
Entropy 2014, 16, 3655-3669; doi:10.3390/e16073655
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

An Estimation of the Entropy for a Rayleigh Distribution Based
on Doubly-Generalized Type-II Hybrid Censored Samples
Youngseuk Cho, Hokeun Sun and Kyeongjun Lee *

Department of Statistics, Pusan National University, Geumjeong-gu, Busan 609-735, Korea;
E-Mails: choys@pusan.ac.kr (Y.C.); indra_74@naver.com (H.S.)

* Author to whom correspondence should be addressed; E-Mail: xellos74@pusan.ac.kr;
Tel.: +82-51-510-3335.

Received: 13 March 2014; in revised form: 9 June 2014 / Accepted: 26 June 2014 /
Published: 1 July 2014

Abstract: In this paper, based on a doubly generalized Type II censored sample, the
maximum likelihood estimators (MLEs), the approximate MLE and the Bayes estimator for
the entropy of the Rayleigh distribution are derived. We compare the entropy estimators’ root
mean squared error (RMSE), bias and Kullback–Leibler divergence values. The simulation
procedure is repeated 10,000 times for the sample size n = 10, 20, 40 and 100 and various
doubly generalized Type II hybrid censoring schemes. Finally, a real data set has been
analyzed for illustrative purposes.
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1. Introduction

Let Y be a random variable with a continuous distribution function (cdf) G(y) and a probability
density function (pdf) g(y). The differential entropy H(Y ) of the random variable is defined by Cover
and Thomas [1] to be:

H(Y ) = H(f) = −
∫ ∞
−∞

g(y)logg(y)dy.

The cdf and pdf of the random variable Y having the Rayleigh distribution are given by:

G(y;σ) = 1− exp

(
− y2

2σ2

)
, y > 0, σ > 0, (1)
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and:

g(y;σ) =
x

σ2
exp

(
− y2

2σ2

)
, y > 0, σ > 0. (2)

Let Z = Y/σ; then Z has a standard form of the Rayleigh distribution with the cdf written as:

F (z) = 1− exp

(
−z

2

2

)
,

f(z) = z(1− F (z)). (3)

For the pdf (2), the entropy simplifies to:

H(f) = 1 + log

(
σ√
2

)
+
γ

2
, (4)

where γ is the Euler–Mascheroni constant.
The estimation of the parameters of the censored samples has been investigated by many authors,

such as Harter and Moore [2], Dyer and Whisenand [3], Balakrishnan [4], Fernández [5] and Kim and
Han [6]. Hater and Moore [2] derived an explicit form of the maximum likelihood estimators (MLEs) of
the scale parameter σ based on Type II censored data. Dyer and Whisenand [3] considered the best linear
unbiased estimator of σ based on Type II censored data. Balakrishnan [4] considered an approximate
MLE of σ based on the doubly generalized Type II censored data. Fernández [5] considered a Bayes
estimation of σ based on the doubly-generalized Type II censored data. Recently, Kim and Han [6]
considered a Bayes estimation of σ based on the multiply Type II censored data.

In this paper, we derive the estimators for the entropy function of the Rayleigh distribution with an
unknown scale parameter under doubly-generalized Type II hybrid censoring. We also compare the
proposed estimators in the sense of the root mean squared error (RMSE) for various censored samples.

The rest of this paper is organized as follows. In Section 2, we introduce a doubly generalized Type
II hybrid censoring scheme. In Section 3, we describe the computation of the entropy function with
MLE and approximate the MLE and Bayes estimator of the unknown scale parameter in the Rayleigh
distribution under doubly generalized Type II hybrid censored samples. A real data set has been analyzed
in Section 4. In Section 5, the description of different estimators that are compared by performing the
Monte Carlo simulation is presented, and Section 6 concludes.

