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Abstract:

 Clustering sets of histograms has become popular thanks to the success of the generic method of bag-of-X used in text categorization and in visual categorization applications. In this paper, we investigate the use of a parametric family of distortion measures, called the α-divergences, for clustering histograms. Since it usually makes sense to deal with symmetric divergences in information retrieval systems, we symmetrize the α-divergences using the concept of mixed divergences. First, we present a novel extension of k-means clustering to mixed divergences. Second, we extend the k-means++ seeding to mixed α-divergences and report a guaranteed probabilistic bound. Finally, we describe a soft clustering technique for mixed α-divergences.
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1. Introduction: Motivation and Background


1.1. Clustering Histograms in the Bag-of-Word Modeling Paradigm

A common task of information retrieval (IR) systems is to classify documents into categories. Given a training set of documents labeled with categories, one asks to classify new incoming documents. Text categorisation [1,2] proceeds by first defining a dictionary of words from a corpus. It then models each document by a word count yielding a word distribution histogram per document (see the University of California, Irvine, UCI, machine learning repository for such data-sets [3]). The importance of the words in the dictionary can be weighted by the term frequency-inverse document frequency [2] (tf-idf) that takes into account both the frequency of the words in a given document, but also of the frequency of the words in all documents: Namely, the tf-idf weight for a given word in a given document is the product of the frequency of that word in the document times the logarithm of the ratio of the number of documents divided by the document frequency of the word [2]. Defining a proper distance between histograms allows one to:


	Classify a new on-line document: We first calculate its word distribution histogram signature and seek for the labeled document, which has the most similar histogram to deduce its category tag.


	Find the initial set of categories: we cluster all document histograms and assign a category per cluster.




This text classification method based on the representation of the bag-of -words (BoWs) has also been instrumental in computer vision for efficient object categorization [4] and recognition in natural images [5]. This paradigm is called bag-of-features [6] (BoFs) in the general case. It first requires one to create a dictionary of “visual words” by quantizing keypoints (e.g., affine invariant descriptors of image patches) of the training database. Quantization is performed using the k-means [7–9] algorithm that partitions n data [image: there is no content] into k pairwise disjoint clusters C1,…, Ck, where each data element belongs to the closest cluster center (i.e., the cluster prototype). From a given initialization, batched k-means first assigns data points to their closest centers and then updates the cluster centers and reiterates this process until convergence is met to a local minimum (not necessarily the global minimum) after a provably finite number of steps. Csurka et al. [4] used the squared Euclidean distance for building the visual vocabulary. Depending on the chosen features, other distances have proven useful. For example, the symmetrized Kullback–Leibler (KL) divergence was shown to perform experimentally better than the Euclidean or squared Euclidean distances for a compressed histogram of gradient descriptors [10] (CHoGs), even if it is not a metric distance, since its fails to satisfy the triangular inequality. To summarize, k-means histogram clustering with respect to the symmetrized KL (called Jeffreys divergence J) can be used to quantize both visual words and document categories. Nowadays, the seminal bag-of-word method has been generalized fruitfully to various settings using the generic bag-of-X paradigm, like the bag-of-textons [6], the bag-of-readers [11], etc. Bag-of-X represents each data (e.g., document, image, etc.) as an histogram of codeword count indices. Furthermore, the semantic space [12] paradigm has been recently explored to overcome two drawbacks of the bag-of-X paradigms: the high-dimensionality of the histograms (number of bins) and difficult human interpretation of the codewords due to the lack of semantic information. In semantic space, modeling relies on semantic multinomials that are discrete frequency histograms; see [12].

In summary, clustering histograms with respect to symmetric distances (like the symmetrized KL divergence) is playing an increasing role. It turns out that the symmetrized KL divergence belongs to a 1-parameter family of divergences, called symmetrized α-divergences, or Jeffreys α-divergence [13].



1.2. Contributions

Since divergences D(p : q) are usually asymmetric distortion measures between two objects p and q, one has to often consider two kinds of centroids obtained by carrying the minimization process either on the left argument or on the right argument of the divergences; see [14]. In theory, it is enough to consider only one type of centroid, say the right centroid, since the left centroid with respect to a divergence D(p : q) is equivalent to the right centroid with respect to the mirror divergence D′(p : q) = D(q : p). In this paper, we consider mixed divergences [15] that allow one to handle in a unified way the arithmetic symmetrization [image: there is no content] of a given divergence D(p : q) with both the sided divergences: D(p : q) and its mirror divergence D′(p : q). The mixed α-divergence is the mixed divergence obtained for the α-divergence. We term α-clustering the clustering with respect to α-divergences and mixed α-clustering the clustering w.r.t. mixed α-divergences [16]. Our main contributions are to extend the celebrated batched k-means [7–9] algorithm to mixed divergences by associating two dual centroids per cluster and to generalize the probabilistically guaranteed good seeding of k-means++ [17] to mixed α-divergences. The mixed α-seedings provide guaranteed probabilistic clustering bounds by picking up seeds from the data and do not require explicitly computing of centroids. Therefore, it follows a fast clustering technique in practice, even when cluster centers are not available in closed form. We also consider clustering histograms by explicitly building the symmetrized α-centroids and end up with a variational k-means when the centroids are not available in closed-form, Finally, we investigate soft mixed α-clustering and discuss topics related to α-clustering. Note that clustering with respect to non-symmetrized α-divergences has been recently investigated independently in [18] and proven useful in several applications.



