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Abstract: Advances in neuroscience have been closely linked to mathematical modeling
beginning with the integrate-and-fire model of Lapicque and proceeding through the
modeling of the action potential by Hodgkin and Huxley to the current era. The fundamental
building block of the central nervous system, the neuron, may be thought of as a dynamic
element that is “excitable”, and can generate a pulse or spike whenever the electrochemical
potential across the cell membrane of the neuron exceeds a threshold. A key application of
nonlinear dynamical systems theory to the neurosciences is to study phenomena of the central
nervous system that exhibit nearly discontinuous transitions between macroscopic states.
A very challenging and clinically important problem exhibiting this phenomenon is the
induction of general anesthesia. In any specific patient, the transition from consciousness to
unconsciousness as the concentration of anesthetic drugs increases is very sharp, resembling
a thermodynamic phase transition. This paper focuses on multistability theory for continuous
and discontinuous dynamical systems having a set of multiple isolated equilibria and/or
a continuum of equilibria. Multistability is the property whereby the solutions of a
dynamical system can alternate between two or more mutually exclusive Lyapunov stable
and convergent equilibrium states under asymptotically slowly changing inputs or system
parameters. In this paper, we extend the theory of multistability to continuous, discontinuous,
and stochastic nonlinear dynamical systems. In particular, Lyapunov-based tests for
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multistability and synchronization of dynamical systems with continuously differentiable
and absolutely continuous flows are established. The results are then applied to excitatory
and inhibitory biological neuronal networks to explain the underlying mechanism of action
for anesthesia and consciousness from a multistable dynamical system perspective, thereby
providing a theoretical foundation for general anesthesia using the network properties of the
brain. Finally, we present some key emergent properties from the fields of thermodynamics
and electromagnetic field theory to qualitatively explain the underlying neuronal mechanisms
of action for anesthesia and consciousness.

Keywords: multistability; semistability; synchronization; biological networks; spiking
neuron models; synaptic drive; discontinuous systems; thermodynamics; free energy;
entropy; consciousness; arrow of time; excitatory and inhibitory neurons; Brownian motion;
Wiener process; general anesthesia

1. Introduction

Advances in neuroscience have been closely linked to mathematical modeling beginning with the
integrate-and-fire model of Lapicque [1] and proceeding through the modeling of the action potential by
Hodgkin and Huxley [2] to the current era of mathematical neuroscience; see [3,4] and the numerous
references therein. Neuroscience has always had models to interpret experimental results from a
high-level complex systems perspective; however, expressing these models with dynamic equations
rather than words fosters precision, completeness, and self-consistency. Nonlinear dynamical system
theory, in particular, can provide a framework for a rigorous description of the behavior of large-scale
networks of neurons. A particularly interesting application of nonlinear dynamical systems theory to
the neurosciences is to study phenomena of the central nervous system that exhibit nearly discontinuous
transitions between macroscopic states. One such example exhibiting this phenomenon is the induction
of general anesthesia [5–9].

The rational, safe, and effective utilization of any drug in the practice of medicine is grounded in
an understanding of the pharmacodynamics of the drug, loosely defined as what the drug does to the
body [10]. A very important measure of the pharmacodynamics of any drug is the drug concentration
parameter EC50, which reflects the drug dose at which the therapeutic effect is achieved in 50% of the
cases. This concept is certainly applicable for the administration of general inhalational anesthetics,
where the potency of the drug is defined by the minimum alveolar concentration (MAC) of the drug
needed to prevent a response to noxious stimuli in 50% of administrations [11].

The MAC concept is intrinsically embedded in a probabilistic framework [10]. It is the concentration
at which the probability of a response to a noxious stimulus is 0.5. Typically the MAC of a particular
anesthetic is determined by administering various doses of the agent to a population of patients and
determining the dose at which there is a 0.5 chance of responding to a noxious stimulus. (Technically,
we identify the concentration in the alveoli, the fundamental functional gas exchange units of the lung, at
which the chance of response is 0.5.) It has been possible, however, to conduct studies of single subjects,
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varying the anesthetic concentration and determining responsiveness. When this has been done, it has
been noted that the transition from responsiveness to non-responsiveness in the individual patient is very
sharp, almost an all-or-none transition [12]. This simply confirms the observations of generations of
clinicians. And this raises the question of how to account for such a transition in terms of the known
molecular properties of the anesthetic agent.

The mechanism of general anesthesia is still under considerable investigation. Theories range from
a nonspecific perturbation of the lipid bilayer membrane of neurons, the cells responsible for the
“information” function of the central nervous system, to the interaction of the anesthetic agent with
specific protein receptors [13]. It is certainly possible that if the mechanism of general anesthesia is the
binding of the anesthetic agent to a specific receptor protein, then the nearly all-or-none transition or
bifurcation from the awake state to the anesthetized state could be explained by a highly cooperative
binding of the anesthetic to the receptor. In fact, it has been common to mathematically model
the probability of responsiveness to drug concentration using the Hill equation, a simplified static
equation originally derived in 1909 to describe the cooperative binding of oxygen to the hemoglobin
molecule [14]. However, an alternative explanation could be sought in the dynamic network properties
of the brain.

The human central nervous system involves a complex large-scale interconnected neural network
involving feedforward and feedback (or recurrent) networks, with the brain serving as the central element
of this network system. The brain is interconnected to receptors that transmit sensory information
to the brain, and in turn the brain delivers action commands to effectors. The neural network of the
brain consists of approximately 1011 neurons (nerve cells) with each having 104 to 105 connections
interconnected through subnetworks or nuclei. The nuclei in turn consist of clusters of neurons each of
which performs a specific and defined function.

The most basic characteristic of the neurons that comprise the central nervous system is the
electrochemical potential gradient across the cell membrane. All cells of the human body maintain
an electrochemical potential gradient between the inside of the cell and the surrounding milieu. Neurons
have the capacity of excitability. If stimulated beyond a threshold, then the neuron will “fire” and produce
a large voltage spike (the action potential) before returning to the resting potential [3,4]. The neurons of
the brain are connected in a complex network in which the firing of one neuron can be the stimulus for
the firing of another neuron.

A major focus of theoretical neuroscience has been describing neuronal behavior in terms of
this electrochemical potential, both at the single neuron level but more ambitiously, at the level of
multi-neuron networks. In this type of analysis the specific properties of the single neuron that are most
relevant are how the spike of a one neuron alters the electrochemical potential of another neuron, and how
this change in the potential results in a neuronal spike. The physical connection between neurons occurs
in the synapse, a small gap between the axon, the extension of the cell body of the transmitting neuron,
and the dendrite, the extension of the receiving neuron. The signal is transmitted by the release of a
neurotransmitter from the axon into the synapse. This neurotransmitter diffuses across the synapse, binds
to a postsynaptic receptor membrane protein on the dendrite, and alters the electrochemical potential of
the receiving neuron.
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It is possible that the anesthetic bifurcation to unconsciousness or the nearly all-or-none characteristic
induction of anesthesia is a type of phase transition of the neural network. This possibility was first
considered by Steyn-Ross et al. (see [15] and the references therein). Their focus was on the mean
voltage of the soma, or cell body, of neurons. Specifically, the authors in [15] show that the biological
change of state to anesthetic unconsciousness is analogous to a thermodynamic phase change involving
a liquid to solid phase transition. For certain ranges of anesthetic concentrations, their first-order model
predicts the existence of multiple steady states for brain activity leading to a transition from normal levels
of cerebral cortical activity to a quiescent, low-firing state.

In this paper, we develope an alternative approach to the possibility of neuronal network phase
transition in terms of neuronal firing rates, using the concept of multistability for dynamical systems.
Multistability is the property whereby the solutions of a dynamical system can alternate between two or
more mutually exclusive Lyapunov stable and convergent states under asymptotically slowly changing
inputs or system parameters. In particular, multistable systems give rise to the existence of multiple
(isolated and/or a continuum of) Lyapunov stable equilibria involving a quasistatic-like behavior between
these multiple semistable steady states [16–18]. Semistability is the property whereby the solutions of
a dynamical system converge to Lyapunov stable equilibrium points determined by the system initial
conditions [19,20].

Multistability is ubiquitous in biological systems ranging from biochemical networks to ecosystems
to gene regulation and cell replication [21–23]. Since molecular studies suggest that one possible
mechanism of action of anesthetics is the inhibition of synaptic transmission in cortical neurons [24,25],
this suggests that general anesthesia is a phenomenon in which different equilibria can be attained
with changing anesthetic agent concentrations. Hence, multistability theory can potentially provide a
theoretical foundation for describing general anesthesia.

Although general anesthesia has been used in the clinical practice of medicine for over 150 years, the
mechanism of action is still not fully understood [13] and is still under considerable investigation [5–9].
Early theories postulated that anesthesia is produced by disturbance of the physical properties of cell
membranes. The work of Meyer and Overton [26,27] demonstrated that for some anesthetics there was
a correlation between anesthetic potency and solubility in fat-like solvents. This led to a theory that
anesthesia resulted from a nonspecific perturbation of the lipid bilayer membrane of neurons [9,28].
Subsequent research then found that membrane proteins performed functions of excitability and this led
to a focus on anesthetic binding and perturbation of hydrophobic regions of membrane proteins [29].
Further research also revealed that some anesthetic gases follow the Meyer-Overton correlation but do
not produce anesthesia and some Meyer-Overton gases are excitatory and can cause seizures [30,31].
These results led to the more common modern focus on the interaction of the anesthetic agent with
specific protein receptors [13].

In particular, there has been extensive investigation of the influence of anesthetic agents on the
binding of neurotransmitters to their postsynaptic receptors [7–9]. A plethora of receptors have been
investigated, including receptors for glycine, serotonin type 2 and 3, N-methyl-d-aspartate (NMDA),
α-2 adrenoreceptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), histamine,
acetylcholine, and γ-aminobutyric acid (GABA). One attractive aspect of this focus on postsynaptic
receptors is it facilitates mathematical analysis on the basis of the effect of receptor binding on the
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postsynaptic potential. This is in marked contrast to the Meyer-Overton hypothesis, which failed to
explicitly detail how a nonspecific perturbation of the lipid membrane would result in the anesthetic state.

In parallel with the investigation of the molecular interactions of general anesthetic agents, there has
also been active investigation of the anatomic pathways involved in the transition from consciousness to
anesthesia [5]. There is compelling evidence that the immobility created by some anesthetics is mediated
at the level of the spinal cord. In contrast, functional imaging and electroencephalograph analysis has
suggested that the site of suppression of consciousness is the thalamus, and thalamocortical tracts may
play a critical role in the suppression of consciousness [9].

Despite these advances in our understanding of the molecular interactions of anesthetic agents and
of specific anatomic loci for the action of anesthetic agents, there has been less development of a
mathematical framework to understand this fascinating and clinically important phenomenon. It is
certainly possible that if the mechanism of general anesthesia is the binding of the anesthetic agent to a
specific receptor protein, then the nearly all-or-none transition from the awake state to the anesthetized
state could be explained by a highly cooperative binding of the anesthetic to the receptor. In fact, as
noted above, it has been common to mathematically model the probability of responsiveness to drug
concentration using the Hill equation [14]. However, to date, no single unifying receptor mediating
general anesthesia has been identified.

Rather, the most likely explanation for the mechanisms of action of anesthetics lies in the network
properties of the brain. It is well established that there are two general types of neurons in the central
nervous system—excitatory and inhibitory—interconnected in a complex dynamic network. The action
potential of a spiking neuron is propagated along the axon to synapses where chemical neurotransmitters
are released that generate a postsynaptic potential on the dendrites of connected neurons. Excitatory
neurons generate a depolarizing postsynaptic potential on the dendrite of the connected neuron and if
the depolarization is of sufficient magnitude, then a spike will be induced in the connected neuron.
In contrast, inhibitory neurons generate a hyperpolarizing postsynaptic potential; an effect that acts to
maintain a quiescent state.

There is considerable evidence that general anesthetics alter postsynaptic potentials [24,25]. An
interesting example of how changes in the postsynaptic potential may be applied to the analysis of
the induction of anesthesia is the view of anesthesia as a phase transition proposed by Steyn-Ross et al.
(see [15] and the references therein). While their analysis was highly informative, in this paper we
use a dynamical system theory framework in terms of neuronal firing rates, using the concepts of
network thermodynamics [32] and multistability, for explaining the mechanisms of action for general
anesthesia. This facilitates a focus on the network properties of the central nervous system. The
firing rate models used for network analysis must have sufficient generality and include parameters
that can account for such relevant physiological changes at the single neuron level. The synaptic drive
firing model, introduced by Ermentrout and his collaborators [4,32], and the system thermodynamic
framework, introduced in [32], is the underlying framework for this paper.

In this paper, the fundamental building block of the central nervous system, the neuron, is represented
as a dynamic element that is “excitable”, and can generate a pulse or spike whenever the electrochemical
potential across the cell membrane of the neuron exceeds a threshold value. More specifically,
a nonlinear discontinuous system framework is developed in Sections 2 and 3 for describing the
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relationship between the synaptic voltage and firing rates of excitatory and inhibitory neural networks.
To establish convergence and semistability for discontinuous dynamical systems we introduce the notion
of nontangency between a discontinuous vector field and a weakly invariant or weakly negatively
invariant subset of level or sublevel sets of Lyapunov functions in Section 5. Specifically, to capture
the notion of nontangency we introduce the direction cone of a discontinuous vector field. Then,
using positive limit sets, restricted prolongations, and nontangency we develop Lyapunov analysis for
convergence and semistability to establish multistability for discontinuous dynamical systems. Here, the
restricted prolongation of a point is a subset of its positive prolongation as defined in [33]. In addition,
using nontangency, we present Lyapunov results for convergence and semistability to develop sufficient
conditions for multistability for discontinuous dynamical systems.

While previous treatments of nontangency-based Lyapunov tests for convergence and semistability
for dynamical systems with continuous vector fields are given in [19], our results involve dynamical
systems with discontinuous vector fields for capturing plasticity (i.e., dynamic network connections) in
our neural network model generating absolutely continuous solutions necessitating stability analysis
via nonsmooth Lyapunov stability theory involving Clarke generalized gradients and set-valued Lie
derivatives. Using the aforementioned dynamical system framework, we apply the results of Sections 4
and 5 to excitatory-inhibitory firing neural models in an attempt to understand the mechanisms of action
of anesthetics. While there is ongoing debate as to whether information is encoded by the firing rates (i.e.,
rate coding) of spiking neurons or by precise timing of single neuron spikes (i.e., temporal coding) [34],
it is evident that firing rates do characterize central nervous system activity. Firing rates are nonnegative
entities and the nonnegativity constraint for neural network activity can be easily incorporated within
nonlinear dynamical system theory using solutions of differential equations and differential inclusions
evolving in cones [35].

There is extensive experimental verification that collections of neurons may function as oscillators
and the synchronization of oscillators may play a key role in the transmission of information within the
central nervous system. This may be particularly relevant to understand the mechanism of action for
general anesthesia. In Section 7, we provide sufficient conditions for global asymptotic and exponential
synchronization for our excitatory and inhibitory cortical neuronal network.

To avoid the complexity of large-scale and high connectivity models of the neural network of the
brain, the scale and connectivity of the network can be simplified using mean field theories. Early mean
field theories assumed that the brain is organized into a limited number of pools of identical spiking
neurons [36]. However, more commonly mean field theories assume that the strength of connection
between neurons is normally distributed around some mean value. Mean field theories can impose
self-consistency on field variables; for example, if postsynaptic potentials are assumed to be a function of
some mean firing rate, then those postsynaptic potentials should lead to a consistent predicted mean firing
rate. The idea of applying mean field theories, drawn from the study of condensed matter, originated
with [37]. Subsequently, Sompolinsky et al. [38] developed a mean field theory for neural networks
analogous to the equations developed for spin glasses with randomly symmetric bonds [39]. The authors
in [40] investigated the stability of system states for a network of integrate-and-fire neurons, whereas the
authors in [41] extended this theoretical model to the analysis of oscillations. Gerstner et al. [42,43]
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subsequently developed a mean field theory using a spike response model and demonstrated that the
integrate-and-fire model was a special case of the spike response model.

In Section 8 of the paper, we extend our results further by demonstrating multistability in the mean
when the coefficients of the neuronal connectivity matrix are random variables. Specifically, we use a
stochastic multiplicative uncertainty model to include modeling of a priori uncertainty in the coefficients
of the neuronal connectivity matrix by means of state-dependent noise. Our stochastic multiplicative
uncertainty model uses state-dependent Gaussian white noise to represent parameter uncertainty by
defining a measure of ignorance, in terms of an information-theoretic entropy, and then determining the
probability distribution which maximizes this measure subjected to agreement with a given model. To
account for time delay and memory effects in inhibitory and excitatory networks, in Sections 9 and 10 we
extend the results of Section 8 to a large-scale excitatory and inhibitory synaptic drive firing rate model
with time-varying delays and stochastic input uncertainty, and global mean-square synchronization of
this model is investigated.

Finally, in Sections 11 and 12 we discuss key emergent properties from the fields of thermodynamics
and electromagnetic field theory for developing plausible mechanisms of action for general anesthesia.
Specifically, in Section 11, we highlight how the supreme law of nature—the second law of
thermodynamics—can be used to arrive at mechanistic models for the anesthetic cascade using the
principle of maximum entropy production and thermodynamics as applied to the human brain. In
Section 12, we use the idea of anesthetics disrupting the inflow of free energy to the brain as
electrical signals that generate electromagnetic fields causing a shielding effect leading to the emergence
of unconsciousness.