2. Doubly-Generalized Type II Hybrid Censoring Scheme

Consider a life testing experiment in which n units are tested. Epstein [7] introduced a hybrid
censoring scheme in which the test is terminated at a random time T ∗1 = min {Yr:n, T}, where
r ∈ {1, 2, · · · , n}, T ∈ (0,∞) are pre-fixed and Yr:n denote the r-th ordered failure time when the
sample size is n. Next, Childs et al. [8] introduced a Type I hybrid censoring scheme and a Type
II hybrid censoring scheme. The disadvantage of the Type I hybrid censoring scheme is that there is a
possibility that very few failures may occur before time T . However, the Type II hybrid censoring scheme
can guarantee a pre-fixed number of failures. In this case, the termination point is T ∗2 = max {Yr:n, T},
where r ∈ {1, 2, · · · , n} and T ∈ (0,∞) are pre-fixed. Though the Type II hybrid censored scheme
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guarantees a pre-fixed number of failures, it might take a long time to observe r failures. In order to
provide a guarantee in terms of the number of failures observed, as well as the time to complete the test,
Chandrasekar et al. [9] introduced a generalized Type II hybrid censoring scheme.

Figure 1. The doubly generalized Type II hybrid censoring schemes.

Lee et al. [10] introduced a doubly generalized Type II hybrid censoring scheme that can be
described as follows. Fix 1 ≤ r ≤ n and T1, T2, T3 ∈ (0,∞), such that T1 < T2 < T3. If the l-th failure
occurs before time T1, start the experiment at T1; if the l-th failure occurs after time T1, start at Yl:n. If
the r-th failure occurs before time T2, terminate the experiment at T2; if the r-th failure occurs between
T2 and T3, terminate at Yr:n; and in other cases, terminate the test at T3. Therefore, T1 represents the
time at which the researcher starts the observation in the experiment. T2 represents the least time for
which the researcher conducts the experiment. T3 represents the longest time for which the researcher
allows the experiment to continue. For known r, l, T1, T2, T3, we can observe the following six
cases of observations.
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Case I : y1 < · · · < yl:n < · · · < yd1−1:n < T1 < yd1:n < · · · < yr:n < yd3:n < T2 < · · · < yd3+1:n,

if yl:n < T1 and yr:n < T2.

Case II : y1 < · · · < T1 < · · · < yl:n < · · · < yr:n < · · · < yd3:n < T2 < yd3+1:n,
if yl:n > T1 and yr:n < T2.

Case III : y1 < · · · < yl:n < · · · < yd1−1:n < T1 < yd1:n < · · · < T2 < · · · < yr:n,
if yl:n < T1 and yr:n > T2.

Case IV : y1 < · · · < T1 < · · · < yl:n < · · · < T2 < · · · < yr:n,
if yl:n > T1 and yr:n > T2.

Case V : y1 < · · · < yl:n < · · · < yd1−1:n < T1 < yd1:n < · · · < yd2:n < T3 < yd2+1 < · · · < yr:n,
if yl:n < T1 and yr:n > T3.

Case VI : y1 < · · · < T1 < · · · < yl:n < · · · < yd2:n < T3 < yd2+1:n < · · · < yr:n,
if yl:n > T1 and yr:n > T3.

Note that, in Case I, Case III and Case V, we do not observe yd1−1:n, but yd1−1:n < T1 < yd1:n means
that the d1-th failure took place after T1, and no failure took place between yd1:n and T1. In Case I and
Case II, we do not observe yd3+1:n, but yd3:n < T2 < yd3+1:n means that the d3-th failure took place before
T2 and no failure took place between yd3:n and T2. In Case V and Case VI, we do not observe yd2+1:n, but
yd2:n < T3 < yd2+1:n means that the d2-th failure took place before T3, and no failure took place between
yd2:n and T3. A doubly-generalized Type II hybrid censoring scheme is presented in Figure 1.

3. Estimation of the Entropy

3.1. Maximum Likelihood Estimators

Assume that the failure times of the units are the Rayleigh distribution with cdf (1) and pdf (2). The
likelihood functions for six different cases are as follows.

