ)l̃q(θ|xN)∂s log f(θ)

+
1

2N
gX,ik(θ)LXkmr(θ)g

X,mq(θ)gX,rs(θ)∂q log f(θ)∂s log f(θ)

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)l̃q(θ|x(N))

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)∂q log f(θ)

+
1

N
gX,ik(θ)∂k log h(θ) + OP(N−3/2). (10)
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Proof. By the definition of θ̂π, we get the equation given by:

∂i log p(x(N)|θ̂π) + ∂i log
π(θ̂π;N)

|gX(θ̂π)|1/2
= 0.

From our assumption that prior π(θ;N) has the form given by:

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f(θ) + log h(θ)},

we rewrite this equation as:

∂i log p(x(N)|θ̂π) +
√
N∂i log f(θ̂π) + ∂i log h(θ̂π) = 0.

By applying Taylor expansion around θ to this new equation, we derive the following expansion:

∂i log p(x(N)|θ) + {∂ij log p(x(N)|θ)}(θ̂jπ − θj)

+
1

2
{∂ijk log p(x(N)|θ)}(θ̂jπ − θj)(θ̂kπ − θk) +

√
N∂i log f(θ)

+
√
N{∂ij log f(θ)}(θ̂jπ − θj) + ∂i log h(θ) + oP(1) = 0.

From the law of large numbers and the central limit theorem, we rewrite the above expansion as:

NgXij (θ)(θ̂jπ − θj) = ∂i log p(x(N)|θ) +
√
N∂i log f(θ) +Hij(θ|x(N))(θ̂jπ − θj)

+
N

2
Lijk(θ)(θ̂

j
π − θj)(θ̂kπ − θk) +

√
N∂ij log f(θ)(θ̂jπ − θj)

+∂i log h(θ) + oP(1). (11)

By substituting the deviation, θ̂π − θ, recursively into Expansion (11), we obtain Expansion (10).

Lemma 4. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. Then, the i-th
component of the bias of the estimator, θ̂π, is given by:

EX(N) [θ̂iπ] = θi +
1√
N
gX,ik∂k log f(θ)

− 1

2N

m

Γ X,i(θ) +
1

2N
gX,ik(θ)gX,mq(θ)gX,rs(θ)LXkmr(θ)∂q log f(θ)∂s log f(θ)

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)∂q log f(θ)

+
1

N
gX,ik(θ)∂k log h(θ) + O(N−3/2). (12)
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The (i, j)-component of the mean squared error of θ̂π is given by:

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]

=
1

N
gX,ij(θ) +

1

N
gX,ik(θ)gX,jl(θ)∂k log f(θ)∂l log f(θ)

− 1

N
√
N
gX,k(i(θ)

m

Γ X,j)(θ)∂k log f(θ) +
2

N
√
N
gX,k(i(θ)gX,j)l(θ)∂kl log f(θ)

+
2

N
√
N
gX,k(i(θ)∂kg

X,j)l(θ)∂l log f(θ)

+
1

N
√
N
gX,k(i(θ)gX,j)l(θ)gX,nr(θ)gX,pt(θ)LXlrt(θ)∂k log f(θ)∂n log f(θ)∂p log f(θ)

+
2

N
√
N
gX,k(i(θ)gX,j)l(θ)gX,nr(θ)∂ln log f(θ)∂r log f(θ)∂k log f(θ)

+
2

N
√
N
gX,k(i(θ)gX,j)l(θ)∂k log f(θ)∂l log h(θ)

+O(N−2), (13)

where gX,k(i(θ)
m

Γ X,j)(θ) denotes (1/2){gX,ki(θ)
m

Γ X,j(θ) + gX,ki(θ)
m

Γ X,j(θ)} and gX,k(i(θ)∂kg
X,j)l(θ)

denotes (1/2){gX,ki(θ)∂kgX,jl(θ) + gX,kj(θ)∂kg
X,il(θ)}. The (i, j, k)-component of the mean of the third

power of the deviation, θ̂π − θ, is given by:

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

=
1

N
√
N
gX,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
3

N
√
N
gX,(ij(θ)gX,k)l(θ)∂l log f(θ) + O(N−2). (14)

Proof. First, using Lemma 3, we determine the i-th component of the bias of θ̂π given by:

EX(N) [θ̂iπ − θi]

=
1√
N
gX,ik∂k log f(θ)

− 1

2N

m

Γ X,i(θ) +
1

2N
gX,ik(θ)gX,mq(θ)gX,rs(θ)LXkmr(θ)∂q log f(θ)∂s log f(θ)

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)∂q log f(θ) +

1

N
gX,ik(θ)∂k log h(θ) + O(N−3/2).