2. Biological Neural Networks: A Dynamical Systems Approach

The fundamental building block of the central nervous system, the neuron, can be divided into three
functionally distinct parts, namely, the dendrites, soma (or cell body), and axon (see Figure 1). The
dendrites play the role of input devices that collect signals from other neurons and transmit them to the
soma; whereas the soma generates a signal that is transmitted to other neurons by the axon. The axons
of other neurons connect to the dendrites and soma surfaces by means of connectors called synapses.
The behavior of the neuron is best described in terms of the electrochemical potential gradient across the
cell membrane. If the voltage gradient across the membrane increases to a critical threshold value, then
there is a subsequent abrupt step-like increase in the potential gradient, the action potential. This action
potential is transmitted from the soma along the axon to a dendrite of a receiving neuron. The action
potential elicits the release of neurotransmitter molecules that diffuse to the dendrite of a “receiving”
neuron. This alters the voltage gradient across the receiving neuron.

The electrochemical potential for a neuron can be described by a nonlinear four-state system [32].
Coupling these system equations for each neuron in a large neural population is computationally
prohibitive. To simplify the mathematical modeling, it has been common to use phenomenological firing
rate models for studying neural coding, memory, and network dynamics [4]. Firing rate models involve
the averaged behavior of the spiking rates of groups of neurons rather than tracking the spike rate of
each individual neuron cell. In such population models, the activity of a neuron, that is, the rate at which
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the neuron generates an action potential (i.e., “fires”) is modeled as a function of the voltage (across
the membrane). The “firing” of a neuron evokes voltage changes, postsynaptic potentials on receiving
neurons; that is, neurons electrically connected to the firing neurons via axon-dendrite connections.

Figure 1. Neuron anatomy.
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[36]. Firing rate models involve the averaged behavior of the spiking rates of groups of neurons

In general, neurons are either excitatory or inhibitory depending on whether the postsynaptic potential
increases or decreases the potential of the receiving neuron. In particular, excitatory neurotransmitters
depolarize postsynaptic membranes by increasing membrane potentials and can collectively generate an
action potential. Inhibitory neurotransmitters hyperpolarize the postsynaptic membrane by decreasing
membrane potentials, thereby nullifying the actions of excitatory neurotransmitters and in certain cases
prevent the generation of action potentials.

Biological neural network models predict a voltage in the receiving or postsynaptic neuron given by

vXi (t) =

nE∑
j=1

AXE
ij

∑
k

αE
j (t− tk) +

nI∑
j′=1

AXI
ij′

∑
k′

αI
j′(t− tk′), (1)

where vXi (·), X ∈ {E, I}, i = 1, . . . , nE + nI, is the excitatory (X = E) and inhibitory (X = I) voltage
in the ith receiving neuron, AXY

ij , X,Y ∈ {E, I}, are constants representing the coupling strengths (in
volts) of the jth neuron on the ith neuron, k, k′ = 1, . . . , enumerate the action potential or firings of the
excitatory and inhibitory transmitting (presynaptic) neurons at firing times tk and tk′ , respectively, and
αE
j (·) and αI

j′(·) are dimensionless functions describing the evolution of the excitatory and inhibitory
postsynaptic potentials, respectively. Using a (possibly discontinuous) function fi(·) to represent the
firing rate (in Hz) of the ith neuron and assuming that the firing rate is a function of the voltage vEi (·)
(resp., vIi(·)) across the membrane of the ith neuron given by fi(vEi ) (resp., fi(vIi)), it follows that
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where the neuronal connectivity matrix AXY, with units of volts, contains entries AXY
ij ,X,Y ∈ {E, I},

representing the coupling strength of the jth neuron on the ith neuron such that AXE
ij > 0 and AXI

ij < 0,
X ∈ {E, I}, if the jth neuron is connected (i.e., contributes a postsynaptic potential) to the ith neuron, and
AXY
ij = 0, otherwise. Furthermore, vEthi(·) and vIthi(·) are continuous input voltages characterizing nerve

impulses from sensory (pain) receptors, sensorimotor (temperature sensing) receptors, or proprioceptive
(motion sensing) receptors. Alternatively, vEthi(·) and vIthi(·) can be thought of as inputs from the reticular
activating system within the brainstem responsible for regulating arousal and sleep-wake transitions.
Note that AEE

ii , AII
ii , 0 by definition.

Next, defining the synaptic drive—a dimensionless quantity—of each (excitatory or inhibitory)
neuron by

S
(E,I)
i (t) ,

∫ t

−∞
α
(E,I)
i (t− τ)fi(v

(E,I)
i (τ))dτ, (4)

and assuming an exponential decay of the synaptic voltages of the form ([4,44])
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i e

− t
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i , (5)

where the dimensionless gain B(E,I)
i is equal to BE

i if the ith neuron is excitatory and BI
i if the ith neuron

is inhibitory, and similarly for S(E,I)
i , v(E,I)i , α(E,I)

i , and λ(E,I)i , it follows from Equations (4) and (5) that
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Now, using the expressions for the excitatory and inhibitory voltage given by Equations (2) and (3),
respectively, it follows that

dSE
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λIi
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AIE
ij S

E
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ij′S

I
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)
, i = 1, . . . , nI. (8)

The above analysis reveals that a form for capturing the neuroelectic behavior of biological excitatory
and inhibitory neuronal networks can be written as

dSi(t)

dt
= − 1

τi
Si(t) +Bifi

(
n∑
j=1

AijSj(t) + vthi(t)

)
, Si(0) = Si0, t ≥ 0, i = 1, . . . , n, (9)

where Si(t) ∈ D ⊆ R, t ≥ 0, is the ith synaptic drive, vthi(t) ∈ R, t ≥ 0, denotes the input voltage to the
ith neuron, Aij is a constant representing the coupling strength of the jth neuron on the ith neuron, τi is a
time constant, Bi is a constant gain for the firing rate of the ith neuron, and fi(·) is a nonlinear activation
function describing the relationship between the synaptic drive and the firing rate of the ith neuron.

In this paper, we will explore different activation functions including discontinuous hard-limiter
activation functions, and continuous half-wave rectification, saturation, and sigmoidal functions.
Specifically, for a typical neuron ([3])

fi(x) = [x]+, (10)
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where i ∈ {1, . . . , n} and [x]+ = x if x ≥ 0, and [x]+ = 0, otherwise. Alternatively, we can approximate
fi(x) by the smooth (i.e., infinitely differentiable) half-wave rectification function

fi(x) =
xeγx

1 + eγx
, (11)

where i ∈ {1, . . . , n} and γ � 0. Note that f ′i(x) ≈ 1 for x > 0 and f ′′i (x) ≈ 0, x 6= 0. In addition,
note that Equations (10) and (11) reflect the fact that as the voltage increases across the membrane of the
ith neuron, the firing rate increases as well. Often, the membrane potential-firing rate curve exhibits a
linear characteristic for a given range of voltages. At higher voltages, however, a saturation phenomenon
appears, indicating that the full effect of the firing rate has been reached. To capture this effect, fi(·) can
be modeled as

fi(x) =
fmax(e

γx − 1)

1 + eγx
, (12)

where i ∈ {1, . . . , n}, γ � 0, and fmax = limγ→∞ fi(x) denotes the maximum firing rate.

3. Connections to Mean Field Excitatory and Inhibitory Synaptic Drive Models

The excitatory and inhibitory neural network model given by Equations (7) and (8) can possess
multiple equilibria. For certain values of the model parameters it can be shown that as the inhibitory time
constants λIi, i = 1, . . . , nI, get larger, multiple stable and unstable state equilibria can appear [45]. Since
molecular studies suggest that one possible mechanism of action of anesthetics is the prolongation of the
time constants of inhibitory neurons [24,25], this suggests that general anesthesia is a phenomenon in
which different equilibria can be attained with changing anesthetic agent concentrations. To explore this
multistability phenomenon, in [45,46] we developed a simplified scale and connectivity neural network
model using a mean field theory. As noted in the Introduction, mean field theories assume that the brain
is organized into limited number of pools of identical spiking neurons [36]. However, more commonly,
mean field theories assume that the strength of the connection between neurons is normally distributed
around some mean value.

To see how our general excitatory and inhibitory synaptic drive model given by Equations (7) and (8)
can be reduced to a mean excitatory and mean inhibitory model, consider Equations (7) and (8) with
continuously differentiable fi(·) = f(·),BE

i = BI
i = 1, λEi = λE, and λIi = λI. In this case, Equations (7)

and (8) become

dSE
i (t)

dt
= f

(
nE∑
j=1

AEE
ij S

E
j (t) +

nI∑
k=1

AEI
ikS

I
k(t) + vEthi(t)

)
− 1

λE
SE
i (t), i = 1, . . . , nE, (13)

dSI
i(t)

dt
= f

(
nE∑
j=1

AIE
ij S

E
j (t) +

nI∑
k=1

AII
ikS

I
k(t) + vIthi(t)

)
− 1

λI
SI
i(t), i = 1, . . . , nI, (14)

where f(·) is given by either Equation (11) or Equation (12) andAEE
ii = AII

ii = 0. Next, letAEE
ij = A

EE
+

∆EE
ij , A

EI
ij = A

EI
+ ∆EI

ij , A
IE
ij = A

IE
+ ∆IE

ij , and AII
ij = A

II
+ ∆II

ij, where A
XY
, 1

nXnY

∑nX

i=1

∑nY

j=1A
XY
ij ,

X,Y ∈ {E, I}, denote mean and ∆XY
ij ,X,Y ∈ {E, I}, are deviations from the mean. In this case, it

follows that
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nE∑
i=1

nE∑
j=1

∆EE
ij =

nE∑
i=1
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ij =

nI∑
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∆IE
ij =

nI∑
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∆II
ij = 0. (15)

Using the average and perturbed expression for AXY
ij ,X,Y ∈ {E, I}, Equations (13) and (14) can be

rewritten as

dSE
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dt
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where S
E
(t) , 1

nE

∑nE

j=1 S
E
j (t) and S

I
(t) , 1

nI

∑nI

j=1 S
I
j(t) denote the mean excitatory synaptic drive and

mean inhibitory synaptic drive in dimensionless units, respectively. Now, defining δEi (t) , SE
i (t)−SE

(t)

and δIi(t) , SI
i(t) − S

I
(t), where δEi (t) and δIi(t) are deviations from the mean, Equations (16) and

(17) become
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Next, assume that all terms with a factor ∆XY
ij ,X,Y ∈ {E, I} , i = 1, . . . , nX and j = 1, . . . , nY, in

Equations (18) and (19) are small relative to the remaining terms in f(·). Then, a first-order expansion
of Equations (18) and (19) gives
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Now, assuming that the higher-order terms can be ignored, Equations (20) and (21) become
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Finally, summing Equations (22) and (23) over i = 1, . . . , nE and i = 1, . . . , nI, dividing by nE

and nI, respectively, using Equation (15), and assuming vEth1(t) = vEth2(t) = · · · = vEthnE
(t) = vEth and

vIth1(t) = vIth2(t) = · · · = vIthnI
(t) = vIth , t ≥ 0, it follows that the average excitatory synaptic drive and

the average inhibitory synaptic drive are given by
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λE
S
E
(t), S

E
(0) = S

E

0 , t ≥ 0, (24)
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0. (25)

Equations (24) and (25) represent the spatial average (mean) dynamics of the system given by
Equations (13) and (14), and are predicated on a mean field assumption that reduces the complex
(approximately 1011×1011) neuronal connectivity matrix to a 2×2 excitatory–inhibitory system. This is
a drastic assumption, but one which has been commonly used in theoretical neuroscience going back to
the pioneering work of Wilson and Cowan [36]. Preliminary results using the simplified two-state mean
excitatory and inhibitory synaptic drive model given by Equations (24) and (25) for connecting notions
of general anesthesia to multistability and bifurcations are given in [45,46].

4. Multistability Theory and Discontinuous Spiking Neuron Models

Multistability is the property whereby the solutions of a dynamical system can alternate between two
or more mutually exclusive semistable states under asymptotically slowly changing inputs or system
parameters. In particular, the state of a multistable system converges to Lyapunov stable equilibria that
belong to an equilibrium set that has a multivalued hybrid topological structure consisting of isolated
points and closed sets homeomorphic to intervals on the real line. To develop the notion of multistability,
consider the autonomous differential equation given by

ẋ(t) = f(x(t)), x(0) = x0, a·e· t ≥ 0, (26)

where, for every t ≥ 0, x(t) ∈ D ⊆ Rn, f : Rn → Rn is Lebesgue measurable and locally essentially
bounded [47], that is, f is bounded on a bounded neighborhood of every point x, excluding sets of
measure zero. Furthermore, let Ee , {x ∈ Rn : f(x) = 0} denote the set of equilibria for Equation (26).

Definition 1 ([47,48]) An absolutely continuous function x : [0, τ ] → Rn is said to be a Filippov
solution of Equation (26) on the interval [0, τ ] with initial condition x(0) = x0, if x(t) satisfies

d

dt
x(t) ∈ K[f ](x(t)), a.e. t ∈ [0, τ ], (27)
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where the Filippov set-valued map K[f ] : Rn → 2Rn is defined by

K[f ](x) ,
⋂
δ>0

⋂
µ(S)=0

co {f(Bδ(x)\S)}, x ∈ Rn,

and where Bδ(x) denotes the open ball centered at x with radius δ, 2Rn denotes the collection of all
subsets of Rn, µ(·) denotes the Lebesgue measure in Rn, “co” denotes the convex closure, and

⋂
µ(S)=0

denotes the intersection over all sets S of Lebesgue measure zero [49].

Note that since f is locally essentially bounded, K[f ](·) is upper semicontinuous and has nonempty,
compact, and convex values. Thus, Filippov solutions are limits of solutions to Equation (26) with f
averaged over progressively smaller neighborhoods around the solution point, and hence, allow solutions
to be defined at points where f itself is not defined. Hence, the tangent vector to a Filippov solution, when
it exists, lies in the convex closure of the limiting values of the system vector field f(·) in progressively
smaller neighborhoods around the solution point. Note that K[f ] : Rn → 2Rn is a map that assigns sets
to points.

Dynamical systems of the form given by Equation (27) are called differential inclusions [50] and for
each state x ∈ Rn, they specify a set of possible evolutions rather than a single one. It follows from 1)
of Theorem 1 of [51] that there exists a set Nf ⊂ Rn of measure zero such that, for every setW ⊂ Rn

of measure zero,

K[f ](x) = co
{

lim
i→∞

f(xi) : xi → x, xi 6∈ Nf ∪W
}
, (28)

where {xi}i∈Z+
⊂ Rn converges to x ∈ Rn.

Differential inclusions include piecewise continuous dynamical systems as well as switched
dynamical systems as special cases. For example, if f(·) is piecewise continuous, then Equation (26) can
be represented as a differential inclusion involving the Filippov set-valued map of piecewise continuous
vector fields given by K[f ](x) = co {limi→∞f(xi) : xi → x, xi /∈ Sf}, where Sf has measure zero and
denotes the set of points where f is discontinuous [52]. Similarly, differential inclusions can include, as
a special case, switched dynamical systems of the form

ẋ(t) = fp(x(t)), x(0) = x0, t ≥ 0, (29)

where x(t) ∈ D ⊆ Rn, fp : Rn → Rn is locally Lipschitz continuous, and p ∈ P = {1, . . . , d} is a finite
index set.

To see how the state-dependent switched dynamical system given by Equation (29) can be represented
as a differential inclusion involving Filippov set-valued maps, define the switched system (29) with
a piecewise linear partitioned state space as the triple (D,Q,V), where D = Rn or D is a polytope
in Rn of dimension dim(D) = n, Q = {Dp}p∈P is a piecewise linear partition of D with index
set P , and V = {fp}p∈Pn , and where fp : Up → Rn, Up is an open neighborhood of Dp, and
Pn = {p ∈ P : dim(Dp) = n}. Specifically, ∪dp=1Dp = D ⊆ Rn, where D is a polytope (i.e., the
convex hull of finitely many points, and hence, compact) and Dp, p = 1, . . . , d, is a family of polyhedral
sets in Rn with nonempty interiors. Furthermore, for every i, j ∈ {1, . . . , d}, i 6= j, let Di ∩ Dj = ∅ or
Di ∩Dj is a (n− 1)-dimensional manifold included in the boundaries ∂Di and ∂Dj . Finally, since each
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vector field fi is Lipschitz continuous in the state x, it defines a continuously differentiable flow ψi(t, x)

within every open set Ui ⊃ Di. In particular, each flow ψi(t, x) is well defined on both sides of the
boundary ∂Dj . Thus, in the interior of each operating region Dp, the global dynamics of Equation (29)
is completely described by the local dynamics characterized by a particular vector field fp, and hence,
there exists a unique classical (i.e., continuously differentiable) solution to Equation (29). However, for
a point x ∈ Hp ∩ Dp, where Hp is some supporting hyperplane of Dp, nonuniqueness and nonexistence
of solutions to Equation (29) can occur.