Case I

LI(σ) = KI σ
−(d3−d1+1) [F (zT1)]

d1−1 [1− F (zT2)]
n−d3

d3∏
i=d1

f(zi:n),

Case II

LII(σ) = KII σ
−(d3−l+1) [F (zl:n)]l−1 [1− F (zT2)]

n−d3
d3∏
i=l

f(zi:n),

Case III

LIII(σ) = KIII σ
−(r−d1+1) [F (zT1)]

d1−1 [1− F (zr:n)]n−r
r∏

i=d1

f(zi:n),

Case IV

LIV(σ) = KIV σ
−(r−l+1) [F (zl:n)]l−1 [1− F (zr:n)]n−r

r∏
i=l

f(zi:n),
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Case V

LV(σ) = KV σ
−(d2−d1+1) [F (zT1)]

d1−1 [1− F (zT3)]
n−d2

d2∏
i=d1

f(zi:n),

Case VI

LVI(σ) = KVI σ
−(d2−l+1) [F (zl:n)]l−1 [1− F (zT3)]

n−d2
d2∏
i=l

f(zi:n),

where KI = n!/(d1 − 1)!(n − d3)!, KII = n!/(l − 1)!(n − d3)!, KIII = n!/(d1 − 1)!(n − r)!, KIV =

n!/(l− 1)!(n− r)!, KV = n!/(d1 − 1)!(n− d2)!, KVI = n!/(l− 1)!(n− d2)!, zT1 = T1/σ, zT2 = T2/σ,
and zT3 = T3/σ.

Cases I, II, III, IV, V and VI can be combined and be represented as:

L(σ) = Kσ−A [F (zU1)]
D1−1 [1− F (zU2)]

n−D2

D2∏
i=D1

f(zi:n). (5)

Here, U1 = T1, U2 = T2,D1 = d1 and D2 = d3 for Case I, U1 = yl:n, U2 = T2,D1 = l and D2 = d3

for Case II, U1 = T1, U2 = yr:n,D1 = d1 and D2 = r for Case III, U1 = yl:n, U2 = yr:n,D1 = l and
D2 = r for Case IV, U1 = T1, U2 = T3,D1 = d1 and D2 = d2 for Case V and U1 = yl:n, U2 = T3,D1 = l

and D2 = d2 for Case VI. Furthermore, zU1 = U1/σ, zU2 = U2/σ, K = n!/(D1 − 1)!(n − D2)! and
A = D2 −D1 + 1.

From (5), the log-likelihood function can be expressed as:

lnL = −A lnσ + (D1 − 1) lnF (zU1) + (n−D2) ln [1− F (zU2)] +

D2∑
i=D1

lnf (zi:n) . (6)

On differentiating the log-likelihood function (6) with respect to σ and equating to zero, we obtain
the estimating equation:

∂lnL

∂σ
= − 1

σ

[
2A+ (D1 − 1)

f(zU1)

F (zU1)
zU1 − (n−D2)z

2
U2
−

D2∑
i=D1

z2i:n

]
= 0. (7)

Equation (7) can be solved numerically using the Newton–Raphson method, and an estimate of the
entropy function (4) is:

Ĥ = 1 + log

(
σ̂√
2

)
+
γ

2
.

3.2. Approximate Maximum Likelihood Estimators

Because the log-likelihood equations cannot be solved explicitly, it will be desirable to consider
an approximation to the likelihood equations that will provide explicit estimators of σ. We expand
the function f(zU1)zU1/F (zU1) in Taylor series around the points ξ, where ξ = F−1 (p) =

√
−2ln(q),

p = D1/(n+ 1) and q = 1− p.
We can approximate the functions by:

f(zU1)

F (zU1)
zU1 ' α + βzU1 , (8)
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where:

α =
2qlnq

p

(
1 +

2lnq

p

)
, β =

2ξq

p

(
1 +

lnq

p

)
.

By substituting Equation (8) into Equation (7), we obtain:

∂lnL∗

∂σ
= − 1

σ

[
2A+ (D1 − 1)(α + βzU1)− (n−D2)z

2
U2
−

D2∑
i=D1

z2i:n

]
= 0. (9)

From Equation (9), we obtain σ̂ as the solution of the quadratic equation:

Kσ2 +Bσ − C = 0,

where K = 2A+ (D1 − 1)α > 0, B = (D1 − 1)βU1,and C = (n−D2)U
2
2 +

∑D2

i=D1
y2i:n > 0.