Second, consider the following relationship:

EX(N)

[{
θ̂iπ − θi −

1√
N
gX,ik(θ)l̃k(θ|x(N))− 1√

N
gX,ik(θ)∂k log f(θ)

}
×
{
θ̂jπ − θj −

1√
N
gX,jl(θ)l̃l(θ|xN)− 1√

N
gX,jl(θ)∂l log f(θ)

}]
= EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)] +

1

N
gX,ij(θ) +

1

N
gX,ik(θ)gX,jl(θ)∂k log f(θ)∂l log f(θ)

− 1√
N
gX,ki(θ)EX(N) [(θ̂jπ − θj)l̃k(θ|x(N))]− 1√

N
gX,kj(θ)EX(N) [(θ̂iπ − θi)l̃k(θ|x(N))]

− 1√
N
gX,ki(θ)EX(N) [(θ̂jπ − θj)∂k log f(θ)]− 1√

N
gX,kj(θ)EX(N) [(θ̂iπ − θi)∂k log f(θ)]. (15)
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By differentiating the j-th component of the bias, EX(N) [θ̂jπ − θj], we obtain the equation given by:

1

N
∂kEX(N) [θ̂jπ − θj] = − 1

N
δjk +

1√
N

EX(N) [(θ̂jπ − θj)l̃k(θ|xN)], (16)

where δij denotes the delta function: if the upper and the lower indices agree, then the value of
this function is one and otherwise zero. Equation (16) has been used by [2,16,19]. By substituting
Equations (16) and (12) into Relationship (15), we obtain the (i, j)-component of the mean squared
error of θ̂π given by:

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]

=
1

N
gX,ij(θ) +

1

N
gX,ik(θ)gX,jl(θ)∂k log f(θ)∂l log f(θ)

− 1

N
√
N
gX,k(i(θ)

m

Γ X,j)(θ)∂k log f(θ) +
2

N
√
N
gX,k(i(θ)gX,j)l(θ)∂kl log f(θ)

+
2

N
√
N
gX,k(i(θ)∂kg

X,j)l(θ)∂l log f(θ)

+
1

N
√
N
gX,k(i(θ)gX,j)l(θ)gX,nr(θ)gX,pt(θ)LXlrt(θ)∂k log f(θ)∂n log f(θ)∂p log f(θ)

+
2

N
√
N
gX,k(i(θ)gX,j)l(θ)gX,nr(θ)∂ln log f(θ)∂r log f(θ)∂k log f(θ)

+
2

N
√
N
gX,k(i(θ)gX,j)l(θ)∂k log f(θ)∂l log h(θ) + O(N−2).

Finally, by taking the expectation of the third power of the deviation, θ̂iπ− θi, we obtain the following
expansion:

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

=
1

N
√
N
gX,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
3

N
√
N
gX,(ij(θ)gX,k)l(θ)∂l log f(θ) + O(N−2).
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Lemma 5. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. The
Kullback–Leibler risk of the plug-in predictive density, q(y(N)|θ̂π), with the estimator, θ̂π, is expanded as
follows:

R(θ, q(y|θ̂π))

=
1

2N
gYij (θ)g

X,ij(θ) +
1

2N
g̊ij(θ)∂i log f(θ)∂j log f(θ) +

1

N
√
N
g̊ij(θ)

{
e

∇i∂j log f(θ)

}
+

1

N
√
N
g̊ij(θ)gX,kl(θ)

{
e

∇i∂k log f(θ)

}
∂j log f(θ)∂l log f(θ)

− 1

3N
√
N
T Yijk(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N
gYkl(θ)M

l
ijg

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N
gX,ij(θ)gYkl(θ)g

X,kl(θ)Mm
ij ∂m log f(θ)− 1

N
√
N
T Yijk(θ)g

X,ij(θ)gX,kl(θ)∂l log f(θ)