To address the problem of existence and extendability of solutions for Equation (29), let the global
dynamics of Equation (29) be characterized by one of the following differential inclusions

ẋ(t) ∈ F(x(t)) ,


f1(x(t)), x(t) ∈ D1,

f2(x(t)), x(t) ∈ D2,
...

...
fd(x(t)), x(t) ∈ Dd,

x(0) = x0, a.e. t ≥ 0, (30)

ẋ(t) ∈ coF(x(t)). (31)

Note thatF : Rn → 2Rn is nonempty and finite, and hence, compact. Moreover, since each fp : Up → Rn

is continuous, the set-valued map F(·) is upper semicontinuous, that is, for every x ∈ Rn and
neighborhood N of F(x), there exists a neighborhood M of x such that F(M) ⊂ N . However, it
is important to note that F(x) is not convex. Alternatively, F c(x) , coF(x) is convex, and hence,
F c : Rn → 2Rn is an upper semicontinuous set-valued map with nonempty, convex, and compact values.
That is, for every x ∈ D and every ε > 0, there exists δ > 0 such that, for all z ∈ Rn satisfing
‖z − x‖ ≤ δ, F c(z) ⊆ F c(x) + εB1(0). In this case, it can be shown that there exists a Filippov
solution to the differential inclusion given by Equation (30) at all interior points x ∈ D ⊆ Rn [47,53].
In addition, if for each unbounded cell Dp, p ∈ Pn, fp(Dp) is bounded and F c(x) ∩ TxD 6= ∅, x ∈ D,
where TxD denotes the tangent cone toD at x (see Definition 5) [54], then there exists a Filippov solution
x : [0,∞)→ Rn to Equation (30) for every x0 ∈ D ⊆ Rn ([50], p. 180).

Switched dynamical systems are essential in modeling the plasticity of the central nervous system.
In particular, recent neuroimaging findings have shown that the loss of top-down (feedback) processing
in association with anesthetic-induced unconsciousness observed in electroencephalographic (EEG) and
functional magnetic resonance imaging (fMRI) is associated with functional disconnections between
anterior and posterior brain structures [55–57]. These studies show that topological rather than network
connection strength of functional networks correlate with states of consciousness. Hence, changes
in network topology are essential in capturing the mechanism of action for consciousness rather than
network connectivity strength during general anesthesia. Dynamic neural network topologies capturing
link separation or creation, which can be modeled by switched systems and differential inclusions, can
provide a mechanism for the objective selective inhibition of feedback connectivity in association with
anesthetic-induced unconsciousness.

Since the Filippov set-valued map K[f ](x) is upper semicontinuous with nonempty, convex, and
compact values, and K[f ](x) is also locally bounded ([47](p. 85)), it follows that Filippov solutions to
Equation (26) exist ([47](Theorem 1, p. 77)). Recall that the Filippov solution t 7→ x(t) to Equation (26)
is a right maximal solution if it cannot be extended (either uniquely or nonuniquely) forward in time. We
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assume that all right maximal Filippov solutions to Equation (26) exist on [0,∞), and hence, we assume
that Equation (26) is forward complete. Recall that Equation (26) is forward complete if and only if the
Filippov solutions to Equation (26) are uniformly globally sliding time stable ([58](Lemma 1, p. 182)).

We say that a setM is weakly positively invariant (resp., strongly positively invariant) with respect
to Equation (26) if, for every x0 ∈ M, M contains a right maximal solution (resp., all right maximal
solutions) of Equation (26) [48,59]. The setM⊆ Rn is weakly negatively invariant if, for every x ∈M
and t ≥ 0, there exist z ∈ M and a Filippov solution ψ(·) to Equation (26) with ψ(0) = z such that
ψ(t) = x and ψ(τ) ∈ M for all τ ∈ [0, t]. The set M ⊆ Rn is weakly invariant if M is weakly
positively invariant as well as weakly negatively invariant. Finally, an equilibrium point of Equation (26)
is a point xe ∈ Rn such that 0 ∈ K[f ](xe). It is easy to see that xe is an equilibrium point of Equation (26)
if and only if the constant function x(·) = xe is a Filippov solution of Equation (26). We denote the set
of equilibrium points of Equation (26) by E . Since the set-valued map K[f ] is upper semicontinuous, it
follows that E is closed.

To develop Lyapunov theory for nonsmooth dynamical systems of the form given by Equation (26),
we need the notion of generalized derivatives and gradients. In this paper, we focus on Clarke generalized
derivatives and gradients [52,60].

Definition 2 ([48,60]) Let V : Rn → R be a locally Lipschitz continuous function. The Clarke upper
generalized derivative of V (·) at x in the direction of v ∈ Rn is defined by

V o(x, v) , lim sup
y→x,h→0+

V (y + hv)− V (y)

h
. (32)

The Clarke generalized gradient ∂V : Rn → 2R1×n
of V (·) at x is the set

∂V (x) , co
{

lim
i→∞
∇V (xi) : xi → x, xi 6∈ N ∪ S

}
, (33)

where co denotes the convex hull, ∇ denotes the nabla operator, N is the set of measure zero of points
where∇V does not exist, S is any subset of Rn of measure zero, and the increasing unbounded sequence
{xi}i∈Z+

⊂ Rn converges to x ∈ Rn.

Note that Equation (32) always exists. Furthermore, note that it follows from Definition 2 that the
generalized gradient of V at x consists of all convex combinations of all the possible limits of the gradient
at neighboring points where V is differentiable. In addition, note that since V (·) is Lipschitz continuous,
it follows from Rademacher’s theorem ([61](Theorem 6, p. 281)) that the gradient ∇V (·) of V (·) exists
almost everywhere, and hence, ∇V (·) is bounded. Specifically, for every x ∈ Rn, every ε > 0, and
every Lipschitz constant L for V on Bε(x), ∂V (x) ⊆ BL(0). Thus, since for every x ∈ Rn, ∂V (x) is
convex, closed, and bounded, it follows that ∂V (x) is compact.

In order to state the results of this paper, we need some additional notation and definitions. Given a
locally Lipschitz continuous function V : Rn → R, the set-valued Lie derivative LfV : Rn → 2R of V
with respect to f at x [48,62] is defined as

LfV (x) ,
{
a ∈ R : there exists v ∈ K[f ](x) such that pTv = a for all pT ∈ ∂V (x)

}
⊆

⋂
pT∈∂V (x)

pTK[f ](x). (34)



Entropy 2014, 16 3954

If K[f ](x) is convex with compact values, then LfV (x), x ∈ Rn, is a closed and bounded, possibly
empty, interval in R. If V (·) is continuously differentiable at x, then LfV (x) = {∇V (x) · v : v ∈
K[f ](x)}. In the case where LfV (x) is nonempty, we use the notation maxLfV (x) (resp., minLfV (x))
to denote the largest (resp., smallest) element of LfV (x). Furthermore, we adopt the convention
max∅ = −∞. Finally, recall that a function V : Rn → R is regular at x ∈ Rn ([60](Definition 2.3.4))
if, for all v ∈ Rn, the right directional derivative V ′+(x, v) , limh→0+

1
h
[V (x + hv) − V (x)] exists and

V ′+(x, v) = V o(x, v). V is called regular on Rn if it is regular at every x ∈ Rn.
The next definition introduces the notion of semistability for discontinuous dynamical systems. This

stability notion is necessary for systems having a continuum of equilibria. Specifically, since every
neighborhood of a nonisolated equilibrium contains another equilibrium, a nonisolated equilibrium
cannot be asymptotically stable. Hence, asymptotic stability is not the appropriate notion of stability
for systems having a continuum of equilibria. Two notions that are of particular relevant to such
systems are convergence and semistability. Convergence is the property whereby every system solution
converges to a limit point that may depend on the system initial condition (i.e., initial anesthetic
concentrations). Semistability is the additional requirement that all solutions converge to limit points
that are Lyapunov stable. Semistability for an equilibrium thus implies Lyapunov stability, and is implied
by asymptotic stability. Thus, semistability guarantees that small perturbations from the limiting state
of unconsciousness will lead to only small transient excursions from that state of unconsciousness. It is
important to note that semistability is not merely equivalent to asymptotic stability of the set of equilibria.
Indeed, it is possible for a trajectory to converge to the set of equilibria without converging to any one
equilibrium point as examples in [19] show. For further details, see [20].

Definition 3 Let D ⊆ Rn be an open strongly positively invariant set with respect to Equation (26). An
equilibrium point z ∈ D of Equation (26) is Lyapunov stable if, for every ε > 0, there exists δ = δ(ε) > 0

such that, for every initial condition x0 ∈ Bδ(z) and every Filippov solution x(t) with the initial condition
x(0) = x0, x(t) ∈ Bε(z) for all t ≥ 0. An equilibrium point z ∈ D of Equation (26) is semistable if z is
Lyapunov stable and there exists an open subsetD0 ofD containing z such that, for all initial conditions
in D0, the Filippov solutions of Equation (26) converge to a Lyapunov stable equilibrium point. The
system given by Equation (26) is semistable with respect to D if every Filippov solution with initial
condition in D converges to a Lyapunov stable equilibrium. Finally, the system given by Equation (26)
is said to be globally semistable if the system given by Equation (26) is semistable with respect to Rn.

Finally, we introduce the definition of multistability of the dynamical system given by Equation (26).

Definition 4 Consider the nonlinear dynamical system given by Equation (26). We say that the
dynamical system given by Equation (26) is multistable if (i) there exists more than one equilibrium point
of Equation (26) in Rn; (ii) all Filippov solutions to Equation (26) converge to one of these equilibrium
points; and (iii) almost all Filippov solutions to Equations (26) converge to Lyapunov stable equilibria;
that is, the set of initial conditions driving the Filippov solutions of Equation (26) to unstable equilibria
has Lebesgue measure zero.

It is important to note that our definition of multistability is different from the definition given
in [18]. Specifically, pertaining to condition (iii), the definition of multistability given in [18] requires
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that almost all Filippov solutions to Equation (26) converge to asymptotically stable equilibria. This
key difference between the two definitions allows for the dynamical system given by Equation (26) to
possess a continuum of equilibria, rather than merely isolated equilibria. As we see later, if fi is of the
form given by Equation (10), then Equation (9) has a continuum of equilibria under certain conditions,
and hence, Equation (26) is semistable in the sense of (iii) [63]. Hence, in this case, it is appropriate to
use Definition 4 to characterize multistability.

Almost all of the existing results on multistability theory rely on linearization techniques based on the
Hartman-Grobman theorem [64,65] involving the fact that the linearized system has the same topological
property as the original system around a hyperbolic fixed point. When the system fixed point is not
hyperbolic, however, these techniques fail to predict multistability. In this case, checking multistability
becomes a daunting task. Rather than checking the transversality condition for hyperbolicity, we propose
a new approach for guaranteeing multistability using equilibria-independent, semidefinite Lyapunov
function methods. In particular, using the geometric structure of the vector field f for a given
dynamical system, we develop nontangency-based Lyapunov tests for verifying conditions (ii) and (iii)
in Definition 4 involving convergence and Lyapunov stability almost everywhere.

5. Direction Cones, Nontangency, Restricted Prolongations, and Nonsmooth Multistability Theory

To develop multistability theory for discontinuous dynamical systems of the form given by
Equation (26) we use the notions of direction cones, nontangency, and restricted prolongations. In
particular, to show condition (ii) in Definition 4 holds for dynamical systems of the form given by
Equation (26), we adopt the notion of nontangency [19,63] to develop nontangency-based Lyapunov tests
for convergence. Specifically, the authors in [19] develop a general framework for nontangency-based
Lyapunov tests for the convergence of dynamical systems described by ordinary differential equations
with continuous vector fields. In [63], the authors extend some of the results of [19] to nonsmooth
dynamical systems, that is, systems described by ordinary differential equations with the discontinuous
right-hand sides. Since the vector field f characterizing biological neural networks can involve
either continuous (e.g., half-wave rectification functions) or discontinuous (e.g., hard-limiter activation
functions) vector fields, and, more importantly, the fact that anesthetics reconfigure the topological
structure of functional brain networks [55–57] by suppressing midbrain/pontine areas involved with
regulatory arousal leading to a dynamic network topology, we use the more general definition for
nontangency presented in [63].

Intuitively, a vector field is nontangent to a set at a point if the vector field at the point is not contained
in the tangent space to the set at that point. We use this intuitive idea for the case where the vector
field describing the system dynamics is discontinuous and the set is the set of equilibria of the system.
However, this notion presents two key difficulties when the set under consideration is the set of singular
points of the vector field, that is, the set of equilibria of the system. In particular, the vector field at an
equilibrium point is zero, and hence, it is always contained in the tangent space to the set of equilibria. In
this case, in order to capture the notion of nontangency, we introduce the direction cone of a vector field.

Alternatively, the set of equilibria may not be sufficiently regular to possess a tangent space at the
equilibrium point under consideration and may have corners or self-intersections. For example, in firing
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rate population models appearing in neuroscience, the firing rate is a nonnegative quantity representing
the probability of the firing action potential by the neuron and can be interpreted as a measure of the
neuron’s activity. Since the firing rate of the excitatory-inhibitory network is nonnegative, all solutions
of physical interest always take values in the nonnegative orthant Rn

+ of the state space for nonnegative
initial conditions. For such systems, which evolve on possibly closed positively invariant subsets of Rn,
it is natural to consider the nonnegative orthant as their state space. Hence, the dynamical system evolves
on the nonnegative orthant and can have the boundary of the orthant as its set of equilibria. In this case,
the set of equilibria has a corner at the origin. We overcome this difficulty by considering the tangent
cone [66,67], which extends the notion of a tangent space to a nonsmooth setting.

To introduce the notions of direction cone and tangent cone, some notation and definitions are
required. A set E ⊆ Rn is connected if and only if every pair of open sets Ui ⊆ Rn, i = 1, 2, satisfying
E ⊆ U1 ∪ U2 and Ui ∩ E 6= ∅, i = 1, 2, has a nonempty intersection. A connected component of the set
E ⊆ Rn is a connected subset of E that is not properly contained in any connected subset of E . Given a
set E ⊆ Rn, let coco E denote the convex cone generated by E .

Definition 5 Given x ∈ Rn, the direction cone Fx of the vector field f at x is the intersection of closed
convex cones of the form

⋂
µ(S)=0 coco{f(U\S)}, where U ⊆ Rn is an open neighborhood of x and Q

denotes the closure of the set Q. Let E ⊆ Rn. A vector v ∈ Rn is tangent to E at z ∈ E if there exist
a sequence {zi}∞i=1 in E converging to z and a sequence {hi}∞i=1 of positive real numbers converging
to zero such that limi→∞

1
hi

(zi − z) = v. The tangent cone to E at z is the closed cone TzE of all
vectors tangent to E at z. Finally, the vector field f is nontangent to the set E at the point z ∈ E if
TzE ∩ Fz ⊆ {0}.

The notion of nontangency introduced in Definition 5 is different from the well-known notion of
transversality [68]. Transversality between a vector field and a set is possible only at a point in the set
where the vector field is not zero and the set is locally a differentiable submanifold of codimension one.
Alternatively, nontangency is possible even if the vector field is zero and the set is not a differentiable
submanifold of codimension one.

Definition 5 formalizes the notion of nontangency by defining nontangency of a discontinuous vector
field to a set at a point to be the condition that the tangent cone to the set at the point and the direction cone
of the vector field at that point have no nonzero vector in common. Using the notion of nontangency,
in [63] we developed necessary and sufficient conditions for convergence of discontinuous dynamical
systems. Specifically, convergence of system trajectories are guaranteed if and only if the vector field
is nontangent to the positive limit set of the point at some positive limit point. However, this result
cannot be applied directly in practice since it is not generally possible to find the positive limit set of
system solution trajectories. Since nontangency to any outer estimate of the positive limit set implies
nontangency to the positive limit set itself, we use nontangency-based Lyapunov tests for convergence.
In particular, if the vector field f is nontangent to the largest invariant subset of the zero-level set of the
derivative of a Lyapunov function that is nonincreasing along the solutions of Equation (26), then every
bounded solution converges to a limit.

Since the application of the convergence results discussed above depends on verifying the
boundedness of trajectories, the well-known results for boundedness involving proper (that is, radially



Entropy 2014, 16 3957

unbounded in the case where the state space is Rn) Lyapunov functions [69,70] by introducing the notion
of a weakly proper function need to be extended. Specifically, in [63] we consider Lyapunov functions
whose connected components of their sublevel sets are compact. In this case, the existence of a weakly
proper Lyapunov function that is nonincreasing along the system trajectories implies that the trajectories
are bounded.

Using the notion of nontangency we then developed Lyapunov measures for almost everywhere
semistability to arrive at multistability theory for discontinuous dynamical systems [63]. Here,
prolongations [33,71] play a role analogous to that played by positive limit sets in the aforementioned
discussion. In particular, the notion of a restricted prolongation of a point is used to show that an
equilibrium point of Equation (26) is Lyapunov stable if and only if the discontinuous vector field is
nontangent at the equilibrium to its restricted prolongation. The restricted prolongation of a point is a
subset of its positive prolongation [33,71] and is defined as follows.

Definition 6 Given a point x ∈ Rn and a bounded open neighborhood U ⊂ Rn of x, the restricted
prolongation of x with respect to U is the setRUx ⊆ U of all subsequential limits of sequences of the form
{ψi(ti)}∞i=1, where {ti}∞i=1 is a sequence in [0,∞), ψi(·) is a solution to Equation (26) with ψi(0) = xi,
i = 1, 2, . . ., and {xi}∞i=1 is a sequence in U converging to x such that the set {z ∈ Rn : z = ψi(t), t ∈
[0, ti]} is contained in U for every i = 1, 2, . . ..