Therefore,

σ̂A =
−B +

√
B2 + 4KC

2K
(10)

is the only positive root.
With σ replaced by the σ̂A, in Equation (4), the entropy estimators of the Rayleigh distribution based

on doubly generalized Type II hybrid censored samples are obtained as:

ĤA = 1 + log

(
σ̂A√

2

)
+
γ

2
.

3.3. Bayes Estimation

In the Bayesian estimation, unknown parameters are assumed to behave as random variables with
distributions commonly known as prior probability distributions. In practice, usually, a squared error loss
function is taken in to consideration to produce Bayesian estimates. However, under this loss function,
overestimation and underestimation are equally penalized, which is not a good criterion from a practical
point of view. As an example, in reliability estimation, overestimation is considered to be more serious
than the underestimation. Due to such restrictions various asymmetric loss functions are introduced
in the literature, such as general entropy loss function. These loss functions have been proven useful
for performing Bayesian analysis in different fields of reliability estimation and life testing problems
(Rastogi and Tripathi [11]).

A very well-known symmetric loss function is the squared error loss function, which is defined as

L1

(
d(σ), d̂ (σ)

)
=
(
d̂ (σ)− d (σ)

)2
with d̂ (σ) being an estimate of d (σ). Here, d (σ) denotes some

parametric function of σ. For this situation, the Bayesian estimate, say d̂S (σ), is given by the posterior
mean of d (σ).

One of the most commonly used asymmetric loss function is the general entropy loss given by:

L2

(
d (σ) , d̂ (σ)

)
∝

(
d̂ (σ)

d (σ)

)q

− qlog

(
d̂ (σ)

d (σ)

)
− 1, q 6= 0.

In this case, the Bayes estimate of d (σ) is obtained as:

d̂E (σ) =
(
Eσ
(
σ−q|x

))− 1
q ,

provided the above exception exists.
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3.3.1. Non-Informative Prior

Since σ based on the doubly generalized Type II censored data is a random variable, we consider the
non-informative prior distributions for σ, as:

π1(σ) ∝
(

1

σ

)c
. (11)

By combining (5) with (11), the joint density function of σ and Y is given by:

π1 (σ;Y ) ∝
D1−1∑
j=0

(
D1 − 1

j

)
(−1)jσ−(2A+c)exp

[
−V1 + jU2

1

2σ2

]
,

where V1 = (n−D2)U
2
2 +

∑D2

i=D1
y2i:n.

Further, the posterior density function of σ is given by:

π1(σ|Y ) =
V
A+(c−1)/2
1 σ−(2A+c−1)−1exp

(
− V1

2σ2

) [
1− exp

(
− U2

1

2σ2

)]D1−1

2A+(c−3)/2Γ(A+ (c− 1)/2)
∑D1−1

j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V1

]−A−(c−1)/2 .
Under a squared error loss function, the Bayes estimator of σ is the mean of the posterior density

given by:

σ̃S1 = E1[σ|Y ] =
Γ (A+ (c− 2)/2)

∑D1−1
j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V1

]−A−(c−2)/2
Γ(A+ (c− 1)/2)

∑D1−1
j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V1

]−A−(c−1)/2 (V12
)1/2

. (12)

Similarly, the Bayes estimator of σ for the general entropy loss function is:

σ̃E1 = {E1[σ
−q|x]}−1/q, (13)

where:

E1[σ
−q|x] =

Γ (A+ (c+ q − 1)/2)
∑D1−1

j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V1

]−A−(c+q−1)/2
Γ(A+ (c− 1)/2)

∑D1−1
j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V1

]−A−(c−1)/2 (
2

V1

)q/2
.

With σ replaced by the σ̃S1 and σ̃E1 , in Equation (4), the entropy estimator of the Rayleigh distribution
based on doubly generalized Type II hybrid censored samples are obtained as:

H̃E1 = 1 + log

(
σ̃E1√

2

)
+
γ

2
, H̃S1 = 1 + log

(
σ̃S1√

2

)
+
γ

2
.