+
1

N
√
N
g̊ij(θ)Mk

ij∂k log f(θ) +
1

N
√
N
g̊ij(θ)∂i log f(θ)∂j log h(θ) + O(N−2). (17)

Proof. By applying the Taylor expansion, the Kullback–Leibler risk, R(θ, q(y|θ̂π)), is expanded as:

Ex(N) [D(q(·|θ), q(·|θ̂π))]

= EX(N)

[∫
q(y|θ)

{
−li(θ|y)θ̃iπ −

1

2
lij(θ|y)(θ̂iπ − θi)(θ̂jπ − θj)

−1

6
lijk(θ|y)(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk) + OP(N−2)

}
dy

]
=

1

2
gYij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]−

1

6
LYijk(θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)] + O(N−2)

=
1

2
gYij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]

+

{
3

2

m

Γ Y
(ij,k)(θ)−

1

3
T Yijk(θ)

}
EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)] + O(N−2)

=
1

2
gYij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]−

1

3
T Yijk(θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

+
1

2

{
gYkl(θ)

m

Γ Y,l
ij (θ)− gYkl(θ)

m

Γ X,l
ij (θ)

}
EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

+
1

2
gYkl(θ)

m

Γ X,l
ij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk] + O(N−2), (18)

where
e

Γ Y
(ij,k) denotes (1/3){

e

Γ Y
ij,k +

e

Γ Y
jk,i +

e

Γ Y
ki,j}.
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By the definition of the predictive metric, g̊ij(θ) = gXik(θ)gY,kl(θ)gXlj (θ), by Expansions (13) and (14)

and by the relationship LXijk(θ) = −
e

Γ X
ij,k(θ) −

e

Γ X
jk,i(θ) −

e

Γ X
ki,j(θ) − TXijk(θ), the last two terms of the

above expansion (18) are expanded as:

1

2
gYij (θ)EX(N) [(̂θ

i

π − θ
i)(θ̂jπ − θj)] +

1

2
gYkl(θ)

m

Γ X,l
ij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

=
1

2N
gYij (θ)g

X,ij(θ) +
1

2N
g̊ij(θ)∂i log f(θ)∂j log f(θ)

+
1

N
√
N
g̊ij(θ)

{
∂ij log f(θ)−

e

Γ X,k
ij (θ)∂k log f(θ)

}
+

1

N
√
N
g̊ij(θ)gX,kl(θ)

{
∂ik log f(θ)−

e

Γ X,m
ik ∂m log f(θ)

}
∂j log f(θ)∂l log f(θ)

+
1

N
√
N
g̊ij(θ)∂i log f(θ)∂j log h(θ) + O(N−2). (19)

By substituting Expansion (19) into Expansion (18), Expansion (17) is obtained.

Note that Expansion (17) is invariant up to O(N−2) under the reparametrization, so that each term of
this expansion is a scalar function of θ.

Lemma 6. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. The Bayesian
predictive density based on the prior, π(θ;N), is expanded as:

q̂π(y|x(N)) = q(y|θ̂π) +
1

N
gX,ij(θ̂π)

{
∂i log |gX(θ̂π)|

1
2 −

e

Γ X,k
ik (θ̂π)

}
∂jq(y|θ̂π)

+
1

2N
gX,ij(θ̂π)

{
∂ijq(y|θ̂π)−

m

Γ X,k
ij (θ̂π)∂kq(y|θ̂π)

}
+ OP(N−3/2). (20)

Proof. Let θ̃π denote θ̂π − θ. First, using a Taylor expansion twice, we expand the posterior density,
π(θ|x(N)), as:

π(θ|x(N)) = |gX(θ̂π)|
1
2

π(θ̂π)

|gX(θ̂π)| 12
p(x(N)|θ̂π) exp

[
−1

2
{−lij(θ̂π|x(N))}θ̃iπθ̃jπ

]
×

[
1− {∂i log |gX(θ̂π)|

1
2}θ̃iπ +

1

2

{
∂ij|gX(θ̂π)| 12
|gX(θ̂π)| 12

}
θ̃iπθ̃

j
π + OP(N−3/2)

]