1.3. Outline of the Paper

The paper is organized as follows: Section 2 introduces the notion of mixed divergences, presents an extension of k-means to mixed divergences and recalls some properties of α-divergences. Section 3 describes the α-seeding techniques and reports a probabilistically-guaranteed bound on the clustering quality. Section 4 investigates the various sided/symmetrized/mixed calculations of the α-centroids. Section 5 presents the soft α-clustering with respect to α-mixed divergences. Finally, Section 6 summarises the contributions, discusses related topics and hints at further perspectives. The paper is followed by two appendices. Appendix B studies several properties of α-divergences that are used to derive the guaranteed probabilistic performance of the α-seeding. Appendix C proves that α-sided centroids are quasi-arithmetic means for the power generator functions.




2. Mixed Centroid-Based k-Means Clustering


2.1. Divergences, Centroids and k-Means

Consider a set [image: there is no content] of n histograms h1,…, hn, each with d bins, with all positive real-valued bins: [image: there is no content], ∀1 ≤ i ≤ d, 1 ≤ j ≤ n. A histogram h is called a frequency histogram when its bins sums up to one: [image: there is no content]. Otherwise, it is called a positive histogram that can eventually be normalized to a frequency histogram:



[image: there is no content]



(1)




The frequency histograms belong to the (d-1)-dimensional open probability simplex Δd:



Δd≐{(x1,…,xd)∈ℝd|∀i,xi>0,and∑i=1dxi=1}.



(2)




That is, although frequency histograms have d bins, the constraint that those bin values should sum up to one yields d-1 degrees of freedom. In probability theory, the frequency or counting of histograms either model discrete multinomial probabilities or discrete positive measures (also called positive arrays [19]).

The celebrated k-means clustering [8,9] is one of the most famous clustering techniques that has been generalized in many ways [20,21]. In information geometry [22], a divergence D(p : q) is a smooth C3 differentiable dissimilarity measure that is not necessarily symmetric (D(p : q) ≠ D(q : p), hence the notation “:” instead of the classical “,” reserved for metric distances), but is non-negative and satisfies the separability property: D(p : q) = 0 iff p = q. More precisely, let [image: there is no content], [image: there is no content]. Then, we require ∂iD(x : x) = ∂,iD(x : x) = 0 and −∂i∂,jD(x : y) positive definite for defining a divergence. For a distance function D(· : ·), we denote by D(x:[image: there is no content]) the weighted average distance of x to a set a weighted histograms:



D(x:[image: there is no content])≐∑j=1nwiD(x:hj).



(3)




An important class of divergences on frequency histograms is the f-divergences [23–25] defined for a convex generator f (with f′(1) = f′(1) = 0 and f″(1) = 1):



[image: there is no content]








Those divergences preserve information monotonicity [19] under any arbitrary transition probability (Markov morphisms). f-divergences can be extended to positive arrays [19].

The k-means algorithm on a set of weighted histograms can be tailored to any divergence as follows: First, we initialize the k cluster centers C = {c1,…, ck} (say, by picking up randomly arbitrary distinct seeds). Then, we iteratively repeat until convergence the following two steps:


	Assignment: Assign each histogram hj to its closest cluster center:



[image: there is no content]








This yields a partition of the histogram set [image: there is no content]=∪l=1k[image: there is no content]l, where Al denotes the set of histograms of the l-th cluster: [image: there is no content].


	Center relocation: Update the cluster centers by taking their centroids:



[image: there is no content]








Throughout this paper, centroid shall be understood in the broader sense of a barycenter when weights are non-uniform.






2.2. Mixed Divergences and Mixed k-Means Clustering

Since divergences are potentially asymmetric, we can define two-sided k-means or always consider a right-sided k-means, but then define another sided divergence D′(p : q) = D(q : p). We can also consider the symmetrized k-means with respect to the symmetrized divergence: S(p, q) = D(p : q) + D(q : p). Eventually, we may skew the symmetrization with a parameter λ ∈ [0, 1]: Sλ(p, q) = λD(p : q) + (1 − λ)D(q : p) (and consider other averaging schemes instead of the arithmetic mean).

In order to handle those sided and symmetrized k-means under the same framework, let us introduce the notion of mixed divergences [15] as follows:

Definition 1 (Mixed divergence).



[image: there is no content]



(4)




for λ ∈ [0, 1].

A mixed divergence includes the sided divergences for λ ∈ {0, 1} and the symmetrized (arithmetic mean) divergence for [image: there is no content].

We generalize k-means clustering to mixed k-means clustering [15] by considering two centers per cluster (for the special cases of λ = 0, 1, it is enough to consider only one). Algorithm 1 sketches the generic mixed k-means algorithm. Note that a simple initialization consists of choosing randomly the k distinct seeds from the dataset with li = ri.

Algorithm 1:. Mixed divergence-based k-means clustering.


	[image: Entropy 16 03273f29]








Notice that the mixed k-means clustering is different from the k-means clustering with respect to the symmetrized divergences Sλ that considers only one centroid per cluster.