3.3.2. Natural Conjugate Prior

Since σ based on the doubly generalized Type II censored data is a random variable, we consider the
natural conjugate family of prior distributions for σ that were used by Fernández [5], as:

π2(σ) ∝
(

1

σ

)2α+1

exp

(
− β

2σ2

)
, σ > 0, (14)
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where shape parameter α > 0 and scale parameter β > 0. This is known as the square root inverted
gamma density. For β = 0, π(σ) reduces to a general class of improper priors. For α = β = 0, π(σ)

reduces to the Jeffreys prior [12].
By combining (5) with (14), the joint density function of σ and Y is given by:

π2 (σ;Y ) ∝
D1−1∑
j=0

(
D1 − 1

j

)
(−1)jσ−(2A+2α+1)exp

[
−V2 + jU2

1

2σ2

]
,

where V2 = β + (n−D2)U
2
2 +

∑D2

i=D1
y2i:n.

Further, the posterior density function of σ is given by:

π2(σ|Y ) =
V A+α
2 σ−2(A+α)−1exp

(
− V2

2σ2

) [
1− exp

(
− U2

1

2σ2

)]D1−1

2A+α−1Γ(A+ α)
∑D1−1

j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V2

]−A−α .
Under squared error loss function, the Bayes estimator of σ is the mean of the posterior density given

by:

σ̃S2 = E2[σ|Y ] =
Γ
(
A+ α− 1

2

)∑D1−1
j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V2

]−A−α+ 1
2

Γ(A+ α)
∑D1−1

j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V2

]−A−α (
V2
2

)1/2

. (15)

Similarly, the Bayes estimator of σ for the general entropy loss function is:

σ̃E2 = {E2[σ
−q|x]}−1/q, (16)

where:

E2[σ
−q|x] =

Γ
(
A+ α + q

2

)∑D1−1
j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V2

]−A−α− q
2

Γ(A+ α)
∑D1−1

j=0

(
D1−1
j

)
(−1)j

[
1 +

jU2
1

V2

]−A−α (
2

V2

)q/2
.

With σ replaced by the σ̃S2 and σ̃E2 , in Equation (4), the entropy estimators of the Rayleigh
distribution based on doubly generalized Type II hybrid censored samples are obtained as:

H̃E2 = 1 + log

(
σ̃E2√

2

)
+
γ

2
, H̃S2 = 1 + log

(
σ̃S2√

2

)
+
γ

2
.

3.3.3. Bayes Estimation Based on the Balanced Loss Function

From a Bayesian perspective, the choice of loss function is an essential part in the estimation and
prediction problems. Recently, a more generalized loss function, called the balanced loss function
(Jozani et al. [13]), of the form:

Lρ,w,δ0(σ, δ) = wρ(δ, δ0) + (1− w)ρ(σ, δ), (17)

obtained, for instance, using the criterion of MLE, and the weight w takes values in [0,1). Here, ρ is
an arbitrary loss function, while δ0 is a chosen a prior ‘target’ estimator of σ. A general development
with regard to Bayesian estimators under Lρ,w,δ0 is given, namely by relating such estimators to Bayesian
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solutions to the unbalanced case, i.e., Lρ,w,δ0 with = 0. Lρ,w,δ0 can be specialized to various choices of
loss function, such as for squared error loss and entropy (Ahmed [14]).

By choosing ρ(σ, δ) = (δ−σ)2, Equation (17) reduces to the balanced squared error loss function, in
the form:

Lw,δ0(σ, δ) = w(δ − δ0)2 + (1− w)(δ − σ)2,

and the corresponding Bayes estimate of the unknown parameter σ is given by:

δw,δ0(y) = wδ0 + (1− w)E(σ|Y ).

By choosing ρ(σ, δ) =
(
σ
δ

)q − qlogσ
δ
− 1; q 6= 0, Equation (17) reduced to the balanced entropy loss

function, in the form:

Lw,δ0(σ, δ) = w

{
δ0
δ
− log

(
δ0
δ

)
− 1

}
+ (1− w)

{(σ
δ

)2
− log

(σ
δ

)
− 1

}
,

and the corresponding Bayes estimate of the unknown parameter σ is given by:

δw,δ0(y) =

{
w

(δ0(x))q
+ (1− w)E

(
1

σq

)}−1/q
.