The utility of prolongations in stability analysis follows from the fact that an equilibrium point
is Lyapunov stable if and only if the positive prolongation of the equilibrium consists only of the
equilibrium point. See, ([71], Proposition 7.3) and ([33](Theorem V.1.12)). For systems with continuous
vector fields this was first shown in [19]. Since the restricted prolongation of a point is a subset
of the positive prolongation of the point, such a result provides a sharper version of the results
([71]( Proposition 7.3)) and ([33](Theorem V.1.12)).

As in the case for positive limit sets discussed above, since it is not generally possible to find the
restricted prolongation of an equilibrium point in practice and since nontangency to any outer estimate
of the restricted prolongation implies nontangency to the restricted prolongation itself, we use outer
estimates of restricted prolongations in terms of connected components of invariant and negatively
invariant subsets of level and sublevel sets of Lyapunov functions and their derivatives. By assuming
nontangency of the vector field to invariant or negatively invariant subsets of the level set of the Lyapunov
function containing the equilibrium we can trap the restricted prolongation and the positive limit set,
respectively, in the level sets of the Lyapunov function and its derivative.

The following theorem establishes sufficient conditions for convergence and Lyapunov stability
almost everywhere for the system given by Equation (26). This result follows from the fact that RUx
is connected and the fact that ifN is composed of isolated equilibria of Equation (26) or f is nontangent
to N at every point in N , then the solution to Equation (26) is convergent. For details of these facts;
see [45]. For the statement of the next result, V̇ denotes the set-valued Lie derivative for the Filippov
solutions to Equation (26) and V −1(0) , {x ∈ Rn : V (x) = 0}.

Theorem 1 ([45]) Assume there exists a locally Lipschitz continuous and regular function V : Rn → R
such that V̇ is defined almost everywhere on Rn and satisfies V̇ (x) ≤ 0 for almost all x ∈ Rn. Let
x ∈ Rn be such that the solution of Equation (26) is bounded and let N denote the largest weakly
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invariant set contained in V̇ −1(0). If either every point inN is Lyapunov stable or f is nontangent toN
at every point in N , then almost all solutions of Equation (26) converge to Lyapunov stable equilibria.

Example 1 Consider the two-class mean excitatory and mean inhibitory synaptic drive network
characterized by a discontinuous vector field for modeling plasticity in the network given by

ṠE(t) = −0.5SE(t) + f1(S
E(t), SI(t)), SE(0) = SE

0 , t ≥ 0, (35)

ṠI(t) = −SI(t) + f2(S
E(t), SI(t)), SI(0) = SI

0, (36)

where SE
0 ≥ 0, SI

0 ≥ 0, and fi(·), i = 1, 2, are given by

f1(S
E, SI) =

[
step

(
SI − SE

)(
SE − 0.5SI

)]
+
, (37)

f2(S
E, SI) =

[
step

(
SI − SE

)(
2SE − SI

)]
+
, (38)

where step(y) = 1 for y ≥ 0 and step(y) = 0, otherwise. For this system, the set of equilibria in R2

+ are
given by E , {(SE, SI) ∈ R2

+ : SE = SI}.
Next, we show that for almost all the initial conditions (SE

0 , S
I
0) ∈ R2

+, the equilibrium set E is
attractive. To see this, consider the function V : R2 → R given by V (SE, SI) = 1

2

[
(SE)2 + (SI)2

]
. Now,

it follows that the set-valued Lie derivative V̇ (SE, SI) satisfies

V̇ (SE, SI) =


{
− 1

2
(SE)2 − (SI)2

}
, SE > SI ≥ 0 orSI > 2SE ≥ 0,{

1
2
(SE − SI)(SE + 4SI)

}
, 0 ≤ SE < SI < 2SE,

co
{
− 1

2
(SE)2 − (SI)2, 1

2
(SE − SI)(SE + 4SI)

}
, otherwise, (SE, SI) ∈ R2

+.

It can be verified that V̇ (SE, SI) ≤ 0 for almost all (SE, SI) ∈ R2

+ and V̇ −1(0) = E .
Next, we show that the vector field f of the system given by Equations (35) and (36) is nontangent to

E . Let (SE, SI) ∈ E and note that it follows from the expression of f that the direction cone F(SE,SI) of
the vector field f at (SE, SI) ∈ E is given by

F(SE,SI) =
{
k[1, 2]T : k ∈ R

}
. (39)

In addition, the tangent cone to E at (SE, SI) ∈ E is given by

T(SE,SI)E =
{
k[1, 1]T : k ∈ R

}
. (40)

Now, it follows from Equations (39) and (40) that T(SE,SI)E ∩ F(SE,SI) = {0}, and hence, for every
(SE, SI) ∈ E , f is nontangent to E at (SE, SI).

Finally, it follows from Theorem 5.1 that almost all solutions of the system converge to Lyapunov
stable equilibria in E , and hence, by definition, the system given by Equations (35) and (36) is
multistable. Figure 2 shows the state trajectories versus time for the initial condition [SE

0 , S
I
0] = [1, 2].

This system is additionally synchronized; a notion that we discuss in Section 7.
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Figure 2. State trajectories versus time for Example 1 with initial condition [SE
0 , S

I
0] = [1, 2].
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6. Multistability of Excitatory-Inhibitory Biological Networks

Having developed multistability theory for discontinuous dynamical systems, in this section we apply
the results of Section 5 to the excitatory-inhibitory neural firing rate model given by Equation (9). The
form of biological neural network models given by Equation (9) represents a wide range of firing rate
population models appearing in neuroscience [3,4]. The firing rate is a nonnegative quantity representing
the probability of the firing action potential by the neuron and can be interpreted as a measure of the
neuron’s activity. Since the firing rate of the excitatory-inhibitory network is nonnegative, all solutions
of physical interest always take values in the nonnegative orthant of the state space for nonnegative
initial conditions. For such systems, which evolve on possibly closed positively invariant subsets of
Rn, it is natural to consider the nonnegative orthant Rn

+ as their state space, and hence, these systems
are nonnegative dynamical systems [35]. In this case, the stability and convergence result developed in
Section 5 holds with respect to Rn

+ by replacing Rn with Rn

+. For related details, see [35].
The following result, which follows from Proposition 2.1 of [35], gives necessary and sufficient

conditions for the firing rates Si(t), i = 1, . . . , n, to remain in the nonnegative orthant of the state space.
For the statement of the next result recall that f is nonnegative [35] if and only if f(x) ≥≥ 0, x ∈ Rn

+,
where “≥≥” denotes a component-wise inequality.

Proposition 1 Consider the excitatory-inhibitory network given by Equation (9). The firing rate vector
S(t) , [S1(t), . . . , Sn(t)]T ∈ Rn remains in the nonnegative orthant of the state space Rn

+ for all t ≥ 0

if and only if, for every Si ≥ 0 and vthi ≥ 0, i = 1, . . . , n, the function f̃ = [f1(
∑n

j=1A1jSj +

vth1), . . . , fn(
∑n

j=1AnjSj + vthn)]T : Rn → Rn is nonnegative.

Consider the excitatory-inhibitory network given by Equation (9) where fi(·) is given by
Equation (10), and note that f̃ : Rn → Rn is nonnegative. Thus, it follows from Proposition 1 that
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if S0 ∈ Rn

+, then S(t) ∈ Rn

+ for all t ≥ 0. Next, assume vthi(t) ≡ 0, so that the vector-matrix form of
Equation (9) can be written as

Ṡ(t) = −LS(t) + f̃(AS(t)), S(0) = S0, t ≥ 0, (41)

where L , diag
[

1
τ1
, . . . , 1

τn

]
∈ Rn×n is a time constant matrix, A , [Aij] ∈ Rn×n is a

matrix representing the strength of the synaptic interconnections, and f̃(S) , [f1(
∑m

j=1A1jSj), . . . ,

fn(
∑m

j=1AnjSj)]
T : Rn → Rn is a vector activation function describing the relationship between the

synaptic drives and the firing rates of the neurons, where S = [S1, . . . , Sn]T and fi(·) is defined in
Equation (10). Finally, assume that the set Ee = {S ∈ Rn

+ : f̃(AS) − LS = 0} ⊂ Rn

+ has a nonzero
element, that is, Ee has a nonzero solution for S ∈ Rn

+. For the statement of the next theorem, N (X)

denotes the nullspace of the matrix X .

Theorem 2 Consider the excitatory-inhibitory network given by Equation (41) with fi(·), i = 1, . . . , n,

given by Equation (10) and S0 ∈ Rn

+. Let Ω1 ≥ 0 and Ω2 ≥≥ 0, where

Ω1 ,
1

2

[
(HL− H̃Ã) + (HL− H̃Ã)T

]
, (42)

Ω2 , (I −H)L+ (H̃ − I)Ã, (43)

H = HT, rankH = n, and H̃ and Ã are n × n matrices whose entries are given by H̃ij = [Hij]+ and
Ãij = [Aij]+, and satisfy (HL− H̃Ã) ≥ 0. Furthermore, assume that every point S ∈ N (Ω1) ∩ Rn

+ is
Lyapunov stable with respect to Equation (41). Then Equation (41) is multistable.

Proof. Consider the function V (S) = 1
2
STHS, S ∈ Rn

+, and note that the derivative of V (S) along the
trajectories of Equation (41) with fi(·), i = 1 . . . , n, given by Equation (10) is given by

V̇ (S) = STH
(
− LS + f̃(AS)

)
= −

n∑
i=1

n∑
j=1

1

τi
HijSiSj +

n∑
i=1

n∑
j=1

HijSj

[
n∑

k=1,k 6=i

AikSk

]
+

, (44)

where [ · ]+ is defined as in Equation (10). Now, since S ∈ Rn

+, [x]+ ≥ 0 and [x+ y]+ ≤ [x]+ + [y]+ for
all x, y ∈ R, it follows that

V̇ (S) ≤ −
n∑
i=1

n∑
j=1

1

τi
HijSiSj +

n∑
i=1

n∑
j=1

[Hij]+Sj

[
n∑

k=1,k 6=i

AikSk

]
+

≤ −
n∑
i=1

n∑
j=1

1

τi
HijSiSj +

n∑
i=1

n∑
j=1

n∑
k=1,k 6=i

[Hij]+[Aik]+SjSk

= −STHLS + STH̃ÃS

= −STΩ1S, S ∈ Rn

+. (45)

Next, sinceH is such that (HL−H̃Ã) ≥ 0, it follows from Equation (45) that V̇ (S) ≤ 0 for all S ∈ Rn

+,
and hence, V̇ −1(0) ⊆ N (Ω1).

Since Ω1 ≥ 0, the dynamical system

ẋ(t) = −(HL− H̃Ã)x(t), x(0) = S0, t ≥ 0, (46)
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where S0 ∈ Rn

+, is Lyapunov stable. Next, for every S ∈ Rn

+, it follows that Ṡ = −LS + f̃(AS) ≤≤
−LS + ÃS. Now, since H is chosen such that all the entries of Ω2 are nonnegative, it follows that

Ṡ ≤≤ −LS + ÃS ≤≤ −LS + ÃS + Ω2S = −(HL− H̃Ã)S, S ∈ Rn

+. (47)

In this case, S(t) ≤≤ x(t), t ≥ 0, where x(t), t ≥ 0, is the solution to Equation (46). In addition, since
S(t) ∈ Rn

+, t ≥ 0, S0 ∈ Rn

+, and Equation (46) is Lyapunov stable, it follows that S(t) ∈ Rn

+ is bounded
for all t ≥ 0.

Finally, letW be the largest weakly invariant set contained in V̇ −1(0) and note that since S(t) ∈ Rn
+,

t ≥ 0,W ⊆ N (Ω1)∩R
n

+. Now, since S ∈ N (Ω1)∩R
n

+ is Lyapunov stable with respect to Equation (41),
it follows from Corollary 4.2 of [45] that all the solutions of the excitatory-inhibitory network given by
Equation (41) converge to one of the Lyapunov stable equilibria in N (Ω1) ∩ Rn

+ for Equation (41) with
S0 ∈ Rn

+. Hence, it follows from Theorem 1 that Equation (41) is multistable. �

Example 2 Consider the excitatory-inhibitory network characterized by the dynamics

Ṡ1(t) = −S1(t) + f1(2S2(t)), S1(0) = S01, t ≥ 0, (48)

Ṡ2(t) = −4S2(t) + f2(2S1(t)), S2(0) = S02, (49)

where S01 ≥ 0, S02 ≥ 0, and, fi(·), i = 1, 2, are defined by Equation (10), and note that Equations (48)
and (49) can be written in the form of Equation (41) with

L =

[
1 0

0 4

]
, A =

[
0 2

2 0

]
.

Let H = I2 and define H̃ and Ã by H̃ij = [Hij]+ and Ãij = [Aij]+ so that

Ω1 =
1

2
((HL− H̃Ã) + (HL− H̃Ã)T) =

[
1 −2

−2 4

]
≥ 0

and

Ω2 = (I −H)L+ (H̃ − I)Ã =

[
0 0

0 0

]
,

which contains nonnegative entries.
Next, it follows from Proposition 1 that S(t) ≥≥ 0, t ≥ 0, for all (S10, S20) ∈ R2

+, and hence,
Equations (48) and (49) collapse to the linear model given by

Ṡ1(t) = −S1(t) + 2S2(t), S1(0) = S01, t ≥ 0, (50)

Ṡ2(t) = −4S2(t) + 2S1(t), S2(0) = S02. (51)

Clearly, the system given by Equations (50) and (51) is Lyapunov stable, and hence, every
S ∈ N (Ω1) ∩ Rn

+ is Lyapunov stable with respect to Equations (48) and (49). Now, it follows from
Theorem 2 that the system given by Equations (48) and (49) is mutistable. For the initial conditions
S01 = 3 and S02 = 1 the trajectories of the state variables with respect to time is shown in Figure 3.
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Figure 3. State trajectories versus time for Example 2.
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7. Synchronization of Biological Neural Networks

Numerous complex large-scale dynamical networks often demonstrate a degree of synchronization.
System synchronization typically involves coordination of events that allows a dynamical system to
operate in unison resulting in system self-organization. The onset of synchronization in populations
of coupled dynamical networks have been studied for various complex networks including network
models for mathematical biology, statistical physics, kinetic theory, bifurcation theory, as well as
plasma physics [72]. Synchronization of firing neural oscillator populations using probabilistic analysis
has also been addressed in the neuroscience literature [73]. One of the most important questions in
neuroscience is how do neurons, or collections of neurons, communicate. In other words, what is the
neural code? There is extensive experimental verification that collections of neurons may function as
oscillators [74–76] and the synchronization of oscillators may play a key role in the transmission of
information within the central nervous system. This may be particularly relevant to understanding the
mechanism of action for general anesthesia [45].

It has been known for a long time that general anesthesia has profound effects on the spectrum of
oscillations in the electroencephalograph [77,78]. More recently, the authors in [79] have suggested that
thalamocortical circuits function as neural pacemakers and that alterations in the thalamic oscillations are
associated with the induction of general anesthesia. Furthermore, it is well known that anesthetic drugs
frequently induce epileptiform activity as part of the progression to the state of unconsciousness [31].

Multiple lines of evidence indicate that anesthetic agents impact neural oscillators. In addition,
epileptiform activity implies synchronization of oscillators. This leads to the possibility that
synchronization of these oscillators is involved in the transition to the anesthetic state. To develop global
synchronization properties for the biological neural network system given by Equation (41) we introduce
the notions of asymptotic synchronization and exponential synchronization.
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Definition 7 The biological neural network given by Equation (41) is said to be globally asymptotically
synchronized if

lim
t→∞
|Si(t)− Sj(t)| = 0 (52)

for all S0 ∈ Rn

+ and i, j = 1, 2, . . . , n, i 6= j.

Definition 8 The biological neural network given by Equation (41) is said to be globally exponentially
synchronized if there exist constants ρ > 0 and p > 0 such that

|Si(t)− Sj(t)| ≤ ρe−pt|S0i − S0j|, t ≥ 0, (53)

for all S0 = [S01, . . . , S0n]T ∈ Rn

+ and i, j = 1, 2, . . . , n, i 6= j.

The following theorems provide sufficient conditions for global asymptotic synchronization and
global exponentially synchronization of the biological neural network system given by Equation (41).
For the statement of the theorems we define the ones vector of order n by en , [1, . . . , 1]T.

Theorem 3 Consider the biological neural network given by Equation (41) with fi(·), i = 1, 2, . . . , n,

given by Equation (10). If there exist positive definite matrices P,Q ∈ Rn×n and a diagonal
positive-definite matrix R ∈ Rn×n such that[

Q −P
−P R

]
≥ 0, (54)

and either Ω3 < 0 or both Ω3 ≤ 0 and N (Ω3) = span(en) hold, where

Ω3 , −PL− LP +Q+ ATRA, (55)

then Equation (41) is globally asymptotically synchronized.

Proof. Consider the Lyapunov function candidate V : Rn

+ → R given by V (S) = STPS. It follows that
the derivative of V (S) along the trajectories of Equation (41) is given by

V̇ (S) = 2STP
(
− LS + f̃(AS)

)
= −2STPLS + 2STP f̃(AS).

