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Abstract:

 Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence). The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed—at least in this case—the source of dissipation in that coefficient is the relative entropy.
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1. Introduction

The distinction between heat and work, between the uncontrollable flow of energy of molecular processes and the controllable flow of energy usable by an agent, underlies all of thermodynamics, and is implicitly incorporated in the equation dE = đW + đQ. This distinction is defined by human subjectivity and by the human technological ability to extract work from the flow of energy of microscopic processes.

On the other hand, assuming that the evolution is given by the fundamental laws of dynamics, classical or quantum, one must represent the evolution of a system at a fundamental microscopic level by the action of a unitary operator on a quantum state (density operator) in quantum situations or by the action of a symplectic operator on a classical state (probability distribution) in classical situations. The state of the system evolves according to the Heisenberg equation of motion or according to the Liouville equation respectively. An immediate consequence is that the entropy of the exact microscopic state of a system that is isolated or is coupled only to an external source of work stays constant during the evolution. In particular, the microscopic state cannot tend to an equilibrium state. Thus, the information content of the exact microscopic state stays constant during the evolution. The problem is that in practice it is impossible both to define the microscopic state and to follow its exact evolution. The definition of the state and the representation of the exact evolution using unitary or symplectic dynamics are thus untenable idealizations. Nevertheless, and this constitutes a paradox, these idealizations cannot be ignored or dismissed, because it is precisely the difference between the exact evolution and its standard approximations which explains and can be used to predict dissipative effects, both of energy and information.

In thermodynamics, in kinetic theories or in stochastic dynamics, the exact microscopic state of a system is replaced by an approximate or “coarse-grained” state and the corresponding exact evolution is replaced by an evolution of the corresponding coarse-grained state (or, in standard thermodynamics by a quasi-static or formal evolution). There are two main reasons for using these approximate states and evolutions:


	(1)

	As discussed, it is impossible—even in principle—to specify the exact state of a large system and follow its evolution. An attempt at extremely high precision would modify the system, even in a classical context (related to Maxwell’s demon). And it is even worse for quantum systems. Moreover, this would be useless.



	(2)

	Only slow variables (on the time scales of microscopic processes) can be measured with confidence and stability. As a result, an observer can only describe the system as a state of minimal information (or maximal entropy) compatible with the observed slow variables [1,2].





The coarse-grained state is thus a statistical data structure which summarizes at a given moment the knowledge of the observer. The evolution of this coarse-grained state merely reflects the evolution of the knowledge of the observer about the system. The observer cannot follow the microscopic processes, but only the slow variables which can be measured and used, and as a consequence there is a loss of information about the details of the microscopic processes; in the traditional language of thermodynamics, entropy increases or is produced. The observer, reflecting a particular state of knowledge (or more precisely, a lack of knowledge), describes the state of the system as a state of minimal information (or maximal entropy) compatible with observation. Thus, entropy is not a kind of substance flowing from one part of a system to another part or mysteriously produced internally by the physical system, as is often suggested by many texts of thermodynamics or statistical physics: it is only the observer’s partial inability to relate the exact microscopic theory to a reduced macroscopic description in order to use the system as a source of useful work or information. This is what is measured as an increase of entropy or by entropy production. The macroscopic state is the result of a statistical inference (specifically, maximum entropy) for the given, observed, macroscopic variables (which are the slow variables of the system [1,2]. This point of view on the nature of entropy was emphasized by Jaynes, who observed [3,4], “The expression ‘irreversible process’ represents a semantic confusion…”

The difference between the exact evolution of the microscopic ideal state and the evolution of its coarse-grained approximation is what is called “dissipation,” both of information content and of energy or other “useful” variables. Standard thermodynamics uses the maximal coarse graining of equilibrium, and the idealized evolution is not modeled explicitly, so dissipation can be taken into account only by inequalities. For more detailed coarse-graining (as in hydrodynamics, Boltzmann’s equation, kinetic theories or stochastic thermodynamics) one can obtain an estimate for the dissipative effects, for example, by the calculation of transport coefficients.

In this article, our main purpose is to prove that the relative entropy term between the initial and final states measures dissipation. In our approach, “dissipation” is defined as the difference between the maximal work that the physicist thinks could be extracted from a system when using the thermodynamic or quasi-static theory to make predictions, and the work that is actually extracted because the system is evolving according to the exact dynamics, classical or quantum, independently of what the physicist thinks (see also our use of relative entropy in [5] and [6], where the context was more limited [7]). Moreover, in the present context we find that the relative entropy terms are proportional to the square of the interaction energy. In all standard theories, dissipative effects are measured by the transport coefficients of energy or momentum or concentration of chemical species. Thus, we need prove that the relative entropy allows the calculation of transport coefficients. Indeed, we show below that the relative entropy terms provide the calculation of the thermal conductivity between two general quantum systems, initially at thermal equilibrium at different temperatures. This is a kind of Fourier law, except that we do not suppose a linear regime, so that the temperature dependence is more complicated than simple linearity. Moreover, our exact calculation of the transport coefficient shows that it is indeed proportional to the square of the interaction energy, which confirms that for vanishingly small interaction energy no transfer occurs in finite time. In other words, no power or finite rate of information flow can be extracted from a system if one does not have at the same time dissipative effects.

In the following material, we first consider a system comprised of two components, A and B. We make no specific hypotheses on the size of the systems, and we do not introduce thermal reservoirs. Thus, the identities we derive are in effect exact tautologies. In Sections 3 to 5, we present several identities. We here mention two examples: (1) a derivation of the Brillouin-Landauer estimate of the energy necessary to change the information content of a system; (2) an estimate of the work that can be extracted from a two-part system in interaction with an external source of work in terms of non-equilibrium free energies and relative entropy of the state before and after the evolution. Similar identities were also obtained recently by Esposito et al. [8], Reeb and Wolf [9], and Takara et al. [10] Continuing, we study the effect of an external agent on an (otherwise) isolated system; again we obtain an identity relating the work to the difference of internal (not the free) energies along with the usual dissipative terms. Then, we derive the relation between the relative entropy and the heat conductivity in a quantum system. Finally, we define a general notion of coarse-graining or reduced description, which includes the usual notions. In some of our examples one or both systems are initially at thermal equilibrium, but only the initial temperatures appear explicitly in the definition of the non-equilibrium free energies. The latter are no longer state functions because they depend explicitly on the initial temperature and not on the actual effective temperature. No coarse graining by an effective final or intermediate thermal state is used, and neither system is a reservoir.



2. Notations and Basic Identities


2.1. States and Entropy

Many results will be valid both in classical and quantum contexts. We denote by ρ either a probability distribution function over a classical phase space, or a density matrix in the quantum case. We denote by Tr either the integral on the phase space, or the trace operation. Thus ρ is a positive quantity and satisfies Tr ρ = 1. The entropy of ρ is



[image: there is no content]



(1)




It is defined up to a multiplicative constant. (Classically ρ should be divided by a dimensional constant to render it dimensionless.)