It is clear that the balanced loss functions are more general, which include the maximum likelihood
estimate and both symmetric and asymmetric Bayes estimates as special cases.

Based on the balanced squared error loss function, given by Equations (12) and (15), the approximate
Bayes estimates of the σ are given, respectively, by:

σ̃BS1 = wσ̂ + (1− w)σ̃S1 , σ̃BS2 = wσ̂ + (1− w)σ̃S2 .

Furthermore, based on the balanced entropy loss function, given by Equations (13) and (16), the
approximate Bayes estimates of the σ are given, respectively, by:

σ̃BE1 = wσ̂ + (1− w)σ̃E1 , σ̃BE2 = wσ̂ + (1− w)σ̃E2 .

With σ replaced by the σ̃BS1 , σ̃BS2 , σ̃BE1 and σ̃BE2 , in Equation (4), the entropy estimators of the
Rayleigh distribution based on doubly generalized Type II hybrid censored samples are obtained as:

H̃BS1 = 1 + log

(
σ̃BS1√

2

)
+
γ

2
, H̃BS2 = 1 + log

(
σ̃BS2√

2

)
+
γ

2
,

H̃BE1 = 1 + log

(
σ̃BE1√

2

)
+
γ

2
, H̃BE2 = 1 + log

(
σ̃BE2√

2

)
+
γ

2
.

4. Illustrative Example

Leiblen and Zelen [15] performed life tests and determined the number of revolutions to failure for
23 ball bearings. The data are doubly generalized Type II hybrid censored data: 23 components were
tested. The observed failure times are as follows:
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0.1788, 0.2852, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848, 0.5186, 0.5196, 0.5412, 0.5556, 0.6780, 0.6864,
0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804, 1.7340.

In this example, we assume that the underlying distribution of this data is the Rayleigh distribution
based on the doubly generalized Type II hybrid censoring scheme. We take Case I (T1=0.32, T2=0.7,
T1=1.2, l=1 and r=17), Case II (T1=0.32, T2=0.7, T1=1.2, l=4 and r=20), Case III (T1=0.32, T2=0.7,
T1=1.2, l=7 and r=23), Case IV (T1=0.64, T2=0.7, T1=1.5, l=1 and r=17), Case V (T1=0.64, T2=0.7,
T1=1.5, l=3 and r=20) and Case VI (T1=0.64, T2=0.7, T1=1.5, l=7 and r=23). For the Bayesian inference,
the prior parameters are chosen (α, β) = (2.0, 2.0) and c = 3. The Bayes estimator based on the natural
conjugate prior and non-informative prior is obtained. Furthermore, the Bayes estimator based on the
balanced loss function with w = 0.3, 0.5 and 0.7 is obtained. Table 1 presents estimation of entropy of
doubly generalized Type II censoring schemes.

Table 1. Estimation of entropy for example.

Complete Case I Case II Case III Case IV Case V Case VI

Ĥ 0.3846 0.3684 0.3479 0.3804 0.3623 0.3404 0.3762
ĤA 0.3846 0.3661 0.3476 0.3804 0.3006 0.2861 0.3312
H̃S1 0.3792 0.3611 0.3416 0.3740 0.3541 0.3335 0.3701
H̃BS1 w = 0.3 0.3808 0.3633 0.3435 0.3759 0.3565 0.3356 0.3719

w = 0.5 0.3819 0.3648 0.3448 0.3772 0.3582 0.3370 0.3732
w = 0.7 0.3830 0.3662 0.3460 0.3785 0.3598 0.3383 0.3744

H̃E1 0.3634 0.3398 0.3234 0.3558 0.3323 0.3150 0.3533
H̃BE1 w = 0.3 0.3697 0.3482 0.3307 0.3630 0.3411 0.3225 0.3600

w = 0.5 0.3739 0.3539 0.3555 0.3679 0.3471 0.3275 0.3646
w = 0.7 0.3782 0.3597 0.3404 0.3729 0.3531 0.3326 0.3692