Next, it follows from Equation (54) that V̇ (S) satisfies

V̇ (S) ≤ −2STPLS + STQS + f̃T(AS)Rf̃(AS)

= ST(−PL− LP +Q)S + f̃T(AS)Rf̃(AS), S ∈ Rn

+. (56)

Since f 2
i (x) ≤ x2, x ∈ R, for fi(·), i = 1, . . . , n, given by Equation (10) and R ∈ Rn×n is a

positive-definite diagonal matrix, it follows that

f̃T(AS)Rf̃(AS) ≤ STATRAS, S ∈ Rn

+. (57)

Now, it follows from Equations (56) and (57) that

V̇ (S) ≤ STΩ3S, S ∈ Rn

+. (58)
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If Ω3 < 0, then V̇ (S) ≤ 0, S ∈ Rn

+, and V̇ (S) = 0 if and only if S = 0. Hence, the zero solution
S(t) ≡ 0 to Equation (41) is asymptotically stable, which implies that limt→∞ |Si(t)− Sj(t)| = 0 for all
S0 ∈ Rn and i, j = 1, 2, . . . , n, i 6= j. Hence, Equation (41) is globally asymptotically synchronized.
Alternatively, if Ω3 ≤ 0 and N (Ω3) = span(en) holds, then V̇ (S(t)) ≤ 0, t ≥ 0, and hence,
V (S(t)) ≤ V (S0) for all t ≥ 0. Next, since P is positive definite and V̇ (S(t)) is a nonincreasing
function of time, it follows that V (S(t)) is bounded for all t ≥ 0, and hence, S(t) is bounded for
all t ≥ 0, which further implies that V̈ (S(t)) is bounded for all t ≥ 0. Thus, V̇ (S(t)) is uniformly
continuous in t. Now, it follows from Barbalat’s lemma ([20](p. 221)) that V̇ (S(t)) → 0 as t → ∞,
which, sinceN (Ω3) = span(en), implies that Equation (41) is globally asymptotically synchronized. �

Theorem 4 Consider the biological neural network given by Equation (41) with fi(·), i = 1, 2, . . . , n,

given by Equation (10). If there exist positive definite matrices P,Q ∈ Rn×n, a diagonal positive-definite
matrix R ∈ Rn×n and a scalar ε > 0 such that Equation (54) holds, and either Ω4 < 0 or both Ω4 ≤ 0

and N (Ω4) = span(en) hold, where

Ω4 , 2εP − PL− LP +Q+ ATRA, (59)

then Equation (41) is globally exponentially synchronized.

Proof. The proof is similar to the proof of Theorem 3 using the function V : [0,∞) × Rn

+ → R given
by V (t, S) = e2εtSTPS and, hence, is omitted. �

Definition 9 ([80]) Let (R,+, ·) be a ring with the two binary operations of addition (+) and
multiplication (·) connected by distributive laws, and let T (R, K) be the set of matrices with entries
inR such that the sum of the entries in each row is equal to K for some K ∈ R.

Lemma 1 ([81]) Let G be an n × n matrix such that G ∈ T (R, K). Then there exists a matrix
G ∈ R(n−1)×(n−1) given by G = MGJ such that MG = GM , where M and J are given by

M =


1 −1 0 · · · 0

0 1 −1
. . . ...

... . . . . . . . . . 0

0 · · · 0 1 −1

 ∈ R(n−1)×n, J =



1 1 · · · 1

0 1
. . . ...

0
. . . . . . 1

0 · · · 0 1

0 · · · 0 0


∈ Rn×(n−1). (60)

Next, we analyze the synchronization properties of a special class of biological neural network given
by Equation (41) where L,A ∈ T (R, K) and fi(·), i = 1, . . . , n, satisfies

fi(x) =


0, x < 0,

x, 0 ≤ x ≤ fmax,

fmax, x > fmax,

(61)

where fmax denotes the maximum firing rate.
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Lemma 2 Consider the biological neural network given by Equation (41) and assume that fi(·),
i = 1, . . . , n, is given by Equation (61). Then S(t) is bounded for all t ≥ 0.

Proof. Consider the function V (S) = STS and note that the derivative of V (S) along the trajectories of
Equation (41) satisfies

V̇ (S) = 2ST
(
− LS + f̃(AS)

)
= −2STLS + 2STf̃(AS). (62)

Note that since 2xTy ≤ rxTx+ 1
r
yTy for all x, y ∈ Rn and r > 0, it follows that

V̇ (S) ≤ −2STLS + λmin(L)STS +
1

λmin(L)
f̃T(AS)f̃(AS), S ∈ Rn

+. (63)

Now, since 0 ≤ fi(x) ≤ fmax for all x ∈ R and STLS ≥ λmin(L)STS, it follows that

V̇ (S) ≤ −2λmin(L)STS + λmin(L)STS +
n

λmin(L)
f 2
max

= −λmin(L)STS +
n

λmin(L)
f 2
max, S ∈ Rn

+. (64)

Next, we show that if ‖S0‖2 = c < m, where m = n
λ2min(L)

f 2
max, then V (S(t)) ≤ m for all t ≥ 0.

To see this, assume, ad absurdum, that V (S(t)) > m for some t > 0, which holds since V (S(t))

is continuous in t, and note that there exists τ ∈ (0, t) such that V (S(τ)) = m and V̇ (S(τ)) > 0.
Now, using Equation (64) it follows that V̇ (S(τ)) ≤ 0 for all τ > 0 such that V (S(τ)) = m, which
contradicts V̇ (S(τ)) > 0. Alternately, if ‖S0‖2 = c ≥ m, then using a similar argument it can be shown
that V (S(t)) ≤ c for all t ≥ 0. Hence, ‖S(t)‖2 is bounded for all t ≥ 0, and hence, the solution S(t) is
bounded for all t ≥ 0. �

Theorem 5 Consider the biological neural network given by Equation (41) where L,A ∈ T (R, K)

and fi(·), i = 1, 2, . . . , n, is given by Equation (61). If there exist positive definite matrices
P,Q ∈ R(n−1)×(n−1), a diagonal positive-definite matrix R ∈ R(n−1)×(n−1) such that Equation (54)
holds, and

Ω5 , −PL− LP +Q+ A
T
RA < 0, (65)

where L and A are generated from L and A using Lemma 1, then Equation (41) is globally
asymptotically synchronized.

Proof. Consider the function V : Rn

+ → R given by V (S) = STMTPMS, where M is given by
Equation (60). It follows that the derivative of V (S) along the trajectories of Equation (41) is given by

V̇ (S) = 2STMTPM
(
− LS + f̃(AS)

)
= −2STMTPMLS + 2STMTPMf̃(AS). (66)

Next, it follows from Equation (54) that

V̇ (S) ≤ −2STMTPMLS + STMTQMS + f̃T(AS)MTRMf̃(AS), S ∈ Rn

+. (67)

Note that since R ∈ R(n−1)×(n−1) is a diagonal positive-definite matrix and fi(·), i = 1, 2, . . . , n,

given by Equation (61) satisfies (fi(x) − fj(y))2 ≤ (x − y)2 for all x, y ∈ R, it follows that
f̃T(AS)MTRMf̃(AS) ≤ STATMTRMAS, S ∈ Rn

+. Hence,

V̇ (S) ≤ −2STMTPMLS + STMTQMS + STATMTRMAS

= STMT(−PL− LP +Q)S + STMTA
T
RAMS

= STMTΩ5MS, S ∈ Rn

+. (68)
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Since Ω5 < 0, V̇ (S) ≤ 0, S ∈ Rn

+, and hence, V (S(t)) ≤ V (S0) for all t ≥ 0. Next, since P is
positive definite and V̇ (S(t)) is a non-increasing function of time, it follows that V (S(t)) is bounded for
all t ≥ 0. Since, by Lemma 2, S(t) is bounded for all t, it follows that V̈ (S(t)) is bounded for all t ≥ 0,
and hence, V̇ (S(t)) is uniformly continuous in t. Now, it follows from Barbalat’s lemma ([20](p. 221))
that V̇ (S(t)) → 0 as t → ∞, which implies that limt→∞MS(t) = 0. Hence, Equation (41) is globally
asymptotically synchronized. �

Theorem 6 Consider the biological neural network given by Equation (41) where L,A ∈ T (R, K)

and fi(·), i = 1, 2, . . . , n, is given by Equation (61). If there exist positive definite matrices
P,Q ∈ R(n−1)×(n−1), a diagonal positive-definite matrix R ∈ R(n−1)×(n−1), a scalar ε > 0 such that
Equation (54) holds, and

Ω6 , 2εP − PL− LP +Q+ A
T
RA < 0, (69)

where L and A are generated from L and A using Lemma 1, then Equation (41) is globally
exponentially synchronized.

Proof. The proof is similar to the proof of Theorem 5 using the function V : [0,∞)×Rn

+ → R given by

V (t, S) = e2εtSTMTPMS

and, hence, is omitted. �

Example 3 Consider the biological neural network given by Equation (41) consisting of a netwok of
six excitatory and three inhibitory neurons shown in Figure 4. The neural connectivity matrix A for this
network is given by

A =



0 0 0 0 2 0 0 0 −1

0 0 0 0 0 2 0 0 −1

2 0 0 0 0 0 −1 0 0

0 2 0 0 0 0 −1 0 0

0 0 2 0 0 0 0 −1 0

0 0 0 2 0 0 0 −1 0

1 1 0 0 0 0 0 0 −1

0 0 1 1 0 0 −1 0 0

0 0 0 0 1 1 0 −1 0


.

Here, we assume that the time constant of all nine neurons are the same, and hence, L = 1
τ
I9.

Furthermore, we assume the functions fi(·), i = 1, 2, . . . , 9, are given by Equation (61) with the same
maximum firing rate fmax = 0.5.

Next, we construct A and L using Lemma 1 and solve the Linear Matrix Inequalities (LMIs) given by
Equations (54) and (65) for the neuron time constants τ = 10, 1, and 0.1. We use the MATLAB toolbox
YALMIP for solving the LMIs. For τ = 10, there is no feasible solution to Equations (54) and (65), and,
as shown in Figure 5, the synaptic drive of the inhibitory neurons oscillate whereas the synaptic drive
of the excitatory neurons converge to a steady-state. For τ = 1, Equations (54) and (65) are also not
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satisfied and as shown in Figure 6, the synaptic drive of all the neurons converge to different steady state
values, which implies that the network is not synchronized. Finally, for τ = 0.1, Equations (54) and (65)
are satisfied with P , Q, and R, given by

P =



25.85 11.25 9.479 4.939 4.977 0 −1.008 0.7254

11.25 32.11 14.01 5.302 5.223 0 −3.626 3.375

9.479 14.01 30.6 8.948 7.178 0 −3.037 1.77

4.939 5.302 8.948 18.92 8.76 0 −6.062 −2.118

4.977 5.223 7.178 8.76 24.36 0 −4.475 −2.172

0 0 0 0 0 7.104 0 0

−1.008 −3.626 −3.037 −6.062 −4.475 0 13.32 2.425

0.7254 3.375 1.77 −2.118 −2.172 0 2.425 10.53


,

Q =



65.66 19.39 15.22 7.273 7.601 0 −5.527 2.403

19.39 92.92 25.48 13.29 12.26 0 −5.246 1.426

15.22 25.48 74.49 9.073 11.16 0 −6.843 0.72

7.273 13.29 9.073 67.94 5.833 0 −0.2344 1.604

7.601 12.26 11.16 5.833 62.91 0 −4.261 1.016

0 0 0 0 0 72.06 0 0

−5.527 −5.246 −6.843 −0.2344 −4.261 0 65.52 −3.424

2.403 1.426 0.72 1.604 1.016 0 −3.424 66.32


,

R = diag
[

60.65 23.27 63.18 45.2 55.94 24.87 33.43 40.61
]
.

Hence, the biological neural network is asymptotically synchronized. See Figure 7.

Figure 4. A population of six excitatory and three inhibitory neurons. Neurons E1, . . . ,E6

are excitatory and neurons I1, . . . , I3 are inhibitory. The synaptic weights shown on the
connecting arcs represent the coupling strength of the neural interconnections.
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Figure 5. Solutions to Equation (41) with initial conditions S(0) = [0.1, 0.2, 0.3, 0.5, 0.3,

0.7, 0.4, 0.8, 0.6]T for τ = 10. The synaptic drive of the inhibitory neurons oscillate, whereas
the synaptic drive of excitatory neurons converge to zero.
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Figure 6. Solutions to Equation (41) with initial conditions S(0) = [0.1, 0.2, 0.3, 0.5, 0.3,

0.7, 0.4, 0.8, 0.6]T for τ = 1. The synaptic drive of all the neurons converge to
different values.  
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Figure 7. Solutions to Equation (41) with initial conditions S(0) = [0.1, 0.2, 0.3, 0.5, 0.3,

0.7, 0.4, 0.8, 0.6]T for τ = 0.1. All neurons are synchronized.

 

 

 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [sec]

A
m

pl
itu

de

 

 

E1
E2
E3
E4
E5
E6
I1
I2
I3

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [sec]

A
m

pl
itu

de

 

 
E1
E2
E3
E4
E5
E6
I1
I2
I3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [sec]

A
m

pl
itu

de

 

 
E1
E2
E3
E4
E5
E6
I1
I2
I3



Entropy 2014, 16 3969

Example 4 When patients lose consciousness some parts of the brain are still functional (e.g., cardiac
function) whereas other parts are suppressed. This can be captured by biological neural network models
that exhibit partial synchronization wherein part of the system’s state in synchronized and the other
parts fire at normal levels. In addition, the administration of increasing anesthetic doses can lead to
a paradoxical state of excitement in the patient prior to decreases in the level of consciousness. This
paradoxical boost in brain activity prior to hypnotic induction is known as drug biphasic response [82].
There is also a second biphasic surge in the EEG power as the patient emerges from unconsciousness.
Models that predict the aforementioned characteristics are of great clinical importance in providing the
phenomenological trends of the anesthetic cascade.

To demonstrate partial synchronization of the model presented in Section 2, consider the biological
neural network given by Equation (41) consisting of a population of neurons with six excitatory neurons
E1 – E6 and six inhibitory neurons I1 – I6. The neural connectivity matrix A for this network is given by

A =



0 1 1 1 1 1 −1 0 −1 0 −1 0

1 0 1 1 1 1 0 −1 −1 −1 0 0

1 1 0 1 1 1 −1 0 0 0 −1 −1

1 1 1 0 1 1 0 −1 0 −1 0 −1

1 1 1 1 0 1 −1 0 −1 0 −1 0

1 1 1 1 1 0 0 −1 0 −1 0 −1

1 0 1 0 1 0 0 −1 −1 0 0 0

0 1 0 1 0 1 −1 0 −1 0 0 0

0 0 1 1 1 0 −1 −1 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0 0 0



,

which implies that the three inhibitory neurons I4, I5, and I6 do not receive any inhibitory inputs. Here
we assume that the excitatory neurons have a time constant λE = 0.01 s and the inhibitory neurons
have a prolonged time constant λI = 1 s. Furthermore, we assume vEth = vIth = 0.1V for all neurons,
and the functions fi(·), i = 1, 2, . . . , 12, are given by Equation (61) with the same maximum firing rate
fmax = 0.5. Figure 8 shows that as λI increases, the excitatory neurons that are coupled to inhibitory
neurons all go to a zero synaptic drive, whereas the inhibitory neurons that themselves are not coupled
to inhibitory neurons synchronize to some finite value.
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Figure 8. Solutions to Equation (41) with initial conditions S(0) = [0.2, 0.25, 0.4, 0.35, 0.3,

0.45, 0.4, 0.2, 0.3, 0.3, 0.4, 0.2]T for λE = 0.01 s and λI = 1 s. The synaptic drive
of the excitatory neurons converges to zero, whereas the synaptic drive of the inhibitory
neurons converge to nonzero values. Synchronization is observed in the synaptic drive of the
inhibitory neurons I4, I5, and I6 that themselves do not receive inhibitory inputs.
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8. Stochastic Multistability for a Mean Field Synaptic Drive Firing Neuronal Model

Since the neurocortex contains on the order of 1011 neurons, each supporting up to 105 synaptic
contacts, we extend our dynamical system framework to a stochastic setting. Specifically, a large
population of spiking neurons can be reduced to a distribution function describing their probabilistic
evolution; that is, a function that captures the distribution of neuronal states at a given time [83]. In this
section, we develop a stochastic field theory as in [84] for capturing neural activity in order to analyze
system multistability. In the next section, we extend the results of this section to additionally address
time delay functional models [85] in order to account for time delay and memory effects in inhibitory
and excitatory networks.
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In Sections 4 and 5 we developed deterministic multistability theory to explain the underlying
mechanism of action for anesthesia and consciousness using a synaptic drive firing model framework [3].
In this section, we extend these results further by demonstrating multistability in the mean when the
coefficients of the neuronal connectivity matrix are random variables. Specifically, we use a stochastic
multiplicative uncertainty model to include modeling of a priori uncertainty in the coefficients of the
neuronal connectivity matrix by means of state-dependent noise. The philosophy of representing
uncertain parameters by means of multiplicative white noise is motivated by the Maximum Entropy
Principle of Jaynes [86,87] and statistical analysis [88].