2.3. Sided, Symmetrized and Mixed α-Divergences

For α ≠ ±1, we define the family of α-divergences [26] on positive arrays [27] as:



Dα(p:q)≐∑i=1d41−α2(1−α2pi+1+α2qi−(pi)1−α2(qi)1+α2),=D−α(q:p),α∈ℝ\{0,1},



(5)




with the limit cases D−1(p : q) = KL(p : q) and D1(p : q) = KL(q : p), where KL is the extended Kullback–Leibler divergence:



[image: there is no content]



(6)




Divergence D0 is the squared Hellinger symmetric distance (scaled by a multiplicative factor of four) extended to positive arrays:



[image: there is no content]



(7)




with the Hellinger distance:



[image: there is no content]



(8)




Note that α-divergences are defined for the full range of α values: α ∈ ℝ. Observe that α-divergences of Equation (5) are homogeneous of degree one: Dα(λp : λq) = λDα(p : q) for λ > 0.

When histograms p and q are both frequency histograms, we have:



Dα([image: there is no content]:[image: there is no content])=41−α2(1−∑i=1d([image: there is no content]i)1−α2([image: there is no content]i)1+α2),=D−α([image: there is no content]:[image: there is no content]),α∈ℝ\{0,1},



(9)




and the extended Kullback–Leibler divergence reduces to the traditional Kullback–Leibler divergence: [image: there is no content].

The Kullback–Leibler divergence between frequency histograms [image: there is no content] and [image: there is no content] (α = ±1) is interpreted as the cross-entropy minus the Shannon entropy:



KL([image: there is no content]:[image: there is no content])≐H×([image: there is no content]:[image: there is no content])−H([image: there is no content]).








Often, [image: there is no content] denotes the true model (hidden by nature), and [image: there is no content] is the estimated model from observations. However, in information retrieval, both [image: there is no content] and [image: there is no content] play the same symmetrical role, and we prefer to deal with a symmetric divergence.

The Pearson and Neyman χ2 distances are obtained for α = −3 and α = 3, respectively:



D3([image: there is no content]:[image: there is no content])=12∑i([image: there is no content]i−[image: there is no content]i)2[image: there is no content]i,



(10)






D−3([image: there is no content]:[image: there is no content])=12∑i([image: there is no content]i−[image: there is no content]i)2[image: there is no content]i.



(11)




The α-divergences belong to the class of Csiszár f-divergences with the following generator:



f(t)={41−α2(1−t(1+α)/2),ifα≠±1,tlnt,ifα=1,−lnt,ifα=−1



(12)




Remark 1. Historically, the α-divergences have been introduced by Chernoff [28,29] in the context of hypothesis testing. In Bayesian binary hypothesis testing, we are asked to decide whether an observation belongs to one class or the other class, based on prior w1and w2and class-conditional probabilities p1and p2. The average expected error of the best decision maximum a posteriori (MAP) rule is called the probability of error, denoted by Pe. When prior probabilities are identical[image: there is no content], we have[image: there is no content]. Let S(p, q) = ∫ min(p(x), q(x))dx denote the intersection similarity measure, with 0 < S ≤ 1 (generalizing the histogram intersection distance often used in computer vision [30]). S is bounded by the α-Chernoff affinity coefficient:



[image: there is no content]








for all β ∈ [0, 1]. We can convert the affinity coefficient 0 < Cβ ≤ 1 into a divergence Dβ by simply taking Dβ = 1 − Cβ. Since the absolute value of divergences does not matter, we can rescale appropriately the divergence. One nice rescaling is by multiplying by[image: there is no content]. This lets coincide the parameterized divergence with the fundamental Kullback–Leibler divergence for the limit values β ∈ {0, 1}. Last, by choosing[image: there is no content], it yields the well-known expression of the α-divergences.

Interestingly, the α-divergences can be interpreted as a generalized α-Kullback–Leibler divergence [26] with deformed logarithms.

Next, we introduce the mixed α-divergence of a histogram x to two histograms p and q as follows:

Definition 2 (Mixed α-divergence). The mixed α-divergence of a histogram x to two histograms p and q is defined by:



Mλ,α(p:x:q)=λDα(p:x)+(1−λ)Dα(x:q),=λD−α(x:p)+(1−λ)D−α(q:x),=M1−λ,−α(q:x:p),



(13)




The α-Jeffreys symmetrized divergence is obtained for [image: there is no content]:



[image: there is no content]








The skew symmetrized α-divergence is defined by:



[image: there is no content]










2.4. Notations and Hard/Soft Clusterings

Throughout the paper, superscript index i denotes the histogram bin numbers and subscript index j the histogram numbers. Index l is used to iterate on the clusters. The left-sided, right-sided and symmetrized histogram positive and frequency α-centroids are denoted by lα, rα, sα and [image: there is no content], respectively.

In this paper, we investigate the following kinds of clusterings for sets of histograms:

Hard clustering. Each histogram belongs to exactly one cluster:


	k-means with respect to mixed divergences Mλ,α.


	k-means with respect to symmetrized divergences Sλ,α.


	Randomized seeding for mixed/symmetrized k-means by extending k-means++ with guaranteed probabilistic bounds for α-divergences.




Soft clustering. Each histogram belongs to all clusters according to some weight distribution: the soft mixed α-clustering.