×
(

1 +
1

2
{
√
N∂ij log f(θ̂π)}θ̃iπθ̃jπ −

1

6
{lijk(θ̂π|x(N))}θ̃iπθ̃jπθ̃kπ +

1

2
{log h(θ̂π)}θ̃iπθ̃jπ

−1

6
{
√
N∂ijk log f(θ̂π)}θ̃iπθ̃jπθ̃kπ +

1

24
lijkl(θ̂π|x(N))θ̃iπθ̃

j
πθ̃

k
πθ̃

l
π

+
1

2

[
1

2
{
√
N∂ij log f(θ̂π)}θ̃iπθ̃jπ −

1

6
lijk(θ̂π|xN)θ̃iπθ̃

j
πθ̃

k
π

]
×
[

1

2
{
√
N∂ij log f(θ̂π)}θ̃iπθ̃jπ −

1

6
lijk(θ̂π|x(N))θ̃iπθ̃

j
πθ̃

k
π

]
+ OP(N−3/2)

)
×

{∫
p(x(N)|θ) π(θ;N)

|gX(θ)| 12
|gX(θ)|

1
2 dθ

}−1

.



Entropy 2014, 16 3045

We denote the N−1/2-order, N−1-order and N−3/2-order terms by (N−1/2)a0(θ̃π; θ̂π),
(N−1)a1(θ̃π; θ̂π) and (N−3/2)a2(θ̃π; θ̂π), respectively. Then, this expansion is rewritten as:

π(θ|x(N)) = |gX(θ̂π)|
1
2

π(θ̂π)

|gX(θ̂π)| 12
p(x(N)|θ̂π) exp

[
−1

2
{−lij(θ̂π|x(N))}θ̃iπθ̃jπ

]
×
[
1 +

1√
N
a0(θ̃π; θ̂π)

+
1

N
a1(θ̃π; θ̂π) +

1

N
√
N
a2(θ̃π; θ̂π) + OP(N−2)

]
×

{∫
p(x(N)|θ) π(θ;N)

|gX(θ)| 12
|gX(θ)|

1
2 dθ

}−1

.

To make the expansion easier to see, the following notations are used. Let φ(η;−lij(θ̂π|x(N))) be the
probability density function of the d-dimensional normal distribution with the precision matrix whose
(i, j)-component is −lij(θ̂π|x(N)). Let η = (η1, · · · , ηd) be a d-dimensional random vector distributed
according to the normal density, φ(η;−lij(θ̂π|x(N))) The notations, ā0(θ̂π), ā1(θ̂π), ā2(θ̂π) and ω̂ij(θ̂π),
denote the expectations of a0(η; θ̂π), a1(η; θ̂π), a2(η; θ̂π) and ηiηj , respectively.

Using the above notations, we get the following posterior expansion:

π(θ|x(N)) = φ(θ̂π;−lij(θ̂π|x(N)))

×
[
1 +

1√
N
{a0(θ̃π; θ̂π)− ā0(θ̂π)}+

1

N
{a1(θ̃π; θ̂π)− ā1(θ̂π)}

− 1

N
ā0(θ̂π){a0(θ̃π; θ̂π)− ā0(θ̂π)}+

1

N
√
N
{a2(θ̃π; θ̂π)− ā2(θ̂π)}

− 1

N
√
N
ā0(θ̂π){a1(θ̃π; θ̂π)− ā1(θ̂π)} − 1

N
√
N
ā1(θ̂π){a0(θ̃π; θ̂π)− ā0(θ̂π)}

+
1

N
√
N
ā2

0(θ̂π){a1(θ̃π; θ̂π)− ā1(θ̂π)}+ OP(N−2)

]
. (21)

Second, using (21), the Bayesian predictive density, q̂π(y|x(N)), based on the prior, π(θ;N), is
expanded as:

q̂π(y|x(N))

=

∫
q(y|θ̂π)

[
1− {∂i log q(y|θ̂π)}θ̃iπ +

1

2

∂ijq(y|θ̂π)

q(y|θ̂π)
θ̃iπθ̃

j
π + oP(N−1)

]
π(θ|xN)dθ

=

∫
q(y|θ̂π)