Maximum entropy modeling is a form of stochastic modeling wherein stochastic integration is
interpreted in the sense of Itô to provide a model for system parameter uncertainty. The use of stochastic
theory to model system parameter uncertainty has been used within a modern information-theoretic
interpretation of probability theory [86,87,89]. In particular, rather than regarding the probability of
an event as an objective quantity such as the limiting frequency of outcomes of numerous repetitions,
maximum entropy modeling adopts the view that the probability of an event is a subjective quantity
which reflects the observer’s certainty to a particular event occurring. This quantity corresponds to a
measure of information. The validity of a stochastic model for a biological neural network does not rely
on the existence of an ensemble model but rather in the interpretation that it expresses modeling certainty
or uncertainty regarding the coefficients of the neuronal connectivity matrix. Hence, a stochastic
multiplicative uncertainty model utilizes state-dependent Gaussian white noise to represent parameter
uncertainty by defining a measure of ignorance, in terms of an information-theoretic entropy, and then
determining the probability distribution which maximizes this measure subject to agreement with a
given model.

To develop stochastic multistability synaptic drive model, consider for simplicity of exposition the
simplified mean field synaptic drive model where the coefficients of Equations (24) and (25), with
fi(·) given by Equation (10), are randomly disturbed. Specifically, we assume that the initial value
S(0) , [S

E
(0), S

I
(0)]T is deterministic and contained in the nonnegative orthant of the state space, and

consider the stochastic differential mean field synaptic drive model given by

dS(t) = −LS(t)(dt+ νdw(t)) + [AS(t)(dt+ νdw(t))]+, S(0) = S0, t ≥ 0, (70)

where

L =

[
1
λE

0

0 1
λI

]
, A =

[
nEA

EE
nIA

EI

nEA
IE

nIA
II

]
,

w(t) represents Brownian motion, that is, a Wiener process, ν ∈ R indicates the intensity of the Gaussian
white noise dw(t), and [x]+ , [[x1]+, [x2]+]T for x = [x1, x2]

T ∈ R2. Here, we assume that every entry
of the matrices A and L of the mean dynamics given by Equations (24) and (25) (with vEth = vIth = 0) is
synchronously perturbed.

For the statement of the results in this section, we require some additional notation and definitions.
Specifically, let (Ω,F ,P) be the probability space associated with Equation (70), where Ω denotes the
sample space, F denotes a σ-algebra, and P defines a probability measure on the σ-algebra F , that is, P
is a nonnegative countably additive set function on F such that P(Ω) = 1 [90]. Note that Equation (70)
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is a Markov process, and hence, there exists a filtration {Ft} satisfying Fτ ⊂ Ft ⊂ F , 0 ≤ τ < t, such
that {ω ∈ Ω : S(t) ∈ B} ∈ Ft, t ≥ 0, for all Borel sets B ⊂ R2 contained in the Borel σ-algebra B.
Finally, spec(X) denotes the spectrum of the square matrix X including multiplicity andR(Y ) denotes
the range space of the matrix Y .

When every component of the vector AS(t)(dt + νdw(t)), t ≥ 0, is nonnegative, the stochastic
dynamical system given by Equation (70) can be written as

dS(t) = ÃS(t)dt+ ÃsS(t)dw(t), S(0) = S0, t ≥ 0, (71)

where Ã , A−L and Ãs , ν(A−L). The multiplicative white noise model given by Equation (71) can
be regarded as a parameter uncertainty model where dw(t) corresponds to an uncertain parameter whose
pattern and magnitude are given by Ãs/‖Ã‖ and ‖Ãs‖, respectively. Note that if rank(A−L) < 2, then
every point α ∈ N (Ã) is an equilibrium point of Equation (71). With a slight abuse of notation, we use
E to denote the equilibrium set of Equation (70) or Equation (71). First, motivated by the definition of
stochastic Lyapunov stability in [90], we have the following definition of stochastic semistability. For
the statement of the next result, define dist(x, E) , infy∈E ‖x− y‖. For a similar definition of stochastic
semistability, see [91].

Definition 10 An equilibrium solution S(t) ≡ α ∈ E of Equation (70) is stochastically semistable if the
following statements hold.

(i) For every ε > 0, limS(0)→α P
[

sup0≤t<∞ ‖S(t)− α‖ ≥ ε
]

= 0.
(ii) limS(0)→E P [limt→∞ dist(S(t), E) = 0] = 1.

The dynamical system given by Equation (70) is stochastically semistable if every equilibrium solution
of Equation (70) is stochastically semistable. Finally, the system given by Equation (70) is globally
stochastically semistable if it is stochastically semistable and P

[
limt→∞ dist(S(t), E) = 0

]
= 1 for

every initial condition S(0) ∈ R2. If, alternatively, S(t) ≡ α ∈ E only satisfies i), then the equilibrium
solution S(t) ≡ α ∈ E of Equation (70) is stochastically Lyapunov stable.

Definition 10 is a stability notion for the stochastic dynamical system given by Equation (70) having
a continuum of equilibria and is a generalization of the notion of semistability from deterministic
dynamical systems [63,92] to stochastic dynamical systems. It is noted in [92] that existing methods
for analyzing the stability of deterministic dynamical systems with isolated equilibria cannot be used
for deterministic dynamical systems with nonisolated equilibria due to the connectedness property
of equilibrium sets. Hence, Definition 10 is essential for analyzing the stability of stochastic
dynamical systems with nonisolated equilibria. Note that (i) in Definition 10 implies stochastic
Lyapunov stability of an equilibrium, whereas (ii) implies almost sure convergence of trajectories to
the equilibrium manifold.

Next, we extend the notion of multistability for deterministic dynamical systems defined in Section 4
to that of stochastic multistability for stochastic dynamical systems.

Definition 11 Consider the dynamical system given by Equation (70) and let µ(·) denote the Lebesgue
measure in R2. We say that the system given by Equation (70) is stochastically multistable if the following
statements hold.
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(i) E\{(0, 0)} 6= ∅.
(ii) For every S(0) ∈ R2, there exists α(ω) ∈ E , ω ∈ Ω, such that P [limt→∞ S(t) = α(ω)] = 1.

(iii) There exists a subset M ⊂ R2 satisfying µ(M) = 0 such that, for every S(0) ∈ R2\M,
P
[

limt→∞ dist(S(t), E) = 0
]

= 1.

Stochastic multistability is a global stability notion for the stochastic dynamical system given
by Equation (70) having isolated equilibria and/or a continuum of equilibria, whereas stochastic
semistability is a local stability notion for the stochastic dynamical system given by Equation (70)
having a continuum of equilibria. Hence, stochastic multistability is a stronger notion than stochastic
semistability. The next result states a relationship between stochastic multistability and global
stochastic semistability.

Proposition 2 Consider the dynamical system given by Equation (70). If Equation (70) is globally
stochastically semistable, then Equation (70) is stochastically multistable.

Proof. Suppose that the dynamical system given by Equation (70) is globally stochastically
semistable. Then, by definition, P

[
limt→∞ dist(S(t), E) = 0

]
= 1 for every initial condition

S(0) ∈ R2. Next, we show that for every S(0) ∈ R2, there exists α = α(ω) ∈ E , ω ∈ Ω, such
that P

[
limt→∞ S(t) = α(ω)

]
= 1. Let

Γ(S) ,
{
x ∈ R2 : there exists a divergent sequence {ti}∞i=1 such that P

[
lim
i→∞

S(ti) = x
]

= 1
}

and Bδ(z) , {x ∈ R2 : ‖x− z‖ < δ}.
Suppose z ∈ Γ(S) is stochastically Lyapunov stable and let ε1, ε2 > 0. Since z is stochastically

Lyapunov stable there exists an open neighborhood Bδ(z), where δ = δ(ε1, ε2) > 0, such that, for
every S(0) ∈ Bδ(z), P[supt≥0 ‖S(t) − z‖ ≥ ε1] < ε2, and hence, P[supt≥0 ‖S(t) − z‖ < ε1] ≥
1 − ε2. Now, since z ∈ Γ(S), it follows that there exists a divergent sequence {ti}∞i=1 in [0,∞) such
that P[limi→∞ S(ti) = z] = 1, and hence, for every ε3, ε4 > 0, there exists k = k(ε3) ≥ 1 such that
P[supi≥k ‖S(ti)− z‖ > ε3] < ε4 or, equivalently, P[supi≥k ‖S(ti)− z‖ < ε3] ≥ 1− ε4.

Next, note that P[supt≥tk ‖S(t)− z‖ < ε1] ≥ P[supt≥0 ‖S(t)− z‖ < ε1]. It now follows that

P
[

sup
t≥tk
‖S(t)− z‖ < ε1

]
≥ P

[
sup
t≥tk
‖S(t)− z‖ < ε1

∣∣∣ sup
i≥k
‖S(ti)− z‖ < ε3

]
× P

[
sup
i≥k
‖S(ti)− z‖ < ε3

]
≥ (1− ε2)(1− ε4),

where P[·|·] denotes conditional probability. Since ε1, ε2, and ε4 were chosen arbitrarily, it follows that
P[z = limt→∞ S(t)] = 1. Thus, P[limn→∞ S(tn) = z] = 1 for every divergent sequence {tn}∞n=1,
and hence, Γ(S) = {z}; that is, for every S(0) ∈ R2, there exists α = α(ω) ∈ E , ω ∈ Ω, such that
P[limt→∞ S(t) = α(ω)] = 1. �

Next, recall from [93] that a matrix Ã ∈ Rn×n is semistable if and only if limt→∞ e
Ãt exists. In other

words, Ã is semistable if and only if for every λ ∈ spec(Ã), λ = 0 or Reλ < 0 and if λ = 0, then 0 is
semisimple. Furthermore, if Ã is semistable, then the index of Ã is zero or one, and hence, Ã is group
invertible. The group inverse Ã# of Ã is a special case of the Drazin inverse ÃD in the case where Ã has
index zero or one [93]. In this case, limt→∞ e

Ãt = Iq − ÃÃ# [93].
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Proposition 3 If Ã is semistable, then, for sufficiently small |ν|, the dynamical system given by
Equation (71) is globally stochastically semistable.

Proof. First, note that the solution to Equation (71) is given by

S(t) = eÃtS(0) +

∫ t

0

eÃ(t−s)ÃsS(s)dw(s), t ≥ 0. (72)

Since Ã is semistable, it follows that limt→∞ e
ÃtS(0) exists. In this case, let S∞ = limt→∞ e

ÃtS(0).
Furthermore, note that S∞ = (I2 − ÃÃ#)S(0) ∈ N (Ã) [93], where Ã# denotes the group inverse of Ã.
Next, note that

∫ t
0
eÃ(t−s)ÃsS(s)dw(s) is an Itô integral and let ‖ · ‖ denote the Euclidean norm on R2.

Then, it follows from Property e) of Theorem 4.4.14 of ([90](p. 73)) that

E

[∥∥∥∥∫ t

0

eÃ(t−s)ÃsS(s)dw(s)

∥∥∥∥2
]

=

∫ t

0

E
[∥∥∥eÃ(t−s)ÃsS(s)

∥∥∥2] ds

= ν2
∫ t

0

E
[∥∥∥eÃ(t−s)ÃS(s)

∥∥∥2] ds

= ν2
∫ t

0

E
[∥∥∥(eÃ(t−s) − (I2 − ÃÃ#))ÃS(s)

∥∥∥2] ds

= ν2
∫ t

0

E
[∥∥∥(eÃ(t−s) − (I2 − ÃÃ#))Ã(S(s)− S∞)

∥∥∥2] ds, (73)

where E[ · ] denotes expectation with respect to the probability space (Ω,F ,P).
Next, define e(t) , eÃtS(0) − (I2 − ÃÃ#)S(0) = eÃtS(0) − S∞. Then it follows from the

semistability of Ã that limt→∞ e(t) = 0. Since ė(t) = Ãe(t) for every t ≥ 0, it follows from the
equivalence of (uniform) asymptotic stability and (uniform) exponential stability for linear time-invariant
systems [94] that there exist real scalars σ, r > 0 such that ‖e(t)‖ ≤ σe−rt‖e(0)‖, t ≥ 0, or, equivalently,
‖[eÃt − (I2 − ÃÃ#)]S(0)‖ ≤ σe−rt‖ÃÃ#S(0)‖, t ≥ 0. Hence,

‖eÃt − (I2 − ÃÃ#)‖′ = max
S(0)∈R2\{0}

‖[eÃt − (I2 − ÃÃ#)]S(0)‖
‖S(0)‖

≤ σe−rt max
S(0)∈R2\{0}

‖ÃÃ#S(0)‖
‖S(0)‖

= σe−rt‖ÃÃ#‖′, t ≥ 0, (74)

where ‖ · ‖′ = σmax(·) and σmax(·) denotes the maximum singular value. Thus, Equation (74) implies

‖eÃt − (I2 − ÃÃ#)‖′ ≤ ρe−rt, t ≥ 0, (75)

where ρ , σ‖ÃÃ#‖′.
Next, it follows from Equations (73) and (75) that∫ t

0

E
[∥∥∥eÃ(t−s)Ãs(s)S(s)

∥∥∥2] ds ≤ ν2ρ2‖Ã‖′2
∫ t

0

e−2r(t−s)E
[
‖S(s)− S∞‖2

]
ds, t ≥ 0. (76)
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Now, it follows from Equations (72), (76), and the triangle inequality that

E
[
‖S(t)− S∞‖2

]
≤ ‖eÃtS(0)− S∞‖2 + ν2ρ2‖Ã‖′2

∫ t

0

e−2r(t−s)E
[
‖S(s)− S∞‖2

]
ds

≤ ‖eÃtS(0)− S∞‖2 + ν2ρ2‖Ã‖′2e−2rt
∫ t

0

e2rsE
[
‖S(s)− S∞‖2

]
ds, t ≥ 0,

and hence,

e2rtE
[
‖S(t)− S∞‖2

]
≤ e2rt‖eÃtS(0)− S∞‖2 + ν2ρ2‖Ã‖′2

×
∫ t

0

e2rsE
[
‖S(s)− S∞‖2

]
ds, t ≥ 0.

Hence, it follows from the Gronwall-Bellman lemma ([20](p. 125)) that

e2rtE
[
‖S(t)− S∞‖2

]
≤ e2rt‖eÃtS(0)− S∞‖2 + ν2ρ2‖Ã‖′2

∫ t

0

e2rs

× ‖eÃsS(0)− S∞‖2eν
2ρ2‖Ã‖′2(t−s)ds, t ≥ 0,

or, equivalently, for ν 6= 0,

E
[
‖S(t)− S∞‖2

]
≤ ‖eÃtS(0)− S∞‖2 + ν2ρ2‖Ã‖′2

∫ t

0

e−2r(t−s)‖eÃsS(0)− S∞‖2eν
2ρ2‖Ã‖′2(t−s)ds

≤ ‖eÃtS(0)− S∞‖2 + ν2ρ4‖Ã‖′2‖S(0)‖2
∫ t

0

e−2rteν
2ρ2‖Ã‖′2(t−s)ds

= ‖eÃtS(0)− S∞‖2 + ν2ρ4‖Ã‖′2‖S(0)‖2e−(2r−ν2ρ2‖Ã‖′2)t
∫ t

0

e−ν
2ρ2‖Ã‖′2sds

= ‖eÃtS(0)− S∞‖2 + ρ2‖S(0)‖2e−(2r−ν2ρ2‖Ã‖′2)t
(

1− e−ν2ρ2‖Ã‖′2t
)
, t ≥ 0.

Taking |ν| to be such that

ν2ρ2‖Ã‖′2 < 2r, (77)

it follows that limt→∞ e
−(2r−ν2ρ2‖Ã‖′2)t = 0. In this case, limt→∞ E[‖S(t) − S∞‖2] = 0, that is, S(t),

t ≥ 0, converges to S∞ in the mean square.
Finally, by Theorem 7.6.10 of [95] or ([90](p. 187)) (Khasminskiy’s theorem), for every initial

condition S(0) ∈ R2 and every ε > 0, we have

P
[

sup
0≤t<∞

‖S(t)− S∞‖ ≥ ε
]
≤ 1

ε2
E[‖S(0)− S∞‖2]

and P
[

limt→∞ S(t) exists
]

= 1. Thus, the dynamical system given by Equation (71) is globally
stochastically semistable. �

Remark 1 If Ã is semistable, then there exists an invertible transformation matrix T ∈ R2×2 such that
TÃT−1 = diag[−λ, 0], where λ ∈ spec(Ã) and λ > 0. In this case, defining the new coordinates
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[Ŝ1(t), Ŝ2(t)]
T , TS(t), Equation (71) yields the two decoupled stochastic differential equations

given by

dŜ1(t) = −λŜ1(t)dt− νλŜ1(t)dw(t), Ŝ1(0) = Ŝ10, t ≥ 0, (78)

dŜ2(t) = 0, Ŝ2(0) = Ŝ20(0). (79)

Since the analytical solution to Equation (78) is given by Ŝ1(t) = Ŝ1(0)e−λ(1+
1
2
λν2)t−νλw(t), it follows that

S(t) = T−1Ŝ(t) = T−1

[
Ŝ1(0)e−λ(1+

1
2
λν2)t−νλw(t)

Ŝ2(0)

]
.

Finally, we provide a sufficient condition for stochastic multistability for the dynamical system given
by Equation (71). For this result, the following lemma is first needed.