3. Coupled k-Means++ α-Seeding

It is well-known that the Lloyd k-means clustering algorithm monotonically decreases the loss function and stops after a finite number of iterations into a local optimal. Optimizing globally the k-means loss is NP-hard [17] when d > 1 and k > 1. In practice, the performance of the k-means algorithm heavily relies on the initialization. A breakthrough was obtained by the k-means++ seeding [17], which guarantees in expectation a good starting partition. We extend this scheme to the coupled α-clustering. However, we point out that although k-means++ prove popular and are often used in practice with very good results; it has been recently pointed out that “worst case” configurations exist and even in small dimensions, on which the algorithm cannot beat significantly its expected approximability with a high probability [31]. Still, the expected approximability ratio, roughly in O(log(k)), is very good, as long as the number of clusters is not too large.

Algorithm 2 provides our adaptation of k-means++ seeding [15,17]. It works for all three of our sided/symmetrized and mixed clustering settings:

Algorithm 2:. Mixed α-seeding; MAS([image: there is no content],k,λ,α)


	[image: Entropy 16 03273f30]









	Pick λ = 1 for the left-sided centroid initialization,


	Pick λ = 0 for the right-sided centroid initialization (a left-sided initialization for −α),


	with arbitrary λ, for the λ-Jα (skew Jeffreys) centroids or mixed λ centroids. Indeed, the initialization is the same (see the MAS procedure in Algorithm 2).




Our proof follows and generalizes the proof described for the case of mixed Bregman seeding [15] (Lemma 2). In fact, our proof is more precise, as it quantifies the expected potential with respect to the optimum only, whereas in [15], the optimal potential is averaged with a dual optimal potential, which depends on the optimal centers, but may be larger than the optimum sought.

Theorem 1. Let Cλ,α denote for short the cost function related to the clustering type chosen (left-, right-, skew Jeffreys or mixed) in MASand[image: there is no content]denote the optimal related clustering in k clusters, for λ ∈ [0, 1] and α ∈ (−1, 1). Then, on average, with respect to distribution (14), the initial clustering of MAS satisfies:



[image: Entropy 16 03273f2]



(15)




Here [image: there is no content], g(k) = 2(2 + log k), [image: there is no content], [image: there is no content]; the min is defined on strictly positive coordinates, and π denotes distribution of Algorithm 2.

Remark 2. The bound is particularly good when λ is close to 1/2, and in particular for the α-Jeffreys clustering, as in these cases, the only additional penalty compared to the Euclidean case [17] is h2(α), a penalty that relies on an optimal triangle inequality for α-divergences that we provide in Lemma 8 below.

Remark 3. This guaranteed initialization is particularly useful for α-Jeffreys clustering, as there is no closed form solution for the centroids (except when α = ±1, see [32]).

Algorithm 3 presents the general hard mixed k-means clustering, which can be adapted also to left- (λ = 1) and right- (λ = 0) α-clustering.

Algorithm 3:. Mixed α-hard clustering: MAhC([image: there is no content],k,λ,α)


	[image: Entropy 16 03273f31]








For skew Jeffreys centers, since the centroids are not available in closed form [32], we adopt a variational approach of k-means by updating iteratively the centroid in each cluster (thus improving the overall loss function without computing the optimal centroids that would eventually require infinitely many iterations).



4. Sided, Symmetrized and Mixed α-Centroids

The k-means clustering requires assigning data elements to their closest cluster center and then updating those cluster centers by taking their centroids. This section investigates the centroid computations for the sided, symmetrized and mixed α-divergences.

Note that the mixed α-seeding presented in Section 3 does not require computing centroids and, yet, guarantees probabilistically a good clustering partition.

Since mixed α-divergences are f-divergences, we start with the generic f-centroids.


4.1. Csiszár f-Centroids

The centroids induced by f-divergences of a set of positive measures (that relaxes the normalisation constraint) have been studied by Ben-Tal et al. [33]. Those entropic centroids are shown to be unique, since f-divergences are convex statistical distances in both arguments. Let Ef denote the energy to minimize when considering f-divergences:



Ef≐minx∈XIf([image: there is no content]:x)=∑j=1nwjIf(hj:x),



(16)






[image: there is no content]



(17)




When the domain is the open probability simplex [image: there is no content], we get a constrained optimisation problem to solve. We transform this constrained minimisation problem (i.e., x ∈ Δd) into an equivalent unconstrained minimisation problem by using the Lagrange multiplier, γ:



[image: there is no content]



(18)




Taking the derivatives according to xi, we get:



[image: there is no content]



(19)




We now consider this equation for α-divergences and symmetrized α-divergences, both f-divergences.



4.2. Sided Positive and Frequency α-Centroids

The positive sided α-centroids for a set of weighted histograms were reported in [34] using the representation Bregman divergence. We summarise the results in the following theorem:

Theorem 2 (Sided positive α-centroids [34]). The left-sided lα and right-sided rα positive weighted α-centroid coordinates of a set of n positive histograms h1,…, hn are weighted α-means:



[image: there is no content]








with [image: there is no content]

Furthermore, the frequency-sided α-centroids are simply the normalized-sided α-centroids.

Theorem 3 (Sided frequency α-centroids [16]). The coordinates of the sided frequency α-centroids of a set of n weighted frequency histograms are the normalised weighted α-means.

Table 1 summarizes the results concerning the sided positive and frequency α-centroids.


Table 1. Positive and frequency α-centroids: the frequency α-centroids are normalized positive α-centroids, where w(h) denotes the cumulative sum of the histogram bins. The arithmetic mean is obtained for r−1 = l1 and the geometric mean for r1 = l−1.