[
1 + {∂i log |gX(θ̂π)|

1
2}{∂j log q(y|θ̂π)}θ̃iπθ̃jπ

+
1

6
{∂ijk log p(x(N)|θ̂π) +

√
N∂ijk log f(θ̂π)}{∂l log q(y|θ̂π)}θ̃iπθ̃jπθ̃kπθ̃lπ

+
1

2

∂ijq(y|θ̂π)

q(y|θ̂π)
θ̃iπθ̃

j
π + oP(N−1)

]
φ(θ̃π;−lij(θ̂π|xN))dθ̃π

= q(y|θ̂π) + ω̂ij(θ̂π){∂i log |gX(θ̂π)|
1
2}∂jq(y|θ̂π) +

1

2
ω̂ik(θ̂π)ω̂jl(θ̂π)lijk(θ̂π|xN)∂lq(y|θ̂π)

+
1

2
ω̂ij(θ̂π)∂ijq(y|θ̂π) + OP(N−3/2). (22)
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Here, the following two equations hold:

−lij(θ̂π|x(N)) = NgXij (θ̂π)−
√
NH̃ij(θ̂π|xN) + OP(1), (23)

lijk(θ̂π|x(N)) = −2N
e

Γ X
ij,k(θ̂π)−N

m

Γ X
ik,j(θ̂π) +

√
NH̃ijk(θ̂|xN). (24)

By combining Equation (23) with the Sherman–Morrison–Woodbury formula, the following
expansion is obtained:

ω̂ij(θ̂π) =
1

N
gX,ij(θ̂π) +

1

N
√
N
gX,ik(θ̂π)gX,jl(θ̂π)Hkl(θ̂π|x(N)) + OP(N−2). (25)

By substituting Equations (23), (24) and (25) into Expansion (22), Expansion (20) is obtained.

Note that the integration of Expansion (20) is one up to OP(N−2). Further, Expansion (20) is similar
to the expansion in [2]. However, the estimator that is the center of the expansion is different, because
of the dependence of the prior on the sample size.

Lemma 7. The Bayesian estimator, θ̂opt, minimizing the Bayes risk,∫
R(θ, q(y|θ̂))dπ(θ;N), among plug-in predictive densities is given by:

θ̂iopt = θ̂iπ +
1

2N
gX,ij(θ̂π)TXj (θ̂π)

+
1

2N
gX,jk(θ̂π)

{
m

Γ Y,i
jk (θ̂π)−

m

Γ X,i
jk (θ̂π)

}
+ OP(N−3/2). (26)

Proof. The Bayes risk,
∫
R(θ, q(y|θ̂))dπ(θ;N), is decomposed as:∫

R(θ, q(y|θ̂))dπ(θ;N) =

∫
π(θ;N)

∫
p(x(N)|θ)

∫
q(y|θ) log

q(y|θ)
q̂π(y|x(N))

dydx(N)dθ

+

∫
π(θ;N)

∫
p(x(N)|θ)

∫
q(y|θ) log

q̂π(y|x(N))

q(y|θ̂)
dydx(N)dθ.

The first term of this decomposition is not dependent on θ̂. From Fubini’s theorem and Lemma 6, the
proof is completed.

Using these lemmas, we prove Theorem 1. First, we find that the Kullback–Leibler risk of the plug-in
predictive density with the estimator, θ̂opt, defined in Lemma 7, is given by:

R(θ, q(y|θ̂opt)) = R(θ, q(y|θ̂π)) +
1

2N
√
N
g̊ij(θ)TXi (θ)∂j log f(θ)

+
1

2N
√
N
gX,im(θ)gYij (θ)g

X,kl(θ)

×
{

m

Γ Y,j
kl (θ)−

m

Γ X,j
kl (θ)

}
∂m log f(θ). (27)

Using Expansion (27) and Lemma 5, we expand the Kullback–Leibler risk, R(θ, q̂π(y|x(N))). Here,
the risk, R(θ, q̂π(y|x(N))), is equal to the risk, R(θ, q(y|θ̂opt)), up to O(N−2), because we expand the
Bayesian predictive density, q̂π(y|x(N)) as:

q(y|x(N)) = q(y|θ̂opt) +
1

2N
gX,ij(θ̂π)

{
∂ijq(y|θ̂π)−

m

Γ Y,k
ij (θ̂π)∂kq(y|θ̂π)

}
+ OP(N−3/2). (28)
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Thus, we obtain Expansion (1).
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