The relative entropy (see [11]) is defined by



S(ρ|ρ′)=Tr(ρ(logρ−logρ′)),



(2)




where ρ and ρ′ are states.

One has



[image: there is no content]



(3)




and S(ρ|ρ′) does not depend on the units in phase space. Moreover S(ρ|ρ′) = 0 if and only if ρ = ρ′.

Writing S(ρ|ρ′) as − Tr ρ log ρ′ − (− Tr ρ log ρ), suggests the following interpretation: Suppose the true state is ρ, but the observer thinks that the state is ρ′. S(ρ|ρ′) is then the true average of the missing information minus the estimate of the missing information.



2.2. The Basic Identity

If we add and subtract S(ρ′) in the second member of Equation (2), we obtain the basic identity



S(ρ|ρ′)=S(ρ′)−S(ρ)−Tr((ρ−ρ′)logρ′).



(4)




Most of our results follow from this identity.

When ρ′ is a thermal state at (inverse) temperature β [12],



[image: there is no content]



(5)




where



Z(β,H)=Tre−βH



(6)




is the partition function. With ρ′ = ρβ, the identity (4) reduces to



S(ρ|ρβ)=S(ρβ)−S(ρ)+βTr((ρ−ρβ)H).



(7)




Here H is a given function or operator.

Defining the free energy of state ρ by



F(ρ,H)=Tr (ρH)−1βS(ρ),



(8)




we obtain



S(ρ|ρβ)=β(F(ρ,H)−F(ρβ,H)),



(9)




and F (ρβ, H) is the equilibrium free energy related to the partition function by



Z(β,H)=exp(−βF(ρβ,H)).



(10)




Equation (9) is important for applications, because its right hand side can be related to energy dissipation (up to the factor β), which gives a clear physical meaning to the relative entropy (see Section 3).



2.3. Evolution Operators and Entropy

We assume that the system (classical or quantum) evolves under the action of an arbitrary operator U (symplectic or unitary). If ρ is a state, we denote by ρ(U) the new state after the evolution U.

Entropy is conserved by the evolution



[image: there is no content]



(11)




For example, in the quantum case, we have ρ(U) = Uρ U†, where U is the propagator: idUdt=[H,U], U|t=0 = 1, with H a possibly time-dependent Hamiltonian.

If ϕ(ρ) is a functional of ρ which evolves with U, and ϕ(ρ(U)) is the functional after evolution of ρ, we denote the variation of ϕ(ρ) after the evolution U in the following way



[image: there is no content]



(12)




Remark 1: Many of our results are valid for a general evolution U which is not symplectic or unitary, for example stochastic evolution.




3. Two Systems in Interaction

A basic procedure in thermodynamics is to consider the evolution and properties of an otherwise isolated two-part system. Although it is often the case that the overall system conserves energy, for the subsystems more general behavior is often seen.


3.1. Hypotheses

We assume that the system is formed of two parts, A and B, in interaction. At time-0, the state is a product state



[image: there is no content]



(13)




After the evolution U, the state is ρ(U) and we denote by [image: there is no content] and [image: there is no content] its marginals,



ρA(U)=TrBρ(U)andρB(U)=TrAρ(U),



(14)




which are then states on A and B respectively. We also assume that there is a quantity H that is conserved by the evolution and H has the form



[image: there is no content]



(15)




where HA and HB are quantities depending only on A and B respectively and VAB is an interaction term. Then, if we denote



E(ρ)=Tr(ρH)=EA(ρ)+EB(ρ)+EV(ρ)



(16)






EA(ρ)=Tr(ρHA)=Tr(ρAHA)



(17)






EB(ρ)=Tr(ρHB)=Tr(ρBHB)



(18)






EV(ρ)=Tr(ρVAB),



(19)




our hypothesis is that



[image: there is no content]



(20)




In particular this is the case if U is time-evolution with Hamiltonian H.

Remark 2: For this situation, certain results are also valid without the assumption that the evolution U preserves the energy H.

If ρ is a state corresponding to a system formed of two parts, A and B, and ρA and ρB are its marginals (as in Equation (14)), then the relative entropy S (ρ|ρA ⊗ ρB) is the same as the mutual information of the associated distributions. It can be interpreted as the amount of information in ρ that comes from the fact that A and B are in interaction (see [11]). This quantity will appear in many of our relations below (e.g., Equation (28)) as part of the dissipation.



3.2. Relation between a State and Its Marginals

Assuming Equation (13) (that the initial state is a product state), one has the identity



[image: there is no content]



(21)




Indeed, using the conservation of the entropy of ρ during the evolution U,



[image: Entropy 16 03173f1]








This is because one evidently has −Tr(ρ(U)logρA(U))=−Tr(ρA(U)logρA(U)). Note that Equation (21) requires that U preserve the entropy. One has also the well-known inequality



S(ρ(U))≤S(ρA(U))+S([image: there is no content]),



(22)




which is a particular case of



[image: there is no content]



(23)




for any state ρ.

Note that the stronger result, Equation (21), is obtained by retaining the relative entropy term in this equation. The same remark will apply in most of the following results.



3.3. The Case Where A is Initially in a Thermal State

At time 0 we take ρA,0 to be thermal with temperature βA,



[image: there is no content]



(24)




where ZA(βA) = ZA(βA, HA) is the partition function, (6). From Equation (7) with [image: there is no content] and [image: there is no content], we deduce (note that this requires that HA be independent of time)



[image: there is no content]



(25)




and as a consequence



[image: there is no content]



(26)




The last two equations do not require that U be a unitary evolution conserving the entropy, nor that it conserve the energy.

Remark 3: This inequality can be found in [13] as an unnumbered equation. Its consequences were not deduced in that reference.

Remark4: Note that it is the initial temperature that appears in Equations (25) and (26). Moreover, [image: there is no content] is not in general an equilibrium state.

Suppose that B starts in an arbitrary initial state ρB,0, while A begins in the thermal state [image: there is no content]. Combining Equations (21) and (25), we obtain



βAδ(U(t))EA(ρ)+δ(U(t))S(ρB)=S(ρ(U)|ρA(U)⊗ρB(U))+S(ρA(U)|ρA,βA).