	

	
Positive centroid

	
Frequency centroid






	
[image: Entropy 16 03273f28]











4.3. Mixed α-Centroids

The mixed α-centroids for a set of n weighted histograms is defined as the minimizer of:



[image: there is no content]



(20)




We state the theorem generalizing [15]:

Theorem 4. The two mixed α-centroids are the left-sided and right-sided α-centroids.

Figure 1 depicts some clustering result with our α-clustering software. We remark that the clusters found are all approximately subclusters of the “distinct” clusters that appear on the figure. When those distinct clusters are actually the optimal clusters—which is likely to be the case when they are separated by large minimal distance to other clusters—this is clearly a desirable qualitative property as long as the number of experimental clusters is not too large compared to the number of optimal clusters. We remark also that in the experiment displayed, there is no closed form solution for the cluster centers.

Figure 1. Snapshot of the α-clustering software. Here, n = 800 frequency histograms of three bins with k = 8, and α = 0.7 and [image: there is no content].



[image: Entropy 16 03273f1 1024]







4.4. Symmetrized Jeffreys-Type α-Centroids

The Kullback–Leibler divergence can be symmetrized in various ways: Jeffreys divergence, Jensen–Shannon divergence and Chernoff information, just to mention a few. Here, we consider the following symmetrization of α-divergences extending Jeffreys J-divergence:



Sα(p,q)=12(Dα(p:q)+Dα(q:p))=S−α(p,q),=M12(p:q:p),



(21)




For α = ±1, we get half of Jeffreys divergence:



[image: there is no content]








In particular, when p and q are frequency histograms, we have for α ≠ ±1:



Jα([image: there is no content]:[image: there is no content])=81−α2(1+∑i=14dH1−α2([image: there is no content]i:[image: there is no content]i)),



(22)




where [image: there is no content] a symmetric Heinz mean [35,36]:



[image: there is no content]








Heinz means interpolate the arithmetic and geometric means and satisfies the inequality:



[image: there is no content]








(Another interesting property of Heinz means is the integral representation of the logarithmic mean: [image: there is no content]. This allows one to prove easily that [image: there is no content].)

The Jα-divergence is a Csiszár f-divergence [24,25].

Observe that it is enough to consider α ∈ [0, ∞) and that the symmetrized α-divergence for positive and frequency histograms coincide only for α = ±1.

For α = ±1, Sα(p, q) tends to the Jeffreys divergence:



[image: there is no content]



(23)




The Jeffreys divergence writes mathematically the same for frequency histograms:



J([image: there is no content],[image: there is no content])=KL([image: there is no content],[image: there is no content])+KL([image: there is no content],[image: there is no content])=∑i=1d([image: there is no content]i−[image: there is no content]i)(log[image: there is no content]i−log[image: there is no content]i).



(24)




We state the results reported in [32]:

Theorem 5 (Jeffreys positive centroid [32]). The Jeffreys positive centroid c = (c1,…, cd) of a set {h1,…, hn} of n weighted positive histograms with d bins can be calculated component-wise exactly using the Lambert W analytic function:



[image: there is no content]








where[image: there is no content]denotes the coordinate-wise arithmetic weighted means and[image: there is no content]the coordinate-wise geometric weighted means.

The Lambert analytic function W [37] (positive branch) is defined by W (x)eW(x) = x for x ≥ 0.

Theorem 6 (Jeffreys frequency centroid [32]). Let[image: there is no content]denote the Jeffreys frequency centroid and[image: there is no content]′=cwcthe normalised Jeffreys positive centroid. Then, the approximation factorα[image: there is no content]′=S1([image: there is no content]′,[image: there is no content]˜)S1([image: there is no content],[image: there is no content]˜)is such that1≤α[image: there is no content]′≤1wc(with wc ≤ 1)

Therefore, we shall consider α ≠ ±1 in the remainder.

We state the following lemma generalizing the former results in [38] that were tailored to the symmetrized Kullback–Leibler divergence or the symmetrized Bregman divergence [14]:

Lemma 1 (Reduction property). The symmetrized Jα-centroid of a set of n weighted histograms amount to computing the symmetrized α-centroid for the weighted α-mean and −α-mean:



minJα(x,[image: there is no content])=minx(Dα(x:rα)+Dα(lα:x)).








Proof. It follows that the minimization problem minxSα(x,[image: there is no content])=∑j=1nwjSα(x,hj) reduces to the following minimization:



[image: there is no content]



(25)




This is equivalent to minimizing:



[image: Entropy 16 03273f3]








Note that α = ±1, the lemma states that the minimization problem is equivalent to minimizing KL(a : x) + KL(x : g) with respect to x, where a = l1 and g = r1 denote the arithmetic and geometric means, respectively. □

The lemma states that the optimization problem with n weighted histograms is equivalent to the optimization with only two equally weighted histograms.

The positive symmetrized α-centroid is equivalent to computing a representation symmetrized Bregman centroid [14,34].

The frequency symmetrized α-centroid asks to minimize the following problem:



[image: there is no content]








Instead of seeking for [image: there is no content] in the probability simplex, we can optimize on the unconstrained domain ℝd−1 by using a reparameterization. Indeed, frequency histograms belong to the exponential families [39] (multinomials).