Lemma 3 Let Ã ∈ Rn×n. If there exist n × n matrices P = PT ≥ 0 and R = RT ≥ 0, and a
nonnegative integer k such that

0 = (Ãk)T(ÃTP + PÃ+R)Ãk, (80)

k = min

{
l ∈ Z+ :

n⋂
i=1

N (RÃi+l−1) = N (Ã)

}
, (81)

then (i) N (PÃk) ⊆ N (Ã) ⊆ N (RÃk) and (ii) N (Ã) ∩R(Ã) = {0}.

Proof. The proof is similar to that of Lemma 4.5 of [96] and, hence, is omitted. �

Theorem 7 Consider the dynamical system given by Equation(71). Suppose there exist 2 × 2 matrices
P = PT ≥ 0 and R = RT ≥ 0, and a nonnegative integer k such that Equations (80) and (81) hold
with n = 2. If N (A− L)\{(0, 0)} 6= ∅ and |ν| is sufficiently small, then the dynamical system given by
Equation (71) is stochastically multistable.

Proof. By Proposition 3 it suffices to show that Ã , A − L is semistable. Consider the deterministic
dynamical system given by

ẋ(t) = Ãx(t), x(0) = x0, t ≥ 0, (82)

where x(t) ∈ R2. Note that Ã is semistable if and only if Equation (82) is semistable [93], and hence, it
suffices to show that Equation (82) is semistable. Since, by Lemma 3, N (Ã) ∩ R(Ã) = {0}, it follows
from ([97](p. 119)) that Ã is group invertible. Thus, let L , I2 − ÃÃ# and note that L2 = L. Hence, L
is the unique 2× 2 matrix satisfying N (L) = R(Ã),R(L) = N (Ã), and Lx = x for all x ∈ N (Ã).

Next, consider the nonnegative function

V(x) = xT(Ãk)TPÃkx+ xTLTLx.

If V(x) = 0 for some x ∈ R2, then PÃkx = 0 and Lx = 0. Now, it follows from Lemma 3 that
x ∈ N (Ã), whereas Lx = 0 implies x ∈ R(Ã), and hence, V(x) = 0 only if x = 0. Hence, V(·)
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is positive definite. Next, since LÃ = Ã − ÃÃ#Ã = 0, it follows that the time derivative along the
trajectories of Equation (82) is given by

V̇(x(t)) = −xT(t)(Ãk)TRÃkx(t) + xT(t)ÃTLTLx(t) + xT(t)LTLÃx(t)

= −xT(t)(Ãk)TRÃkx(t)

≤ 0, t ≥ 0.

Note that V̇−1(0) = N (RÃk).
To find the largest invariant setM contained in N (RÃk), consider a solution x(·) of Equation (82)

such that RÃkx(t) = 0 for all t ≥ 0. Then, RÃk di−1

dti−1x(t) = 0 for every i ∈ {1, 2, . . .} and t ≥ 0, that is,
RÃkÃi−1x(t) = RÃk+i−1x(t) = 0 for every i ∈ {1, 2, . . .} and t ≥ 0. Equation (81) now implies that
x(t) ∈ N (Ã) for all t ≥ 0. Thus,M⊆ N (Ã). However,N (Ã) consists of only equilibrium points, and
hence, is invariant. Hence,M = N (Ã).

Finally, let xe ∈ N (Ã) be an equilibrium point of Equation (82) and consider the Lyapunov function
candidate U(x) = V(x − xe), which is positive definite with respect to xe. Then it follows that the
Lyapunov derivative along the trajectories of Equation (82) is given by

U̇(x(t)) = −(x(t)− xe)T(Ãk)TRÃk(x(t)− xe) ≤ 0, t ≥ 0.

Thus, it follows that xe is Lyapunov stable. Now, it follows from Theorem 3.1 of [63] that Equation (82)
is semistable, that is, A is semistable. Finally, it follows from Proposition 3 that Equation (71) is
stochastically multistable. �

Example 5 In this example, we illustrate the stochastic multistability properties of the two-state
nonlinear synaptic drive neuronal firing model given by Equation (70). Specifically, consider the mean
field synaptic drive model given by Equation (70) with nEA

EE
= 1 V, nIA

EI
= −1 V, nEA

IE
= 1 V,

nIA
II

= 0 V, and λE = 10 ms, and let λI vary. In this case, the system matrices in Equation (71) are
given by

A =

[
1 −1

1 0

]
, L =

[
0.1 0

0 1
λI

]
, A− L =

[
0.9 −1

1 − 1
λI

]
.

Figure 9 shows the eigenvalues of A− L as a function of λI.
Note that for λI < 0.9 ms or λI > 0.93 ms, (A− L) is unstable, whereas for 0.9 ms< λI < 0.93 ms,

(A − L) is asymptotically stable. Clearly, rank (A − L) < 2 for λI = 0.9 ms. Hence, it follows
from Theorem 7 that the stochastic dynamical system given by Equation (71) exhibits multistability for
λI = 0.9 ms. In this case, A − L is semistable and the N (A − L) is characterized by the direction
vector [1, 0.9]T.

For our simulation, we use the initial condition S(0) = [0.1, 0.5]T. Figures 10 and 11 show the time
response for the average excitatory and inhibitory synaptic drives, and the phase portrait for λI = 0.9 ms
with ν = 0.2. Furthermore, for λI = 0.9 ms with ν = 0.2, Figure 12 shows a histogram of the limit
points of loge S

E (or, equivalently, loge 0.9SI) over 10, 000 samples. Note that the mean and variance
of loge S

E is −1.6135 and 0.3152, respectively. Similar plots shown in Figures 10 and 11 are shown for
λI = 0.78 ms and λI = 1.20 ms with ν = 0.2 in Figures 13–16. Finally, Figures 17 and 18 show similar
simulations for the case where λI = 0.9 ms ( i.e., (A− L) is semistable) and ν = 1. However, note that
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in this case the condition given by Equation (77) of Proposition 3 is not satisfied, and hence, the model
exhibits instability.

Figure 9. Eigenvalues of A−L as a function of λI. Arrows indicate increasing values of λI.
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Figure 10. State trajectories of the sample trajectories of Equation (70) for λI = 0.9 with
ν = 0.2.
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Figure 11. Phase portrait of the sample trajectories of Equation (70) for λI = 0.9 with
ν = 0.2.
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Figure 12. Histogram showing the limit points of loge S
E over 10, 000 samples.
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Figure 13. State trajectories of the sample trajectories of Equation (70) for λI = 0.78 with
ν = 0.2.
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Figure 14. Phase portrait of the sample trajectories of Equation (70) for λI = 0.78 with
ν = 0.2.
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Figure 15. State trajectories of the sample trajectories of Equation (70) for λI = 1.20 with
ν = 0.2.
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Figure 16. Phase portrait of the sample trajectories of Equation (70) for λI = 1.20 with
ν = 0.2.
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Figure 17. State trajectories of the sample trajectories of Equation (70) for λI = 0.9 with
ν = 1.
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The trajectories of Equations (24) and (25) can exhibit unstable and multistable behaviors for
different values of the parameters, which are similar to the simulation results for Equation (70).
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Moreover, its averaging dynamics will be analogous to the results of the deterministic model given
in [98].

Figure 18. Phase portrait of the sample trajectories of Equation (70) for λI = 0.9 with ν = 1.

−2 0 2 4 6

x 10
22

0

1

2

3

4

5

6

7
x 10

22

S̄E

S̄
I

9. A Synaptic Drive Firing Model with Time-Varying Delays and Stochastic Multiplicative
Uncertainty

In this section, we extend the synaptic drive model developed in Section 2 to investigate the conditions
that would lead to synchronization or neutral oscillators. In particular, we extend the biological neural
network model of Section 2 to include time-varying delays and stochastic input uncertainty. The system
uncertainty model involves a Markov process wherein stochastic integration is interpreted in the sense
of Itô.

For the statement of the results of this section, we require some additional notation and definitions.
Specifically, C([−τ, 0],Rn) with τ > 0 denotes a Banach space of continuous vector-valued functions
mapping the interval [−τ, 0] into Rn with topology of uniform convergence and designated operator norm
given by |||ψ||| = sup−τ≤θ≤0 ‖ψ(θ)‖ for ψ ∈ C([−τ, 0],Rn). Furthermore, let St ∈ C((−∞,+∞),Rn)

defined by St(θ) , S(t + θ), θ ∈ (−∞, 0], t ≥ 0, denote an (infinite dimensional) state at
time t corresponding to the piece of trajectories S between −∞ and t, and assume vthi(t) ≡ 0.
To capture communication delays in our biological neural network model given by Equation (9),
define S(t) , [S1(t), S2(t), . . . , Sn(t)]T, f(S) , [f1(S1), f2(S2), . . . , fn(Sn)]T, where fi(·) is defined
by Equation (11) or Equation (12), L , diag

[
1
τ1
, 1
τ2
, . . . , 1

τn

]
, and B , diag[B1, B2, . . . , Bn].

Furthermore, define

Ŝ(t) ,


∑n

j=2A1jSj(t− δ1j(t))
0
...
0

+


0∑n

j=1,j 6=2A2jSj(t− δ2j(t))
...
0



+ · · ·+


0
...
0∑n−1

j=1 AnjSj(t− δnj(t))

 , (83)
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where δij(t) denotes the continuous, time-varying time delay of the transmission signal from the jth
neuron to the ith neuron at time t, δij(t) ≥ 0, t ≥ 0, and Sj(t) denotes the jth component of S(t). The
system delays δij(t) correspond to the times of the spike hitting the synapse and t is the time after the
spike, and hence, these delays account for the distance traveled by the voltage spikes down the axon.

We modify the biological neural network system given by Equation (9) to include the effects of
stochastic perturbations as well as time delays. Specifically, we consider the model

dS(t) = (−LS(t) +Bf(Ŝ(t)))dt+ σ(S(t))dw(t), S(θ) = φ(θ), −∞ < θ ≤ 0, t ≥ 0, (84)

where φ(·) ∈ C , C((−∞, 0],Rn) is a continuous vector-valued function specifying the initial state of
the system given by Equation (84), w(t) = [w1(t), w2(t), . . . , wn(t)]T captures noise in the input voltage
and is represented by Brownian motion, that is, an n-dimensional mutually independent standard Wiener
process, and σ(S) = diag[σ1(S), σ2(S), . . . , σn(S)] represents the state-dependent noise intensity matrix
for the Gaussian white noise process dw(t). Henceforth, we consider Equation (84) as the model of the
perturbed biological neural network.

Next, since Ŝ(t) defined by Equation (83) contains n(n−1) terms with different time delays, each term
can be written as the product of an n× n-dimensional matrix and an n-dimensional vector. Specifically,
for i′ = 1, 2, . . . , n, j = 1, 2, . . . , n, i′ 6= j, define i , i′(n−1)+j, i′ > j, and i , i′(n−1)+j−1, i′ < j,
where i = 1, 2, . . . , n(n − 1), define δi(t) , δi′j(t), and define the matrix Ai ∈ Rn×n whose (i′, j)th
entry is Ai′j and all the other entries are 0. Thus, the ith term in Equation (83) can be replaced by
AiS(t− δi(t)), i ∈ {1, 2, . . . , n(n− 1)}. Hence, setting N = n(n− 1), Ŝ(t) can be written as

Ŝ(t) =
N∑
i=1

AiS(t− δi(t)). (85)

For the statement of the results in this section, we define the infinitesimal operator L : [0,∞) ×
C((−∞, 0],Rn) → R associated with the stochastic process given by Equation (84), acting on the
functional V : R× C → R, by

LV (t, St) , lim sup
h→0+

E[V (t+ h, St+h)|St]− V (t, St)

h
. (86)

For a two-times continuously differentiable function V : [0,∞) × Rn → R of the random variable S,
the infinitesimal operator LV (t, S) is defined as [90]

LV (t, S) , lim
h→0+

E[V (t+ h, S(t+ h))]− V (t, S)

h

=
∂V (t, S)

∂t
+ V ′(t, S)(−LS +Bf(Ŝ)) +

1

2
σT(S)V ′′(t, S)σ(S), (87)

where V ′(t, S) denotes the Fréchet derivative of V and V ′′(t, S) denotes the Hessian matrix of V with
respect to S at (t, S). The following lemma provides an explicit formula for the infinitesimal operator
on two kinds of functionals using the ideas from Lemma 3.1 of [99].

Lemma 4 Consider the biological neural network given by Equation (84) and let
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V1(t, ψ) =

∫ 0

−d(t)
ψT(θ)Hψ(θ)dθ, (88)

V2(t, ψ) =

∫ 0

−d(t)
eε(t+θ)ψT(θ)Hψ(θ)dθ, (89)

where t ≥ 0, ψ ∈ C((−∞, 0],Rn), ε > 0, H ∈ Rn×n, d : R→ R is differentiable, and d(t) ≥ 0, t ≥ 0.
Then, the infinitesimal operator acting on V1 : [0,∞)× C → R and V2 : [0,∞)× C → R are given by

LV1(t, St) = ST(t)HS(t)− (1− ḋ(t))ST(t− d(t))HS(t− d(t)), (90)

LV2(t, St) = eεtST(t)HS(t)− eε(t−d(t))(1− ḋ(t))ST(t− d(t))HS(t− d(t)). (91)

Proof. For sufficiently small h > 0,

E[V1(t+ h, St+h)|St] = E
[∫ 0

−d(t+h)
ST(t+ h+ θ)HS(t+ h+ θ)dθ

∣∣∣∣St]
= E

[∫ h

h−d(t+h)
ST(t+ θ)HS(t+ θ)dθ

∣∣∣∣St]
= E

[∫ h

0

ST(t+ θ)HS(t+ θ)dθ

∣∣∣∣St]
+

∫ 0

−d(t)
ST(t+ θ)HS(t+ θ)dθ

+ E

[∫ −d(t)
−d(t+h)

ST(t+ θ)HS(t+ θ)dθ

∣∣∣∣St
]

+ E

[∫ −d(t+h)
h−d(t+h)

ST(t+ θ)HS(t+ θ)dθ

∣∣∣∣St
]

= E
[∫ h

0

ST(t+ θ)HS(t+ θ)dθ

∣∣∣∣St]
+

∫ 0

−d(t)
ST(t+ θ)HS(t+ θ)dθ

− E

[∫ −(d(t)+hḋ(t)+O(h))

−d(t)
ST(t+ θ)HS(t+ θ)dθ

∣∣∣∣St
]

− E

[∫ h−d(t+h)

−d(t+h)
ST(t+ θ)HS(t+ θ)dθ

∣∣∣∣St
]

= hST(t)HS(t) + V1(t, St)

− h(1− ḋ(t))ST(t− d(t))HS(t− d(t)) +O(h), t ≥ 0, (92)

where O(h) denotes higher-order terms in h. Substituting Equation (92) into Equation (86) yields
Equation (90). The proof of Equation (91) is similar to the proof of Equation (90) and, hence, is omitted.

�

To develop a global synchronization property for the biological neural network system given
by Equation (84), we introduce the notion of stochastic synchronization. Here, we focus
on mean-square synchronization.
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Definition 12 The biological neural network given by Equation (84) is said to be globally asymptotically
mean-square synchronized if

lim
t→∞

E[|||Sit − Sjt|||2] = 0 (93)

for all φ(·) ∈ C((−∞, 0],Rn) and i, j = 1, 2, . . . , n, i 6= j, where Sit , Si(t+ θ), θ ∈ (−∞, 0], t ≥ 0,
and |||Sit − Sjt||| = sup−τ≤θ≤0 |Si(t+ θ)− Sj(t+ θ)|, τ > 0.

Definition 13 The biological neural network given by Equation (84) is said to be globally exponentially
mean-square synchronized if there exist constants ρ > 0 and p > 0 such that

E[|||Sit − Sjt|||2] ≤ ρe−pt
∫ 0

−∞
|φi(θ)− φj(θ)|2dθ, t ≥ 0, p > 0, (94)

for all φ(·) = [φ1(·), . . . , φn(·)]T ∈ C((−∞, 0],Rn) and i, j = 1, 2, . . . , n, i 6= j.

10. Synchronization of Stochastic Biological Neural Networks

In this section, we develop sufficient conditions for global mean-square synchronization for the
biological neural network given by Equation (84) with differentiable time delays using Barbalat’s lemma
and linear matrix inequalities (LMIs). Here, we assume that the noise intensity matrix function σ(S) has
a linear growth rate; that is, there exists r > 0 such that

tr[σ2(S)] ≤ rSTMTMS, S ∈ Rn, (95)

where M is defined in Equation (60).
The following theorem provides sufficient conditions for global mean-square asymptotic

synchronization of the biological neural network system given by Equation (84).

Theorem 8 Consider the biological neural network given by Equation (84) with fi(·), i = 1, 2, . . . , n,

given by either Equation (11) or Equation (12), and assume that δ̇i(t) ≤ h1 < 1, and δi(t) ≥ 0, t ≥
0, i = 1, 2, . . . , N , hold. If there exist a positive-definite matrix P ∈ Rn×n, nonnegative definite matrices
Qi ∈ Rn×n, i = 1, 2, . . . , N , and R ∈ Rn×n, and a nonnegative-definite diagonal matrix Λ ∈ Rn×n

such that [
R −PB
−BP Λ

]
≥ 0, (96)

Ω7 ,


−(1− h1)Q1 + AT

1 ΛA1 AT
1 ΛA2 · · · AT

1 ΛAN

AT
2 ΛA1 −(1− h1)Q2 + AT

2 ΛA2
. . .