(27)




The last equation requires that U preserve entropy, since that feature is used in the derivation of Equation (21). It also remains valid if the Hamiltonian of B, HB, depends on an external parameter varying with time, so that B receives work from an external agent. This is because the entropy-preserving property only depends on U being unitary (or symplectic). On the other hand, HA should be time independent (see the parenthetical remark before Equation (25)). Then if U conserves energy



[image: there is no content]



(28)




These relations imply the following inequalities:


	(1)

	If U preserves entropy, even if HB depends on an external parameter varying with time



[image: there is no content]



(29)






	(2)

	If U conserves entropy and the total energy, one has



[image: there is no content]



(30)








with the following interpretations. Suppose U conserves the entropy; then we couple a system B (initially in an arbitrary state ρB,0) to system A (initially in thermal equilibrium) and that we want to lower the entropy of B so that δ(U(t))S(ρB) ≤ 0. Then, the energy of A must increase by at least



[image: there is no content]



(31)




even if B receives work from an external source (so that HB depends on an external parameter). Moreover, if the total energy is conserved, the sum of the energy of B and the coupling energy must decrease by at least:



[image: there is no content]



(32)




Thus lowering the entropy of a system B, coupled to a system initially at equilibrium, costs transfers of energy from B to A or to the interaction energy; thus the sum of B’s energy and the interaction energy must decrease, but B’s energy alone need not decrease. This is a result analogous to those of Brillouin [14] and Landauer [15] (reprinted in Leff and Rex [16]), even if system B receives work from an external source. But note again that only the temperature βA appears. This is the initial temperature at the beginning of the evolution U, so that system A is not necessarily a thermal bath, because its temperature may vary during the evolution U.



3.4. The Case of Equality in Equation (31)

It is important to study the case where the previous inequalities are changed into equalities, because this occurs if and only if strong conditions are verified: expressing these conditions is one of the advantages of our approach.

Equation (31) was derived under the hypothesis δ(U)S(ρB) < 0. Then by Equation (27) one has [image: there is no content]. This implies [image: there is no content] and [image: there is no content]. Because ρA(U)=ρA,βA,δ(U)EA(ρA)=0, so by Equation (31), δ(U)S(ρB) = 0. But we could also derive δ(U)S(ρB) = 0 from Equation (21), because δ(U(t))S(ρA) = 0 and [image: there is no content].



3.5. Both Systems A and B are at Equilibrium

Assume that A and B are initially at thermal equilibrium at different temperatures. Then, one has


	(1)

	For a general evolution



[image: there is no content]



(33)






[image: there is no content]



(34)






	(1)

	If U conserves entropy



[image: there is no content]



(35)






	(1)

	If U conserves energy



[image: there is no content]



(36)








Then, we conclude


	(A)

	If U conserves entropy: Combining Equations (33), (34), and (35) yields



[image: there is no content]



(37)




It is easy to check directly that



[image: there is no content]








Thus



[image: Entropy 16 03173f2]



(38)




This last identity implies the Clausius-like inequality



[image: there is no content]



(39)






	(B)

	For a general evolution U: Combining Equations (33) and (34)



[image: there is no content]



(40)




and thus



[image: there is no content]



(41)








This may be viewed as an inequality for free energies of A and B at the respective temperatures TA and TB. Note again that during the time evolution neither A nor B need remain in thermal states.



3.6. Case of Equality in (39) (2nd) and (41)


	(A)

	U conserves entropy. Equality in Equation (39) implies immediately that [image: there is no content] and [image: there is no content], in which case the energy of A and the energy of B have not changed and δ(U(t))S(ρA) = δ(U(t))S(ρB) = 0. From the first equality in Equation (38) one has



[image: there is no content]



(42)




and one deduces that the state ρ has not changed.



	(B)

	General evolution U. If one has equality in Equation (41), it follows from Equation (40) the same results as above: the state ρ has not changed.







3.7. Interaction Energy and Relative Entropy

It is often assumed that the interaction energy between the parts of the complete system can be neglected but, obviously, if this were exactly true the subsystems would evolve independently. Of course, an interaction can be small but nevertheless have significant impact when it persists for long times. However, there are cases where even for short times the interaction cannot be neglected. Assume then that U conserves entropy and energy. Divide Equations (33) and (34) by βB and add; then use the conservation of energy Equation (36) to eliminate δ(U)EB(ρ) and deduce after some calculations



[image: there is no content]



(43)




so that



[image: there is no content]



(44)




In case of equality in Equation (44), one deduces that [image: there is no content] so that the state has not changed and δ(U)EA(ρA) = δ(U)EV (ρ) = 0. Moreover if δ(U)EA(ρA) is positive and TA is larger than TB, the interaction energy V is necessarily not zero and δ(U)EV (ρ) is negative.

Finally, if one could neglect the interaction energy, Equation (44) implies that energy flows from the hot to the cold system.



3.8. The Case βA = βB

Again assume that U conserves both entropy and energy. From Equation (43) and the conservation of energy, one deduces



[image: there is no content]



(45)




so that δ(U)EV (ρ) ≤ 0. Thus when A and B are initially at thermal equilibrium at the same temperature, the sum of the energies of A and B can only increase at the expense of the interaction energy [17].




4. Two Systems in Interaction With a Work Source

The problem of converting heat into work, first treated by Carnot, was at the origin of classical thermodynamics. Here, to address this issue, we explicitly introduce a work source interacting with two systems A and B, before focusing in Section 5 on the interaction of one system with a work source.


4.1. Hypotheses

We consider two systems A and B in interaction, with system A coupled to a work source. We represent the action of the work source by parameters, collectively denoted by λ, so that HA = HA(λ). Thus we assume that HB and V are independent of λ. The action of the work source is given by an evolution of the parameters λ(t) imposed by an external agent. The total system A+B has a unitary or symplectic evolution U(t) depending explicitly on time-t. Clearly, U(t) conserves entropy but does not conserve energy, and instead one has the identity



[image: there is no content]



(46)




with the following notation



δ(U(t))EB(ρ)=Tr((ρ(U)−ρ0)HB)



(47)






δ(U(t))EV(ρ)=Tr((ρ(U)−ρ0)HV)



(48)






δ(U(t))EA(ρ)=Tr(ρ(U)HA(λ(U))−ρ0HA(λ0)).



(49)




Here, λ0 is the initial value of the parameter λ and λ(U) is its final value at the end of the evolution U, this being an abbreviation for U(t), t being the final time. Note that Equation (49) extends the definition given near Equation (12). Such an extension is needed because we now allow changes in the Hamiltonian, represented by the additional variable λ. Equation (46) defines the work δ(U)W, which is taken to be positive if the source receives work from the system A + B. (Note that this is opposite to the usual convention which was implicit in the opening paragraph of this paper.)

We assume that initially A and B are in independent thermal states, but A depends on the work source parameter λ. The complete initial state at time 0 is thus



[image: there is no content]



(50)




with



[image: there is no content]



(51)






ZA(βA,λ0)=Tr(e−βAHA(λ0)),



(52)




and



ZA(βA,λ0)=exp(−βAFA(βA,λ0)).



(53)




Here, FA(βA, λ0) denotes the equilibrium free energy for A. For a general state ρ of a system with energy H we define the non equilibrium free energy of the state ρ at temperature T to be



[image: there is no content]



(54)




In particular, for subsystem A one can define the non equilibrium free energy of the state [image: there is no content] at temperature βA to be



[image: there is no content]



(55)




In both of the above formulas temperature is not necessarily related to the state ρ.