Exponential families also include many other continuous distributions, like the Gaussian, Beta or Dirichlet distributions. It turns out the α-divergences can be computed in closed-form for members of the same exponential family:

Lemma 2. The α-divergence for distributions belonging to the same exponential families amounts to computing a divergence on the corresponding natural parameters:



Aα(p:q)=41−α2(1−e−JF(1−α2)(θp:θq)),








where[image: there is no content]is a skewed Jensen divergence defined for the log-normaliser F of the family.

The proof follows from the fact that [image: there is no content]; see [40].

First, we convert a frequency histogram [image: there is no content] to its natural parameter θ with θi=log[image: there is no content]i[image: there is no content]d; see [39].

The log-normaliser is a non-separable convex function [image: there is no content]. To convert back a multinomial to a frequency histogram with d bins, we first set [image: there is no content]d=11+∑l=1d−1eθl and then retrieve the other bin values as [image: there is no content]i=[image: there is no content]deθi.

The centroids with respect to skewed Jensen divergences has been investigated in [13,40].

Remark 4. Note that for the special case of α = 0 (squared Hellinger centroid), the sided and symmetrized centroids coincide. In that case, the coordinates[image: there is no content]of the squared Hellinger centroid are:



[image: there is no content]








Remark 5. The symmetrized positive α-centroids can be solved in special cases (α = ±3, α = ±1 corresponding to the symmetrized χ2and Jeffreys positive centroids). For frequency centroids, when dealing with binary histograms (d = 2), we have only one degree of freedom and can solve the binary frequency centroids. Binary histograms (and mixtures thereof) are used in computer vision and pattern recognition [41].

Remark 6. Since α-divergences are Csiszár f-divergences and f-divergences can always be symmetrized by taking generator[image: there is no content], we deduce that symmetrized α-divergences Sα are f-divergences for the generator:



[image: there is no content]



(26)




Hence, Sα divergences are convex in both arguments, and the sα centroids are unique.




5. Soft Mixed α-Clustering

Algorithm 4 reports the general clustering with soft membership, which can be adapted to left (λinit = 1), right (λinit = 0) or mixed clustering. We have not considered a weighted histogram set in order not load the notations and because the extension is straightforward.

Algorithm 4:. Mixed α-soft clustering; MAsC([image: there is no content],k,λ,α)


	[image: Entropy 16 03273f32]








Again, for skew Jeffreys centers, we shall adopt a variational approach. Notice that the soft clustering approach learns all parameters, including λ (if not constrained to zero or one) and α ∈ ℝ. This is not the case for Matsuyama’s α-expectation maximization (EM) algorithm [42] in which α is fixed beforehand (and, thus, not learned).

Assuming we model the prior for histograms by:



pλ,α,j(hi)∝λexp−Dα(lj:hi)+(1−λ)exp−Dα(hi:ri),



(27)




the negative log-likelihood involves the α-depending quantity:



[image: Entropy 16 03273f4]



(28)




because of the concavity of the logarithm function. Therefore, the maximization step for α involves finding:



[image: there is no content]



(29)




No closed-form solution are known, so we compute the gradient update in Algorithm 4 with:



∂Mλ,α(lj:hi:rj)∂α=λ∂Dα(lj:hi)∂α+(1−λ)∂Dα(hi:ri)∂α,



(30)






[image: Entropy 16 03273f5]



(31)




The update in λ is easier as:



[image: there is no content]



(32)




Maximizing the likelihood in λ would imply choosing λ ∈ {0, 1} (a hard choice for left/right centers), yet we prefer the soft update for the parameter, like for α.



6. Conclusions

The family of α-divergences plays a fundamental role in information geometry: These statistical distortion measures are the canonical divergences of dual spaces on probability distribution manifolds with constant curvature [image: there is no content] and the canonical divergences of dually flat manifolds for positive distribution manifolds [19].

In this work, we have presented three techniques for clustering (positive or frequency) histograms using k-means:


	(1)

	Sided left or right α-centroid k-means,



	(2)

	Symmetrized Jeffreys-type α-centroid (variational) k-means, and



	(3)

	Coupled k-means with respect to mixed α-divergences relying on dual α-centroids.





Sided and mixed dual centroids are always available in closed-forms and are therefore highly attractive from the standpoint of implementation. Symmetrized Jeffreys centroids are in general not available in closed-form and require one to implement a variational k-means by updating incrementally the cluster centroids in order to monotonically decrease the k-means loss function. From the clustering standpoint, this appears not to be a problem when guaranteed expected approximations to the optimal clustering are enough.

Indeed, we also presented and analyzed an extension of k-means++ [17] for seeding those k-means algorithms. The mixed α-seeding initializations do not require one to calculate centroids and behaves like a discrete k-means by picking up the seeds among the data. We reported guaranteed probabilistic clustering bounds. Thus, it yields a fast hard/soft data partitioning technique with respect to mixed or symmetrized α-divergences. Recently, the advantage of clustering using α-divergences by tuning α in applications has been demonstrated in [18]. We thus expect the computationally fast mixed α-seeding with guaranteed performance to be useful in a growing number of applications.
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Appendix


A. Proof Sketch of Theorem 1

We give here the key results allowing one to obtain the proof of the Theorem, following the proof scheme of [15]. In order not to load the notations, weights are considered uniform. The extension to non-uniform weights is immediate as it boils down to duplicate histograms in the histogram set and does not change the approximation result.