H̃S2 0.4204 0.4179 0.3935 0.4216 0.4131 0.3875 0.4148
H̃BS2 w = 0.3 0.4098 0.4033 0.3801 0.4094 0.3981 0.3736 0.4034

w = 0.5 0.4027 0.3935 0.3710 0.4012 0.3880 0.3642 0.3957
w = 0.7 0.3955 0.3835 0.3618 0.3929 0.3778 0.3548 0.3880

H̃E2 0.4052 0.3978 0.3762 0.4042 0.3927 0.3699 0.3987
H̃BE2 w = 0.3 0.3989 0.3888 0.3675 0.3969 0.3834 0.3609 0.3919

w = 0.5 0.3948 0.3829 0.3618 0.3922 0.3772 0.3549 0.3873
w = 0.7 0.3907 0.3771 0.3562 0.3874 0.3712 0.3491 0.3829

5. Results and Discussion

To compare the performance of the proposed estimators, we simulated the RMSE, bias and
Kullback–Leibler divergence of all proposed estimators, by employing the Monte Carlo simulation
method. We have used three different doubly generalized Type II hybrid censored sampling schemes,
namely: Scheme I: T1 = 0.3, T1 = 1.7 and T1 = 2.0; Scheme II: T1 = 0.6, T1 = 1.7 and
T1 = 2.0; and Scheme III: T1 = 0.3, T1 = 1.7 and T1 = 2.3. The doubly generalized Type II hybrid
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censored samples are generated from the Rayleigh distribution with σ = 1. Using these samples, the
RMSE, bias and Kullback–Leibler divergence of entropy estimators are simulated by the Monte Carlo
method based on 10,000 runs for the sample size n = 10, 20, 40 and 100. The prior parameters are
chosen (α, β) = (2.0, 2.0) and c = 3. The Bayes estimator based on the natural conjugate prior and
non-informative prior is obtained. Furthermore, the Bayes estimator based on the balanced loss function
with w = 0.3, 0.5 and 0.7 is obtained. The simulation results are presented in Table S1∼Table S10,
respectively.

From Table S1∼Table S10, the following general observations can be made. The RMSEs and
Kullback–Leibler divergence decrease as sample size n increases. For a fixed sample size, the RMSEs
and Kullback–Leibler divergence decrease generally as the number of censored samples decreases. For
fixed sample and censored samples size, the RMSEs and Kullback–Leibler divergence decrease generally
as the times T2 and T3 increases. It is also observed that the left censoring scheme has smaller RMSEs
and Kullback–Leibler divergence than the corresponding estimators for right and doubly generalized
censoring schemes. For Scheme I and the left censoring case, we presented these in Figure 2.

In Table S1, the average RMSEs and biases of the entropy estimator with MLE and approximate MLE
are presented for various choices of n, l, r and censoring schemes. In general, we observed that MLE
and approximate MLE behave quite similarly in terms of RMSE. From Table S2∼Table S3, average
RMSEs and the bias of the entropy estimator with Bayes estimators based on non-informative prior are
presented for various choices of n, l, r and censoring schemes. In general, we observed that entropy
estimator with Bayes estimator under the squared error loss function is superior to the respective entropy
estimator with Bayes estimator under the general entropy loss function in terms of bias and RMSE. For
estimating the entropy, the choice w = 0.7 seems to be a reasonable choice under balanced-square error
loss and balanced-entropy loss function. From Table S4 ∼ Table S5, average RMSEs and the biases of
the entropy estimator with the Bayes estimator based on the natural conjugate prior are presented for
various choices of n, l, r and censoring schemes. In general, we observed that entropy estimator with the
Bayes estimator under the squared error loss function is superior to the respective entropy estimator with
the Bayes estimator under the general entropy loss function in terms of bias and RMSE. For estimating
the entropy, the choice w = 0.3 seems to be a reasonable choice under balanced-square error loss and
the balanced-entropy loss function.