4.2. Identities for the Work

We next establish the following two relations



[image: Entropy 16 03173f3]



(56)




and



[image: Entropy 16 03173f4]



(57)




with [image: there is no content] the non equilibrium free energy of [image: there is no content] calculated at the initial temperature TA, namely Equation (55), [image: there is no content]. We will comment on these relations in Par. 4.3 Remark 5: Here the free energy of Equation (55) is not a state function, because it is calculated at the initial temperature of A. Note our notation: When we write FA(βA, λ0) this is the equilibrium free energy of the thermal state of A at temperature βA and external parameter λ0. When we write [image: there is no content] we mean the non-equilibrium free energy, as defined above.

Proof of Equation (56): One again starts from the fundamental identities Equations (7) and (25)



[image: there is no content]



(58)






[image: there is no content]



(59)




and



[image: there is no content]



(60)




Note that Equation (59) is just Equation (7) with the substitutions [image: there is no content] and [image: there is no content]. Therefore it contains the initial HA(λ0) (referring to [image: there is no content]), not the final one. Equation (60) is likewise a rewriting of Equation (35).

Now add Equations (58) and (59) and subtract Equation (60), using the fact that



[image: there is no content]



(61)




(this is the same as our unnumbered equation between Equations (37) and (38)) we obtain



−βBδ(U(t))EB(ρ)−βATrA((ρA(U)−ρA,βA,λ0)HA(λ0))=−S(ρ(U)|ρA,0⊗ρB,0).



(62)




Conservation of energy Equation (46) gives



[image: Entropy 16 03173f5]



(63)




We eliminate the second trace in the right hand side of Equation (63) using Equation (62), multiply by TA to obtain Equation (56).

Proof of Equation (57): In Equation (56), we replace the relative entropy term, using



[image: Entropy 16 03173f6]



(64)




and use the definition of [image: there is no content] of Equation (55)



−1βAS−(ρA(U)|ρA,βA,λ0)Tr(ρA(U)(HA(λ(U))−HA(λ0)))=FA(βA,λ0)−FA(U).



(65)






4.3. Inequalities for the Work

From the identities of Equations (56) and (57), we deduce immediately corresponding inequalities



[image: there is no content]



(66)




and



δ(U(t))W≤−δ(U(t))EV(ρ)−(1−βBβA)δ(U(t))EB(ρ)+(FA(βA,λ0)−FA(U)).



(67)




The interpretation of inequality (67) is straightforward. If one can neglect the interaction energy, and if TA = TB, one gets an analogue of the familiar thermodynamic inequality giving an upper bound between the work received by the work source and the variation of the free energy of A,



[image: there is no content]



(68)




Note that this relation is not restricted to cycles, nor to exchanges with thermal baths (which would stay in their initial thermal states).

Remark 6: Equation (57) contains much more information than inequalities Equations (67) and (68), since it expresses the difference between the maximum work that can be delivered by system A and the work effectively extracted from A, which is the energy dissipated in the process. It is expressed in terms of relative entropies, and it will be shown in Section 6 that it can be explicitly estimated, which yields a calculation of transport coefficients from first principles.



4.4. The Case of Equalities in Equations (66) and (67)

If one has equality in Equation (66), the relative entropy of Equation (56) must be equal to 0,



[image: there is no content]



(69)




so [image: there is no content] and the final state has come back to its initial value. If we have equality in Equation (67), both relative entropies of Equation (57) are equal to 0. In this case [image: there is no content] has come back to its initial value [image: there is no content] and δ(U)EB(ρ) = 0. Then, one has



[image: there is no content]



(70)






4.5. Case Where A is not Initially in Thermal Equilibrium

We shall now assume that the initial state is



[image: there is no content]



(71)




ρA,0 being a general state.

The following identity also holds:



[image: there is no content]



(72)




This equation, true for any initial state ρA, can be found in [8,18]. Note the temperature of B appearing in the non equilibrium free energy of A



[image: there is no content]



(73)




If no work is performed, Equation (72) reduces to Equation (28) upon exchanging the labels A and B. Proof: Using S(ρ(U)) = S(ρ0) and the definition of the thermal state, one has



S(ρ(U)|ρA(U)⊗ρB(U))+S(ρB(U)|ρB,βB)=−S(ρA,0)−S([image: there is no content])+S(ρA(U))+βBEB([image: there is no content])+logZB(βB).



(74)




Then,



logZB(βB)=−βBEB(ρB,βB)+S(ρB,βB),



(75)




and Equation (74) becomes



[image: there is no content]



(76)




Using the conservation of energy, Equation (46), one obtains



δ(U(t))W=−δ(U(t))EV(ρ)−δ(U(t))FA(βB,ρA)−TB[S(ρ(U)|ρA(U)⊗ρB(U))+S(ρB(U)|ρB,βB)].



(77)




Here



[image: there is no content]



(78)




is the variation of the non equilibrium free energy of A calculated at the initial temperature TB of B and



δ(U(t))EA(ρA)=TrA(HA(λ(U))ρA(U))−TrA(HA(λ0)ρA,0).



(79)




In particular



[image: there is no content]



(80)




which gives a general upper bound for the work production from heat exchanges between an arbitrary system A and a system B initially at equilibrium (not necessarily a heat bath). In this relation, equality is realized if and only if the two relative entropy terms of Equation (77) are zero, which means that



ρB(U)=ρB,βBandρ(U)=ρA(U)⊗ρB,βB.



(81)




Remark 7: By convention, a thermal bath is in a thermal state which is assumed to remain constant during the evolution. Our system B is not a thermal bath in this sense; its state varies during the evolution.




5. A System Coupled Only to an External Work Source

While Carnot and many others primarily considered model machines exchanging heat with several reservoirs, new thermodynamic relations have recently been announced [19] concerning exchanges of a single system with a work source. We now focus on this case.


5.1. Hypotheses

We consider a system coupled only to an external work source, so that the Hamiltonian of the system is H(λ).

At time t = 0, the state of the system is supposed to be a thermal state [image: there is no content]. The external observer imposes an evolution λ(t) of the parameter λ from λ0 to λ(U), inducing a unitary or symplectic evolution U of the whole system. The work that the external observer must perform to realize this evolution is obviously the variation of the energy of the system. With the convention of Section 4.1, we denote by δ(U(t))W the work counted positive if the external source receives it from the system. We are now in a particular case of Section 4.1 when the system is A, there is no system B and no V. Thus from Equation (46)



[image: there is no content]



(82)






5.2. Identities for the Work

From Equations (56) and (57) we obtain immediately



[image: there is no content]



(83)




and



[image: there is no content]



(84)




with F(U) the non equilibrium free energy at temperature β0.



F(U)=Tr(ρ(U)H(λ(U)))−1β0S(ρ(U))



(85)




We now prove the following identity



[image: there is no content]



(86)




This is a particular case of the result of [19].