Let [image: there is no content]⊆[image: there is no content] be an arbitrary cluster of Copt. Let us define [image: there is no content] and [image: there is no content] as the uniform and biased distributions conditioned to [image: there is no content]. The key to the proof is to relate the expected potential of [image: there is no content] under [image: there is no content] and [image: there is no content] to its contribution to the optimal potential.

Lemma 3. Let[image: there is no content]⊆[image: there is no content]be an arbitrary cluster of Copt. Then:



[image: Entropy 16 03273f6]








where [image: there is no content] is the uniform distribution over [image: there is no content].

Proof. α-coordinates have the property that for any subset [image: there is no content]⊆[image: there is no content], (1/|[image: there is no content]|)∑p∈[image: there is no content]uα(p)=uα(rα,[image: there is no content]). Hence, we have:



[image: Entropy 16 03273f7]



(33)




Because Dα(p : q) = D−α(q : p) and lα = r−α, we obtain:



[image: Entropy 16 03273f8]



(34)




It comes now from (33) and (34) that:



[image: Entropy 16 03273f9]



(35)




This gives the left-hand side equality of the Lemma. The right-hand side follows from the fact that Ec∼U[image: there is no content][Mλ,−α([image: there is no content],c)]=Mopt,1−λ,α([image: there is no content])+Mopt,1−λ,−α([image: there is no content]). □

Instead of Mopt,λ,α([image: there is no content])+Mopt,λ,−α([image: there is no content]), we want a term depending solely on Mopt,λ,α([image: there is no content]) as it is the “true” optimum. We now give two lemmata that shall be useful in obtaining this upper bound. The first is of independent interest, as it shows that any α-divergence is a scaled, squared Hellinger distance between geometric means of points.

Lemma 4. For any p, q and α ≠ 1, there exists r ∈ [p, q], such that (1 − α)2Dα(p : q) = D0(p1−αrα : q1−αrα).

Proof. By the definition of Bregman divergences, for any x, y, there exists some z ∈ [x, y], such that:



[image: Entropy 16 03273f10]








and since uα is continuous and strictly increasing, for any p, q, there exists some r ∈ [p, q], such that:



[image: Entropy 16 03273f11]








Lemma 5. Let discrete random variable x take non-negative values x1, x2,…, xm with uniform probabilities. Then, for any β > −1, we have var(x1+β/uβ) ≤ var(x), with[image: there is no content].

Proof. First, ∀β > −1, remark that for any x, function f(x) = x(uβ − xβ) is increasing for x ≤ u/(1 + β)β. Hence, assuming that the xis are put in non-increasing order without loss of generality, we have f(xi) ≥ f(xj), and so, [image: there is no content], ∀i ≥ j, as long as xi ≤ u/(1 + β)β. Choosing u = x1(1 + β)β yields, after reordering and putting the exponent, [image: there is no content]. Hence:



[image: Entropy 16 03273f12]








Dividing by u2β the leftmost and rightmost terms and using the fact that var(λx) = λ2var(x) yields the statement of the Lemma. □

We are now ready to upper bound Mopt,λ,−α([image: there is no content]) as a function of Mopt,λ,α([image: there is no content]).

Lemma 6. For any cluster[image: there is no content]of Copt,



[image: Entropy 16 03273f13]








where z(α), f(λ) and h(α) are defined in Theorem 1.

Proof. The case λ ≠ 0, 1 is fast, as we have by definition:



[image: Entropy 16 03273f14]








Suppose now that λ = 0 and α ≥ 0. Because Mopt,0,−α([image: there is no content])=∑p∈[image: there is no content]D−α(p:r−α,[image: there is no content])=∑p∈[image: there is no content]Dα(lα,[image: there is no content]:p)=Mopt,1,α([image: there is no content]), what we wish to do is upper bound ∑p∈[image: there is no content]Dα(lα,[image: there is no content]:p)=Mopt,1,α([image: there is no content]) as a function of ∑p∈[image: there is no content]Dα(p:rα,[image: there is no content])=Mopt,0,α([image: there is no content]). We use Lemmatas 4 and 5 in the following derivations, using r(p) to refer to the r in Lemma 4, assuming α ≥ 0. We also note var[image: there is no content](f(p)) as the variance, under the uniform distribution over [image: there is no content], of discrete random variable f(p), for p∈[image: there is no content]. We have:



[image: Entropy 16 03273f15]



(36)




We have used the expression of left centroid lα,[image: there is no content]1+α to simplify the expressions. Now, picking xi=pi1−α2, β = 2α/(1 − α) and u=(1+α1−α)2α1−αmax[image: there is no content]p1−α2 in Lemma 5 yields:



[image: Entropy 16 03273f16]



(37)




Plugging this in (36) yields:



[image: Entropy 16 03273f17]



(38)






[image: Entropy 16 03273f18]



(39)




Here, (38) follows the path backwards of derivations that lead to (36). The cases λ = 1 or α < 0 are obtained using the same chains of derivations and achieve the proof of Lemma 6. □

Lemma 6 can be directly used to refine the bound of Lemma 3 in the uniform distribution. We give the Lemma for the biased distribution, directly integrating the refinement of the bound.