In Table S6, the average Kullback–Leibler divergences of the entropy estimator with MLE and
approximate MLE are presented for various choices of n, l, r and censoring schemes. In general,
we observed that MLE is superior to the respective approximate MLE in terms of Kullback–Leibler
divergence. From Table S7∼Table S8, average Kullback–Leibler divergences of the entropy estimator
with the Bayes estimator based on the non-informative prior are presented for various choices of
n, l, r and censoring schemes. In general, we observed that the entropy estimator with the Bayes
estimator under the squared error loss function is superior to the respective entropy estimator with the
Bayes estimator under the general entropy loss function in terms of Kullback–Leibler divergence. For
estimating the entropy, the choice w = 0.7 seems to be a reasonable choice under balanced square
error loss and the balanced entropy loss function. From Table S9∼Table S10, average Kullback–Leibler
divergences of the entropy estimator with the Bayes estimator based on the natural conjugate prior
are presented for various choices of n, l, r and censoring schemes. In general, we observed that the
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entropy estimator with the Bayes estimator under the squared error loss function is superior to the
respective entropy estimator with the Bayes estimator under the general entropy loss function in terms
of the Kullback–Leibler divergence. For estimating the entropy, the choice w = 0.3 seems to be a
reasonable choice under the balanced-square error loss and the balanced-entropy loss function. Overall,
the Bayes estimator using the squared error loss function based on the natural conjugate prior provide
better estimates compared with other estimates.

Figure 2. The RMSEs of the estimators for Scheme I and left censoring.
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6. Conclusions

In many life testing experiments, the experimenter may not observe the lifetimes of all inspected
units in the life test. Censored data arises in these situations wherein the experimenter does not obtain
complete information for all of the units under study. Different types of censoring arise based on how
the data are collected from the life testing experiment. In order to provide a guarantee in terms of the
number of failures observed, as well as the time to complete the test, Chandrasekar et al. [9] introduced
a generalized Type II hybrid censoring scheme. Lee et al. [10] introduced a doubly generalized Type II
hybrid censoring scheme, which can handle both right-censoring and left-censoring.

In this paper, we discussed entropy estimators for the Rayleigh distribution based on
doubly-generalized Type II hybrid censored samples. The paper derived entropy estimators by using
the MLE, approximate MLE and Bayes estimators of the σ in the Rayleigh distribution based on doubly
generalized Type II hybrid censored samples and compared them in terms of their RMSE, bias and
Kullback–Leibler divergence. Bayesian estimates using the non-informative and natural conjugate prior
are obtained under three types of loss function, and it is observed that the Bayes estimate with respect to
the natural conjugate prior under the squared error loss function works quite well in this case. Although
we focused on the entropy estimate of the Rayleigh distribution in this article, the proposed estimation
can be easily extended to other distributions. Particularly, the Bayes estimation can be applied to any
other distributions. In contrast, an approximate MLE cannot be simply applied to the distributions with
a shape parameter. Estimation on entropy parameters from other distributions is of potential interest in
future research.

Appendix

It is impossible to compute a superior bound for the approximation for the MLE estimator and the
approximate MLE. Thus, we use Monte Carlo simulations to compute a superior bound for various
choices of n, l, r and censoring schemes. The results are presented in the following Table A1.

Table A1. Result of Monte Carlo simulations to compute a superior bound.

Scheme n l r MSE Scheme n l r MSE Scheme n l r MSE
I 10 1 8 0.0017 II 10 1 8 0.0018 III 10 1 8 0.0016

2 9 0.0016 2 9 0.0018 2 9 0.0015
3 10 0.0017 3 10 0.0017 3 10 0.0015
1 6 0.0016 1 6 0.0018 1 6 0.0016
3 8 0.0017 3 8 0.0018 3 8 0.0016
5 10 0.0017 5 10 0.0018 5 10 0.0015

20 1 18 0.0000 20 1 18 0.0000 20 1 18 0.0000
2 19 0.0000 2 19 0.0000 2 19 0.0000
3 20 0.0000 3 20 0.0000 3 20 0.0000
1 16 0.0000 1 16 0.0000 1 16 0.0000
3 18 0.0000 3 18 0.0000 3 18 0.0000
5 20 0.0000 5 20 0.0000 5 20 0.0000
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