Proof of Equation (86): We start from Equation (84) written as



[image: there is no content]



(87)




Now



β0(F(U)−F(β0,λ(U)))=−S(ρ(U))+β0Tr(H(λ(U))ρ(U))−β0F(β0,λ(U)).



(88)




But



S(ρ(U)|ρβ0(λ(U)))=−S(ρ(U))+β0Tr(H(λ(U))ρ(U))+logZ(β0,λ(U)),



(89)




so that comparing Equations (88) and (89), one has



β0(F(U)−F(β0,λ(U)))=S(ρ(U)|ρβ0(λ(U))),



(90)




and from Equation (87) we then deduce Equation (86).

Remark 8: Since the transition under discussion is adiabatic, free energy is less suitable for inequalities of the form (86) than is internal energy. See Section 5.6.



5.3. Inequalities for the Work


5.3.1. From Equation (83)

From Equation (83) we deduce



δ(U(t))W≤−Tr(ρ(U)(H(λ(U))−H(λ0))),



(91)




with equality if and only if [image: there is no content],i.e., the final state is the initial state.



5.3.2. From Equation (86)

From Equation (86) we deduce



[image: there is no content]



(92)




with equality if and only if



[image: there is no content]



(93)




That is, ρ(U) is the thermal state at the initial temperature and final value λ(U) of λ. Note that a necessary condition for this is that the entropy of the final thermal state is the same as the entropy of the initial state.




5.4. Relation to the Identity of Jarzynski

Let z denote a point in the phase space of the system. In this section we assume that the dynamics is classical.

We denote by z(s|z0) the classical trajectory of the phase space point at time s starting from z0 at time s = 0, for the classical evolution U. The external observer imposes the variation λ(s) of λ from λ0 to λ(U) = λ(t). The identity of Jarzynski is [20]:



[image: Entropy 16 03173f7]



(94)




Because the exponential function is strictly convex, Jensen’s inequality implies that



[image: Entropy 16 03173f8]



(95)




so that using Equation (94) and taking the logarithm, one obtains



[image: there is no content]



(96)




which is the inequality (92).

But if the inequality (96) is an equality, we deduce [image: there is no content] as in Equation (93), but we also deduce that the inequality of Jensen (95) is an equality. Because the exponential function is strictly convex, this implies that the differences



[image: there is no content]



(97)




where C is a constant independent of z0 (but obviously dependent on λ0, λ(U) and t); in other words, the “microscopic work” is independent of the microscopic trajectory. Although this equality would seem impossible, it turns out that identity (97) can be realized for certain systems and evolutions of λ (see appendix A).



5.5. Effective Temperatures

Let H(λ) be a Hamiltonian depending on λ and ρ a state (classical or quantum) with energy E(ρ) = Tr (ρH(λ)). We can define two temperatures for ρ.


	(i)

	The temperature βe(ρ, λ) is the temperature such that



[image: there is no content]



(98)




with [image: there is no content]. It is known that ∂E(β, λ)/∂β < 0, so that Equation (98) defines βe unambiguously. The basic identity (4) shows that



[image: there is no content]



(99)




so that



[image: there is no content]



(100)




which is the well known fact that [image: there is no content] maximizes the entropy among all states ρ having a fixed energy. The quantity βe(ρ, λ) can be called the effective temperature.



	(ii)

	There is a second temperature βa(ρ, λ) such that



[image: there is no content]



(101)








In this definition, S(β, λ) is the entropy of a thermal state with temperature β and external parameter λ. We call this the adiabatic temperature, and by the same arguments as given above it is well-defined. From Equation (100) and Equation (101), one has



[image: there is no content]



(102)




Because



∂E∂S(β,λ)|λfixed=1β



(103)




we deduce from Equation (102) that



[image: there is no content]



(104)




and



[image: there is no content]



(105)




Because S is a strictly increasing function of E (for λ fixed), one sees that in Equation (102) or (104), one has equality if and only if βa = βe. Moreover, one has the identity



[image: there is no content]



(106)




which can immediately be verified.



5.6. A More Precise Expression for the Work

In thermodynamics, for an adiabatic evolution, the work is related to the internal energy by dE = −dW, rather than to the free energy. Similarly, the work is related to the adiabatic temperature rather than to the effective energy temperature.

Given the state ρ(U) (corresponding to the evolution U, the parameter varying from λ0 to λ(U)) we can define the adiabatic temperature [image: there is no content] such that



[image: there is no content]



(107)




We prove the following identity



δ(U(t))W=E(β0,λ0)−E(βa(U),λ(U))−1[image: there is no content]S(ρ(U)|ρ[image: there is no content](λ(U))).



(108)




Proof of Equation (108): One has by definition (82)



[image: there is no content]



(109)




Then



[image: Entropy 16 03173f9]



(110)




because [image: there is no content] by the definition (107). From this result and Equation (109) we deduce Equation (108).

As a consequence of Equation (108), we deduce the inequality



[image: there is no content]



(111)




In standard thermodynamics, for system thermally isolated and coupled to a work source, one has dE = −dW, because δ(U(t))S = 0 for an adiabatic (thermally isolated) process and we recover equality in Equation (111). In this situation, the inequality (92) comparing the work to the difference of free energies is not relevant, because the temperature does not remain constant.

Note that the work upper bound (111), given in terms of energy and the adiabatic temperature, is sharper than the bound given by (92), which is in terms of free energy. This is proved in the next subsection.



5.7. Upper Bounds on the Work Delivered by a System. Comparison of Equations (92) and (111)

We next show that using internal energy for the work inequality gives a sharper result than using the free energy. Specifically,



[image: there is no content]



(112)




Proof of Equation (112): We need only prove that



[image: there is no content]



(113)




Using the definition of the equilibrium free energy and Equation (107) we have



[image: there is no content]



(114)




Note that in Equation (114) all terms involving λ are evaluated at λ(U). Therefore



Δ=∫β0[image: there is no content][∂E(β,λ(U))∂β−1β0∂S(β,λ(U))∂β]dβ.



(115)




But



[image: there is no content]



(116)




Using Equation (116) in Equation (115), we obtain



Δ=∫β0[image: there is no content]∂E(β,λ(U))∂β[1−ββ0]dβ.



(117)




But [image: there is no content] < 0, so that ∆ ≥ 0. Note that this does not depend on which of β0 and [image: there is no content] is larger.



5.8. The Case of Equalities in Equations (111) and (92)


5.8.1. Equality in Equation (111)

In this case, one has S(ρ(U)|ρ[image: there is no content](λ(U)))=0 in Equation (108) so



ρ(U)=ρ[image: there is no content](λ(U)).



(118)




In particular, ρ(U) is a thermal state so that



[image: there is no content]



(119)




However, if one has equality in Equation (111), this does not improve the upper bound of Equation (92) for the free energy,



[image: there is no content]



(120)




In other words, the optimal bound for δ(U(t))W is given by the internal energy and not the free energy (so that the internal energy in general yields a better bound than that given in [20]).