Lemma 7. Let[image: there is no content]be an arbitrary cluster of Coptand C an arbitrary clustering. If we add a random couple (c, c) to C, chosen from[image: there is no content]with π as in Algorithm 2, then:



[image: Entropy 16 03273f19]



(40)




where f(λ) and h(α) are defined in Theorem 1.

Proof. The proof essentially follows the proof of Lemma 3 in [15]. To complete it, we need a triangle inequality involving α-divergences. We give it here.

Lemma 8. For any p, q, r and α, we have:



[image: Entropy 16 03273f20]



(41)




(where the min is over strictly positive values)

Remark: take α = 0; we find the triangle inequality for the squared Hellinger distance.

Proof. Using the proof of Lemma 2 in [15] for Bregman divergence [image: there is no content], we get:



Dφα(x:z)≤ρ(α)(Dφα(x:y)+Dφα(y:z)),



(42)




where:



[image: there is no content]



(43)




Taking x = uα(p), y = uα(q), z = uα(r) yields [image: there is no content] and the statement of Lemma 8. □

The rest of the proof of Lemma 7 follows the proof of Lemma 3 in [15]. □

We get all of the ingredients to our proof, and there remains to use Lemma 4 in [15] to achieve the proof of Theorem 1.



B. Properties of α-Divergences

For positive arrays p and q, the α-divergence Dα(p : q) can be defined as an equivalent representational Bregman divergence [19,34] [image: there is no content] over the (uα, υα)-structure [43] with:



[image: there is no content]



(44)






[image: there is no content]



(45)






[image: there is no content]



(46)




where we assume that α ≠ ±1. Otherwise, for α = ±1, we compute Dα(p : q) by taking the sided Kullback–Leibler divergence extended to positive arrays.

In the proof of Theorem 1, we have used two properties of α-divergences of independent interest:


	any α-divergence can be explained as a scaled squared Hellinger distance between geometric means of its arguments and a point that belong to their segment (Lemma 4);


	any α-divergence satisfies a generalized triangle inequality (Lemma 8). Notice that this Lemma is optimal in the sense that for α = 0, it is possible to recover the triangle inequality of the Hellinger distance.




The following lemma shows how to bound the mixed divergence as a function of an α-divergence.

Lemma 9. For any positive arrays l, h, r and α ≠ ±1, define[image: there is no content], with[image: there is no content]and aηwith[image: there is no content]. Then, we have:



[image: Entropy 16 03273f21]








Proof. For all index i, we have:



[image: Entropy 16 03273f22]



(47)






[image: Entropy 16 03273f23]



(48)




The arithmetic-geometric-harmonic (AGH) inequality implies:



[image: Entropy 16 03273f24]








It follows that (48) yields:



[image: Entropy 16 03273f25]



(49)






[image: Entropy 16 03273f26]



(50)




out of which we get the statement of the Lemma. □



C. Sided α-Centroids

For the sake of completeness, we prove the following theorem:

Theorem 7 (Sided positive α-centroids [34]). The left-sided lα and right-sided rα positive weighted α-centroid coordinates of a set of n positive histograms h1,…, hn are weighted α-means:



[image: there is no content]








with:



[image: there is no content]








Proof. We distinguish three cases: α ≠ ±1, α = −1 and α = 1.

First, consider the general case α ≠ ±1. We have to minimize:



[image: Entropy 16 03273f27]








Removing all additive terms independent of xi and the overall constant multiplicative factor [image: there is no content], we get the following equivalent minimisation problem:



R′α(x,[image: there is no content])=∑i=1d1+α2xi−(xi)1+α2(∑j=1nwj(hji)1−α2),︸[image: there is no content]



(51)




where [image: there is no content] denote the following aggregation term:



[image: there is no content]








Setting coordinate-wise the derivative to zero of Equation (51)(i.e.,∇xR′(x,[image: there is no content])=0), we get:



[image: there is no content]








Thus, we find that the coordinates of the right-sided α-centroids are:



cαi=([image: there is no content])21−α=(∑j=1nwj(hji)1−α2)21−α=h^αi.








We recognise the expression of a quasi-arithmetic mean for the strictly monotonous generator fα(x):



[image: there is no content]



(52)




with:



[image: there is no content]








Therefore, we conclude that the coordinates of the positive α-centroid are the weighted α-means of the histogram coordinates (for α ≠ ±1). Quasi-arithmetic means are also called in the literature quasi-linear means or f-means.

When α = −1, we search for the right-sided extended Kullback–Leibler divergence centroid by minimising:



R−1(x;[image: there is no content]˜)=∑j=1nwj∑i=1dhjiloghjixi+xi−hji.








It is equivalent to minimizing:



R′−1(x;[image: there is no content]˜)=∑i=1dxi−(∑j=1nwjhji)︸alogxi,








where a denotes the arithmetic mean. Solving coordinate-wise, [image: there is no content].

When α = 1, the right-sided reverse extended KL centroid is a left-sided extended KL centroid. The minimisation problem is:



R1(x;[image: there is no content]˜)=∑j=1nwj∑i=1dxilogxihji+hji−xi.








Since ∑jwj = 1, we solve coordinate-wise and find log x = ∑jwj log hj. That is, [image: there is no content] is the geometric mean:



[image: there is no content]








Both the arithmetic mean and the geometric mean are power means in the limit case (and hence quasi-arithmetic means). Thus,



[image: there is no content]



(53)




with:



[image: there is no content]
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