5.8.2. Equality in Equation (92)

From Equation (93) we deduce that



[image: there is no content]



(121)




so that ρ(U) is a thermal state and thus



[image: there is no content]



(122)




This implies that we also have equality in Equation (111)



[image: there is no content]



(123)







5.9. The Case λ(U) = λ0

If one assumes that the final value λ(U) of λ is equal to its initial value, we see immediately that [image: there is no content].Indeed



[image: there is no content]



(124)




so that the temperatures are equal [image: there is no content]. In this case, one has from Equation (108)



[image: there is no content]



(125)




with equality if and only if



[image: there is no content]



(126)




so that the state has returned to its initial value.

Remark 9: If the external observer imposes a variation λ(t) of the control parameter with λ(0) = λ0, λ(t1) = λ1, λ(tf) = λ0, inequality (125) says that at the end of the cycle, the observer has always lost work. In particular, the work that the external observer has put in the system in the time interval [0, t1] cannot be entirely recovered in the time interval [t1, tf] whatever one does, except if the final state ρ(U) is the initial state.

Remark 10: When λ(U) = λ0, one can also recover Equation (125) from the identity (86). This identity reduces to



[image: there is no content]



(127)







6. Relative Entropy, Energy Dissipation and Fourier’s Law

In this Section we derive dissipation in the quantum context and show it to be intimately related to the relative entropy.


6.1. The Born Approximation

A quantum system has a Hamiltonian



[image: there is no content]



(128)




Let [image: there is no content] be the eigenstates and eigenvalues of H0. In the Born approximation, the state [image: there is no content] becomes at time t a state [image: there is no content] with



|ψn(t)⟩=∑kak(n)(t)e−iEk(0)t/ℏ|ψk(0)⟩.



(129)




The quantities [image: there is no content] satisfy



[image: there is no content]



(130)




where



[image: there is no content]



(131)




We assume here Vn,n = 0 for all n. One readily deduces that in the Born approximation



ak(n)(t)=Vk,nEk(0)−En(0)(1−ei(Ek(0)−En(0))tℏ)(k≠n)



(132)




and by unitarity [image: there is no content], so to second order in [image: there is no content]



2Rea˜n(n)(t)=−∑k≠n|a˜k(n)(t)|2.



(133)




Let ρ0 be an initial state diagonal in the basis [image: there is no content]



ρ0=∑p0,n|[image: there is no content]⟩⟨[image: there is no content]|.



(134)




Then, at time t, the state becomes



[image: Entropy 16 03173f10]



(135)




If L is a Hermitian operator diagonal in the basis [image: there is no content] with eigenvalues λn, using Equation (135) one obtains in the Born approximation



Tr(L(ρ(U(t))−ρ0))=12∑k≠n|a˜k(n)(t)|2(λk−λn)(p0,n−p0,k).



(136)






6.2. Two Interacting Systems

We consider two quantum systems A, B with Hamiltonians HA, HB respectively, interacting. Denote by V = VA,B the interaction energy and



[image: there is no content]



(137)




We call [image: there is no content] the eigenstates and eigenvalues of HA (resp. HB), and we apply the Born approximation to H, with H0 = HA + HB. The non perturbed Hamiltonian H0 has eigenstates [image: there is no content] with eigenvalues [image: there is no content].

We assume that at time t = 0, the state of the system A + B is ρ0 = ρA ⊗ ρB with



[image: Entropy 16 03173f11]



(138)




so that they are diagonal in the eigenbasis of HA and HB and therefore commute with HA +HB. At time t, the initial state ρ0 = ρA ⊗ ρB evolves to ρ(t). Then



S(ρ(t)|ρA⊗ρB)=Tr(ρ(t)logρ(t))−Tr(ρ(t)log(ρA⊗ρB)).



(139)




But S(ρ(t)) = S(ρ0) by unitarity of the evolution, so that



S(ρ(t)|ρA⊗ρB)=−Tr[(ρ(t)−ρA⊗ρB)(logρA+logρB)].



(140)




This is of the form of Equation (136) with



L=−(logρA+logρB).



(141)




L has eigenvectors [image: there is no content] with eigenvalues log pA,k + log pB,l; ρA ⊗ ρB has the same eigenvectors with eigenvalues pA,k + pB,l. Applying Equation (136), one obtains in the Born approximation



[image: Entropy 16 03173f12]



(142)




Notice that the quantity in the right hand side is automatically non-negative. Here, we have



[image: Entropy 16 03173f13]



(143)




with [image: there is no content].

We also deduce from this result that in this approximation S(ρ(t)|ρA ⊗ ρB) = 0 if and only if V = 0 (recall that the diagonal elements of V are 0).



6.3. The Case Where Both Initial States are Thermal

Assume that at time [image: there is no content] and [image: there is no content] are the thermal states of A and B respectively. From Equation (37) one has



[image: there is no content]



(144)




Moreover, from conservation of energy



[image: there is no content]



(145)




so that eliminating δ(U(t))EB(ρB), one obtains



[image: there is no content]



(146)




We now estimate both terms on the right hand side of Equation (146).


6.3.1. Estimate of the Relative Entropy

From Equation (142) we deduce



[image: Entropy 16 03173f14]



(147)




Moreover, when t → ∞, as in the usual Born approximation, Equation (143) shows that



[image: there is no content]



(148)




Thus if fA and fB denote the density of states for A and B, we obtain from Equation (147)



[image: Entropy 16 03173f15]



(149)






6.3.2. Estimate of the Interaction Energy

Because δ(U(t))V (ρ) = −δ(U(t))EA(ρ) − δ(U(t))EB(ρ), one has



δ(U(t))VA,B(ρ)=Tr(−(HA+HB)(ρ(t)−ρA,βA⊗ρB,βA)).



(150)




This is of the form of Equation (136) with L = −HA − HB, and so



[image: Entropy 16 03173f16]



(151)




Up to a sign, this expression is formally identical to the expression Equation (142), except that the difference of energies (EA,k + EB,l − EA,n − EB,m) replaces the quantity βA(EA,k − EA,n) + βB(EB,l − EB,m). As a consequence EA,k + EB,l − EA,n − EB,m partially cancels the denominator of [image: there is no content] and one sees that [image: there is no content] is negligible when t → ∞.

Then from Equations (146) and (149), one sees that



[image: there is no content]



(152)




In Equation (152) K is the positive constant



[image: Entropy 16 03173f17]



(153)




with



[image: Entropy 16 03173f18]



(154)




It is obvious that φ ≥ 0. Note that K does not vanish for βA close to βB.

The expression (152) is a form of Fourier’s law for heat transport from B to A, (βA − βB)K being the rate of dissipation. In this case, one sees that the significance of the relative entropy [image: there is no content] is that of a transport coefficient, here the transport of energy from one part of a system to another part.





7. Coarse Grained States

Coarse-graining is omnipresent in in macroscopic and mesoscopic physics, since microscopic variables are often not what is observed. In general coarse-graining represents a loss of information, hence an increase in entropy. In this section we consider a variety of coarse-graining procedures, and consistent with our work in this article, relative entropy plays a significant role both in the definition of coarse-graining and in the measures of entropy increase.


7.1. Definition

Let ρ and ρ′ be two states of the same system (classical or quantum). We say that ρ′ is obtained from ρ by a coarse graining operation if



Tr((ρ−ρ′)logρ′)=0.



(155)




The idea is that the information associated with ρ′ (namely log ρ′) is the same whether one averages with ρ′ or with the more detailed distribution ρ. Using the basic identity, Equation (4), we can say that ρ′ is obtained from ρ by a coarse graining operation, if and only if



[image: there is no content]



(156)




In particular, S(ρ′) ≥ S(ρ), so that the entropy increases by coarse-graining. (See the comment after Equation (3).)

A coarse-graining mapping is a mapping Γ which associates to any state ρ (or to some states of a given class), a coarse grained state ρ′ = Γ(ρ).



7.2. Examples of Coarse-graining Mappings

Example 1: Maximum entropy.

Let A1,…, An be observables of the system, so they are either functions in the phase space or hermitian operators on the Hilbert space of the system. We consider the class of states ρ such that



Tr(Aiρ)<∞,i=1,..,n.



(157)




One can then consider the state ρ′ such that ρ′ has maximal entropy given the relation



Tr(Aiρ′)=Tr(Aiρ).



(158)




It is immediately seen that



[image: there is no content]



(159)




where C is a normalization constant and αi are the “conjugate parameters”, (provided ρ′ is normalizable). The mapping Γ: ρ → ρ′ is indeed a coarse grain mapping in the sense of the previous definition, because by Equation (159)



Tr((ρ−ρ′)logρ′)=∑i=1nTr((ρ−ρ′)Ai)=0.



(160)




In particular, one has Equation (156).

The case of the thermal state is the best known, where one takes A = H, the Hamiltonian of the system.

Example 2: Naive coarse graining; the observables as characteristic functions.


	(i)

	Classical case: Let Z be the phase space of the system and {Zi} a finite partition of Z ( [image: there is no content] and Zi∩Zj = Ø for i ≠ j). We choose [image: there is no content] (i.e. the characteristic function of Zi). This is a particular case of example 1 and if ρ is a state



[image: there is no content]



(161)




Using the condition (156), namely,



∫Ziρ′dz=∫Ziρdz,



(162)




one can deduce from Equations (161) and (162)



ρ′|Zi=1Vol(Zi)∫Ziρdzorρ′=∑i=1n(ρ′|Zi)χZi.



(163)




This equation implies that ρ′ is normalized ∫ ρ′dz = 1. We recover the usual coarse graining.



	(ii)

	Quantum case: Let [image: there is no content] be the Hilbert space of the system and Pi a resolution of the identity by orthogonal projectors



Id=∑PiandPiPj=Piδi,j.



(164)




Then the analogue of Equation (163) is



ρ′=∑i=1nTr(ρP)idimPi([image: there is no content])Pi.



(165)








Example 3: Coarse graining by marginals.


	(i)

	Classical case: We assume that the system consists of several parts, and that its phase space is a Cartesian product, [image: there is no content], corresponding to various subsystems with phase space Zi. If ρ is a state on Z, we denote by ρi its marginal probability distribution on Zi, so



ρi(zi)=∫…∫ρ(ζ1,…,ζi−1,zi,ζi+1,…,ζn)∏j≠idζj.



(166)




Let Γ be the mapping that associates the product of its marginals to ρ(z)



[image: there is no content]



(167)




Then the condition (155) is satisfied. It is easy to see that [image: there is no content] is the state ρ′ that maximizes the entropy among all the states ρ″ such that [image: there is no content] for any i.



	(i)

	Quantum case. The Hilbert space of the system is



[image: there is no content]=⊗i=1n[image: there is no content]i, (168)








where the [image: there is no content]i are the Hilbert spaces of the subsystems. If ρ is a state, then its marginal state on [image: there is no content]i is the partial trace on the Hilbert space [image: there is no content], which is the tensor product of the Hilbert spaces [image: there is no content]j for j different from i



ρi=Tr[image: there is no content]ρ



(169)




and the mapping Γ,



[image: there is no content]



(170)




is a coarse grained mapping. Γ(ρ) is again the state ρ′ which maximizes the entropy among all states ρ″ such that [image: there is no content] for all i.





Example 4: Decomposition of Z.

If [image: there is no content], but the Zi do not form a partition of Z (they can have intersections of non-zero measure), one can still apply Example 1 to [image: there is no content] and obtain



[image: there is no content]



(171)




But now Equation (163) is no longer valid because, for given z, there will be in general several i with z ∈ Zi.



7.3. Coarse Graining and Relative Entropy


	(i)

	The case of the naive coarse-graining is distinguished among all types of coarse-graining by the following property. Let [image: there is no content] a partition of the phase space and p, q two probability distributions on Z. Let [image: there is no content] and [image: there is no content] be the coarse grained states of p and q associated to this partition. Then one has



[image: there is no content]



(172)




Proof: call pi=∫Zipdz and qi=∫Ziqdz. We have, using the definition of [image: there is no content] and [image: there is no content]



S([image: there is no content]|[image: there is no content])=∑i=1npilogpiqi.



(173)




Now



[image: Entropy 16 03173f19]



(174)




But [image: there is no content]. We use the fact that the function x log x is convex, so that for each i



[image: Entropy 16 03173f20]



(175)




Therefore from Equation (175)



[image: there is no content]



(176)






	(ii)

	For the coarse-graining associated to subsystems one has [image: there is no content] and if p, q are states on Z, the coarse grained states are [image: there is no content] and we deduce immediately that



[image: there is no content]



(177)




Consider the case i = 1, and call z = (z1, z′) with z′ = (z2,…, zn) and call Z′ = Z2× ⋯ × Zn. Then



[image: Entropy 16 03173f21]



(178)




Now [image: there is no content]. As in Equation (175), we use the convexity of x log x and deduce that



[image: Entropy 16 03173f22]



(179)




From Equation (177) we deduce that for the coarse graining mapping associated to the division of [image: there is no content] in n subsystems, one has



[image: there is no content]



(180)




Remark 11: The upper bound of Equation (180) cannot be improved. Indeed consider the case where: p(z1,…, zn) = p1(z1)δ(z1− z2) … δ(zn−1 − zn) q(z1,…, zn) = q1(z1)δ(z1 − z2) … δ(zn−1 − zn). Then pi = p1 and qi = q1, but S(p|q) = S(p1|q1) and S([image: there is no content]|[image: there is no content])=nS(p1|q1).



	(iii)

	Thermal coarse graining.

Let Z be a phase space, and p and q two probability distributions on Z, H(z) a function of z ∈ Z.

Let [image: there is no content] and [image: there is no content] be the thermal coarse grained probability distributions of p and q, respectively, with respect to H. So



[image: there is no content](z)=1Z(β(p))exp(−β(p)H(z)).



(181)




where β(p) is the effective temperature of p, i.e., [image: there is no content].

Assuming that p − q is small, an obvious bound, after straightforward calculations (expanding to second order in p − q), is



[image: there is no content]



(182)




This bound is surely not optimal, because if p and q are already thermal states, S([image: there is no content]|[image: there is no content])=S(p|q). Note though that even without the hypotheses on p and q, S([image: there is no content]|[image: there is no content])≤S(p|[image: there is no content]).








8. Conclusions

The results in this article are used to obtain upper bounds for entropy production or energy variation in various situations of thermodynamic interest, with many such results either new or sharper than similar known bounds. Furthermore, the energy dissipated in these processes is expressed in terms of relative entropies, which not only gives a general microscopic interpretation of dissipation, but also, in relevant examples, leads to an explicit, first principles, evaluation of dissipation terms, analogous to the Fourier law.

Although relative entropy has made appearances in many contexts, especially with respect to information theory, our results on a generalized Fourier heat law relates it in a direct way to the notion of dissipation as understood in physics.
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Appendixe


A. An Example of Trajectory-Independent Microscopic Work

We exhibit a Hamiltonian H(z, λ) and an evolution λ(t) of the external parameter such that



[image: there is no content]



(A1)




with C independent of z0.

Take the harmonic oscillator



[image: there is no content]



(A2)




Call



[image: Entropy 16 03173f23]



(A3)




the solution with λ = 0.

For λ(s) a function of time s, the solutions of the Hamiltonian equations starting from (x0, p0) at s = 0 are



[image: there is no content]



(A4)






p(t|x0,p0)=[image: there is no content](t)+ω2∫0tλ(s)cos(ω(t−s))ds



(A5)




with [image: there is no content] and [image: there is no content] Assume that λ0 = 0. Define Λc(t)≡∫0tλ(s)cosω(t−s)ds and Λs(t)≡∫0tλ(s)sinω(t−s)ds. Then



[image: Entropy 16 03173f24]



(A6)




We can impose a condition on t such that this quantity does not depend on x0 and p0, namely



[image: Entropy 16 03173f25]



(A7)




Then using these two equalities, one has



[image: there is no content]



(A8)




Thus if λ(t) ≠ 0, we can arrange that the microscopic work is independent of the initial condition and is non zero.



B. An Exactly Solvable Model

The system A + B is formed of two two-levels atoms. The Hamiltonians of A and B are



[image: there is no content]



(A9)




with eigenstates |0A⟩, |+A⟩, |0B⟩, |+B⟩, so that the total Hamiltonian is in the basis |0A, 0B⟩, |+A, 0B⟩, |0A, +B⟩, |+A, +B⟩:



[image: there is no content]



(A10)




where w is the interaction energy.

Calling E0 = EA + EB, the eigenvalues of H are



[image: there is no content]



(A11)




as well as EA and EB. The eigenstates of EA and EB are |+A, 0B⟩, |0A, +B⟩, and the eigenstates of λ± are



[image: there is no content]



(A12)




so that



[image: there is no content]



(A13)






[image: there is no content]



(A14)




Here [image: there is no content] is the normalization factor.

The initial state is [image: there is no content]:



[image: Entropy 16 03173f26]



(A15)




Using these formulas one can compute



[image: there is no content]



(A16)




and verify that



Tr(HAρ(t))=EAZAZB(e−βAEA+e−βAEA−βBEB|λ+e−iλ+t−λ−e−iλ−t|2(λ−−λ+)2|ω|2|e−iλ+t−e−iλ−t|2(λ−−λ+)2).



(A17)




Then



S(ρ(t)|ρA,βA⊗ρB,βB)=Tr((βAHA+βBHB)(ρ(t)−ρA,βA⊗ρB,βB))



(A18)






δEV(ρ)=−Tr((HA+HB)(ρ(t)−ρA,βA⊗ρB,βB))



(A19)




and



[image: Entropy 16 03173f27]



(A20)






[image: Entropy 16 03173f28]



(A21)




Using Equation (146), one obtains



[image: there is no content]



(A22)




Here these quantities are periodic functions of period [image: there is no content]. Near resonance, where λ+ ≃ λ−, w ≃ 0, E0 = EA +EB ≃ 0 and we recover that δ(U(t))EA(ρ) ≃ K(βA − βB)t from Equation (A22).



C. Example: Forced Harmonic Oscillator

We take the Hamiltonian



[image: there is no content]



(A23)




with the condition λ(0) = 0. The classical action is



[image: Entropy 16 03173f29]



(A24)




where C(t) does not depend on x or x′. The quantum propagator is



[image: there is no content]



(A25)




where “≃” indicates that we have not written the normalization factor. This factor does not depend on x or x′ and is at the moment unimportant. The thermal state for λ = 0 is



ρβ≃exp(−iω2sin(iωβ)((y2+y′2)cosiωβ−2yy′)).



(A26)




The time-evolved state at time-t is



[image: there is no content]



(A27)




The energy at time-t, using λ(t) = 0, is



E(t)=∫dxH0,xρ(t,x|x′)|x′=x,



(A28)




with [image: there is no content]. Define



[image: there is no content]



(A29)






[image: there is no content]



(A30)






[image: there is no content]



(A31)






[image: there is no content]



(A32)




The calculation of the double Gaussian integral in Equation (A27) gives



[image: there is no content]



(A33)




where N(t) is the normalization factor



[image: there is no content]



(A34)




The action of the Hamiltonian on the propagated state is



H0,xρ(t,x|x′)=(12ωcothωβ−12((−ωxcothωβ+ωx′sinhωβ)+A)2+ω2x22)ρ(t,x|x′).



(A35)




We define the variable X as



[image: there is no content]



(A36)




Then the energy of the propagated state at time t is



[image: Entropy 16 03173f30]



(A37)




and E(0) is the value of E(t) at t = 0, so that



[image: there is no content]



(A38)




Finally using the values of A and A′ in terms of I1 and I2, we obtain



[image: there is no content]



(A39)




This is independent of β and is positive. As a corollary, this result is valid if one propagates any eigenstate of the Hamiltonian H0. One can also derive the classical energy



E(t)−E(0)=⟨H(x(t|x0,p0),p(t|x0,p0),λ=0)−H(x0,p0,λ=0)⟩ρβ(λ=0),



(A40)




where ρβ(λ = 0) is the classical thermal state. One uses the equations of motion



[image: there is no content]



(A41)






[image: there is no content]



(A42)






[image: there is no content]



(A43)




and then



[image: there is no content]



(A44)




If λ(0) = 0 but λ(t) ≠ 0, one gets



[image: Entropy 16 03173f31]



(A45)




This can be negative, for example if λ(t) = t:



[image: there is no content]



(A46)
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