...
...

. . . . . . AT
N−1ΛAN

AT
NΛA1 · · · AT

NΛAN−1 −(1− h1)QN + AT
NΛAN

 ≤ 0,

(97)
and either Ω8 < 0 or both Ω8 ≤ 0 and N (Ω8) = span(en) hold, where

Ω8 , −PL− LP + k1rM
TM +R +

N∑
i=1

Qi, (98)

k1 , λmax(P ), r is such that Equation (95) holds, M is given by Equation (60), and Ai, i = 1, . . . , N,

is defined in Equation (85), then Equation (84) is globally asymptotically mean-square synchronized.
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Proof. Consider the functional V : [0,∞) × C → R given by V (t, ψ) = V1(ψ(0)) + V2(t, ψ), where
V1(ψ(0)) = ψT(0)Pψ(0) and V2(t, ψ) =

∑N
i=1

∫ 0

−δi(t) ψ
T(θ)Qiψ(θ)dθ. It follows from Equation (87)

and Lemma 4 that the infinitesimal operator LV (t, St) associated with the stochastic process given by
Equation (84) is given by

LV (t, St) = LV1(S(t)) + LV2(t, St), t ≥ 0, (99)

where

LV1(S(t)) = 2ST(t)P
(
− LS(t) +Bf(Ŝ(t))

)
+ tr[σ(S(t))Pσ(S(t))], (100)

LV2(t, St) =
N∑
i=1

[
ST(t)QiS(t)− (1− δ̇i(t))ST(t− δi(t))QiS(t− δi(t))

]
, (101)

and Ŝ(t) ∈ Rn is defined by Equation (85). Next, since E[V (t, St)] = V (0, S0) + E[
∫ t
0
LV (u, Su)du], it

follows that E[dV (t, St)] = E
[
LV1(S(t)) + LV2(t, St)

]
dt.

To complete the proof, we show thatLV1(S(t))+LV2(t, St) ≤ 0, t ≥ 0, andLV1(S(t))+LV2(t, St) ≡
0 implies MS(t) ≡ 0. To see this, note that Equation (95) implies

tr[σ(S)Pσ(S)] ≤ k1tr[σ(S)σ(S)] ≤ k1rS
TMTMS, S ∈ Rn. (102)

Furthermore, note that for every diagonal matrix Λ ∈ Rn×n such that Λ ≥ 0, it follows that for fi(·),
i = 1, . . . , n, given by Equation (11) or Equation (12),

fT(Ŝ(t))Λf(Ŝ(t)) ≤ ŜT(t)ΛŜ(t), t ≥ 0. (103)

Now, using Equations (96), (102), and (103), it follows from Equation (100) that

LV1(S(t)) ≤ 2ST(t)P
(
− LS(t) +Bf(Ŝ(t))

)
+ k1rS

T(t)MTMS(t)

≤ −2ST(t)PLS(t) + ST(t)RS(t) + fT(Ŝ(t))Λf̂(S(t)) + k1rS
T(t)MTMS(t)

≤ ST(t)(−2PL+ k1rM
TM +R)S(t) + ŜT(t)ΛŜ(t), t ≥ 0. (104)

Hence, since δ̇i(t) ≤ h1 < 1, t > 0, it follows from Equations (101) and (104) that

LV1(S(t)) + LV2(t, St) ≤ ST(t)

[
− 2PL+ k1rM

TM +R +
N∑
i=1

Qi

]
S(t)

+
N∑
i=1

N∑
j=1

ST(t− δi(t))AT
i ΛAjS(t− δj(t))

−
N∑
i=1

(1− h1)ST(t− δi(t))QiS(t− δi(t))

= ηT(t)Ω7η(t) + ST(t)Ω8S(t)

≤ ST(t)Ω8S(t), t ≥ 0,

where η(t) , [ST(t− δ1(t)), . . . , ST(t− δN(t))]T.
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Finally, if Ω7 ≤ 0 and Ω8 < 0, it follows that E[dV (t, St)] = E[LV1(S(t)) + LV2(t, St)]dt ≤ 0,
t ≥ 0, and E[V (t, St)] ≤ E[V (0, S0)]. Note that since P is positive definite and E[V (t, St)]

is a non-increasing function of time, it follows that E[‖S(t)‖2] is bounded for all t ≥ 0. Since
L[ST(t)Ω8S(t)] = 2ST(t)Ω8[−LS(t) + Bf(Ŝ(t))] + tr[σ(S(t))Ω8σ(S(t))], t ≥ 0, and E[‖S(t)‖2],
t ≥ 0, is bounded, it follows that E

[
L[ST(t)Ω2S(t)]

]
, t ≥ 0, is bounded. Since E

[
d[ST(t)Ω2S(t)]

]
=

E
[
L[ST(t)Ω8S(t)]

]
dt, t ≥ 0, and E

[
L[ST(t)Ω8S(t)]

]
is bounded, it follows that E[ST(t)Ω8S(t)] is

uniformly continuous in t. Note that since E[V (t, St)] ≥ 0, t ≥ 0, and E[ST(t)Ω8S(t)] is uniformly
continuous in t, it follows from Barbalat’s lemma ([20](p. 221)) that E[ST(t)Ω8S(t)] → 0 as t → ∞.
Since Ω8 < 0, it follows that E[‖S(t)‖2] → 0 as t → ∞. Thus, E[‖MS(t)‖2] ≤ ‖M‖2E[‖S(t)‖2] → 0

as t → ∞. Hence, E[|||MSt|||2] → 0 as t → ∞, that is, Equation (84) is globally asymptotically
mean-square synchronized.

Alternately, if Ω7 ≤ 0, N (Ω8) = span(en), and Ω8 ≤ 0, then a similar argument shows that
E[ST(t)Ω8S(t)]→ 0 as t→∞, which, sinceN (Ω8) = span(en), implies that Equation (84) is globally
asymptotically mean-square synchronized. �

The next theorem establishes a sufficient condition for global exponential mean-square
synchronization of the network system given by Equation (84).

Theorem 9 Consider the biological neural network given by Equation (84) with fi(·), i = 1, 2, . . . , n,

given by either Equation (11) or Equation (12), and assume that δ̇i(t) ≤ h1 < 1, and h2 ≥ δi(t) ≥
0, t ≥ 0, i = 1, 2, . . . , N, hold. If there exist a positive-definite matrix P ∈ Rn×n, nonnegative definite
matricesQi ∈ Rn×n, i = 1, 2, . . . , N , andR ∈ Rn×n, a nonnegative-definite diagonal matrix Λ ∈ Rn×n,
and a scalar ε > 0 such that Equation (96) holds,

Ω9 ,


−(1− h1)e−2εh2Q1 + AT

1 ΛA1 AT
1 ΛA2

AT
2 ΛA1 −(1− h1)e−2εh2Q2 + AT

2 ΛA2

... . . .

AT
NΛA1 · · ·

· · · AT
1 ΛAN

. . . ...

. . . AT
N−1ΛAN

· · · −(1− h1)e−2εh2QN + AT
NΛAN

 ≤ 0, (105)

and either Ω10 < 0 or both Ω10 ≤ 0 and N (Ω10) = span(en) hold, where

Ω10 , −PL− LP + k1rM
TM +R +

N∑
i=1

Qi + 2εP, (106)

k1 , λmax(P ), r is such that Equation (95) holds, M is given by Equation (60), and Ai, i = 1, . . . , N,

is defined in Equation (85), then Equation (84) is globally exponentially mean-square synchronized.

Proof. The proof is similar to the proof of Theorem 8 using the functional V : [0,∞)×C → R given by

V (t, ψ) = e2εtψT(0)Pψ(0) +
N∑
i=1

∫ 0

−δi(t)
e2ε(t+θ)ψT(θ)Qiψ(θ)dθ
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and, hence, is omitted. �

The following corollary to Theorem 9 is immediate.

Corollary 1 Consider the biological neural network given by Equation (84) with fi(·), i = 1, 2, . . . , n,

given by either Equation (11) or Equation (12), and assume that δ̇i(t) ≤ h1 < 1, and h2 ≥ δi(t) ≥ 0,

t ≥ 0, i = 1, 2, . . . , N , hold. If there exist a positive-definite matrix P ∈ Rn×n, nonnegative definite
matrices Qi ∈ Rn×n, i = 1, 2, . . . , N , and R ∈ Rn×n, and a nonnegative-definite diagonal matrix
Λ ∈ Rn×n such that Equation (96) holds, and Ω7 < 0 and Ω8 < 0, where Ω7 and Ω8 are given
by Equations (97) and (98) with k1 , λmax(P ), r is such that Equation (95) holds, M is given by
Equation (60),Ai, i = 1, . . . , N, is defined in Equation (85), then Equation (84) is globally exponentially
mean-square synchronized.

Proof. The result is a direct consequence of Theorem 9 by noting that if Ω7 < 0 and Ω8 < 0 hold, then
there exists a sufficiently small ε > 0 such that Ω9 ≤ 0 and Ω10 < 0 hold, where Ω9 and Ω10 are given
by Equations (105) and (106). �

Remark 2 Note that Theorem 8 does not require that the time delays be bounded, whereas Theorem 9
and Corollary 1 hold for the case where the time delays are bounded.

Remark 3 It is important to note that if fi(·), i = 1, 2, . . . , n, in Equation (84) is replaced by
Equation (10), then the results of Theorems 8 and 9 as well as Corollary 1 still hold.

Example 6 Consider the stochastic network system characterized by

dS1(t) = (−S1(t) + 0.2f1(0.3S2(t− δ1(t))− 0.5S3(t− δ2(t))))dt
+0.1(S1(t)− S2(t))dw1(t), S1(θ) = 2 + sin θ, (107)

dS2(t) = (−1.1S2(t) + 0.3f2(0.4S1(t− δ3(t))− 0.3S3(t− δ4(t))))dt
+0.1(S2(t)− S3(t))dw2(t), S2(θ) = −3 + cos θ, (108)

dS3(t) = (−1.4S3(t) + 0.5f3(0.4S1(t− δ5(t)) + 0.3S2(t− δ6(t))))dt
+0.1(S3(t)− S1(t))dw3(t), S3(θ) = 1− θ, (109)

where θ ∈ [−1, 0], δ1(t) = 1 + 0.1 sin t, δ2(t) = 1 + 0.1t, δ3(t) = 0.5, δ4(t) = 0.1t, δ5(t) = 0.3,

δ6(t) = 0.4, t ≥ 0, fi(·), i = 1, 2, 3, are defined by either Equation (11) or Equation (12), and dwi,

i = 1, 2, 3, are standard Gaussian white noise processes.
Using the MATLAB LMI Toolbox R©, it can be shown that

P =

 205 −2.69 0.13

−2.69 169 −1.96

0.13 −1.96 122

 , R =

 101 −1.85 0.12

−1.85 107 −2.00

0.12 −2.00 118

 , Λ =

81.2 0 0

0 114 0

0 0 144

 ,

Q1 =

34.3 0.37 0.02

0.37 49.7 0.49

0.02 0.49 25.8

 , Q2 =

34.3 0.33 0.02

0.33 30.7 0.52

0.02 0.52 54.0

 , Q3 =

66.3 0.37 0.03

0.37 30.7 0.46

0.03 0.46 25.8

 ,
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Q4 =

34.3 0.33 0.02

0.3 30.7 0.52

0.02 0.52 45.9

 , Q5 =

76.9 0.38 0.03

0.38 30.7 0.46

0.03 0.46 25.8

 , Q6 =

34.3 0.39 0.02

0.39 60.8 0.52

0.02 0.52 25.8

 ,
satisfy Equations (96)–(98), with r = 0.03 and Ai, i ∈ 1, 2, . . . , 6, defined as in Equation (85), and
hence, the conditions of Theorem 8 are satisfied. Next, define the synchronization error e(t) , [(S1(t)−
S2(t))

2 + (S2(t) − S3(t))
2]

1
2 . The trajectories of the state variables and the synchronization error with

respect to time are shown in Figures 19 and 20, respectively. Note that even though some of the delays
in this example are not bounded, that is, δi(t) → ∞ as t → ∞ for i ∈ {2, 4}, the system is globally
mean-square asymptotically synchronized.

Figure 19. State trajectories versus time for Example 6.
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Figure 20. Synchronization error versus time for Example 6.
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11. Thermodynamics, Neuroscience, Consciousness, and the Entropic Arrow of Time

In this and the next section, we present some qualitative insights from the fields of thermodynamics
and electromagnetic field theory that can potentially be useful in developing mechanistic models [100]
that can explain the underlying mechanisms of action for general anesthesia and consciousness.
Specifically, by merging the two universalisms of thermodynamics and dynamical systems theory
with neuroscience, one can provide key insights into the theoretical foundation for understanding the
network properties of the brain by rigorously addressing large-scale interconnected biological neuronal
network models that govern the neuroelectric behavior of biological excitatory and inhibitory neuronal
networks. In addition, electrical signals in the brain can generate electromagnetic fields that can cause
a shielding effect between the thalamus and frontal cortex, which in turn can lead to the emergence of
unconsciousness. Both these paradigms are the subject of ongoing research.

In current clinical practice of general anesthesia, potent drugs are administered which profoundly
influence levels of consciousness and vital respiratory (ventilation and oxygenation) and cardiovascular
(heart rate, blood pressure, and cardiac output) functions. These variation patterns of the physiologic
parameters (i.e., ventilation, oxygenation, heart rate variability, blood pressure, and cardiac output)
and their alteration with levels of consciousness can provide scale-invariant fractal temporal structures
to characterize the degree of consciousness [101] in sedated patients. Here, we hypothesize that the
degree of consciousness reflects the adaptability of the central nervous system and is proportional to the
maximum work output under a fully conscious state divided by the work output of a given anesthetized
state. A reduction in maximum work output (and cerebral oxygen consumption) or elevation in the
anesthetized work output (or cerebral oxygen consumption) will thus reduce the degree of consciousness.
Hence, the fractal nature (i.e., complexity) of conscious variability is a self-organizing emergent property
of the large-scale interconnected biological neuronal network since it enables the central nervous
system to maximize entropy production and dissipate energy gradients. Within the context of aging
and complexity in acute illnesses, variation of physiologic parameters and their relationship to system
complexity and system thermodynamics have been explored in [102–107].

Complex dynamical systems involving self-organizing components forming spatio-temporal evolving
structures that exhibit a hierarchy of emergent system properties form the underpinning of the central
nervous system. These complex dynamical systems are ubiquitous in nature and are not limited to
the central nervous system. Such systems include, for example, biological systems, immune systems,
ecological systems, quantum particle systems, chemical reaction systems, economic systems, cellular
systems, and galaxies, to cite but a few examples. The connection between the local subsystem
interactions and the globally complex system behavior is often elusive. These systems are known as
dissipative systems [108,109] and consume energy and matter while maintaining their stable structure
by dissipating entropy to the environment.

In the central nervous system billions of neurons interact to form self-organizing dissipative
nonequilibrium structures [108–110]. The fundamental common phenomenon among these systems
are that they evolve in accordance to the laws of (nonequilibrium) thermodynamics, which are among
the most firmly established laws of nature. System thermodynamics, in the sense of [110], involves
open interconnected dynamical systems that exchange matter and energy with their environment in
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accordance with the first law (conservation of energy) and the second law (nonconservation of entropy)
of thermodynamics. Self-organization can spontaneously occur in such systems by invoking the two
fundamental axioms of the science of heat. Namely, (i) if the energies in the connected subsystems of
an interconnected system are equal, then energy exchange between these subsystems is not possible,
and (ii) energy flows from more energetic subsystems to less energetic subsystems. These axioms
establish the existence of a system entropy function as well as equipartition of energy [110–112]
in system thermodynamics and synchronization [73] in neuronal networks; an emergent behavior in
thermodynamic systems as well as neuroscience. Hence, in complex interconnected dynamical systems,
self-organization is not a property of the systems parts but rather emerges as a result of the nonlinear
subsystem interactions.

In recent research the authors in [110–114] combined the two universalisms of thermodynamics
and dynamical systems theory under a single umbrella to develop a dynamical system formalism for
classical thermodynamics so as to harmonize it with classical mechanics. While it seems impossible
to reduce thermodynamics to a mechanistic world picture due to microscopic reversibility and Poincaré
recurrence [110,115], the system thermodynamic formulation in [110,112] provides a harmonization
of classical thermodynamics with classical mechanics. In particular, our dynamical system formalism
captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a
mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the
theory of heat transfer with that of classical thermodynamics. In addition, the concept of entropy for
a nonequilibrium state of a dynamical process is defined, and its global existence and uniqueness is
established. This state space formalism of thermodynamics shows that the behavior of heat, as described
by the conservation equations of thermal transport and as described by classical thermodynamics, can be
derived from the same basic principles and is part of the same scientific discipline. Connections between
irreversibility, the second law of thermodynamics, and the entropic arrow of time are also established
in [110,112,113].

Building on the results of this paper, we propose to merge system thermodynamics with neuroscience
to develop a theoretical foundation for the mechanisms of action of general anesthesia using the network
properties of the brain by rigorously addressing the large-scale interconnected biological neuronal
network model given by Equations (7) and (8). Even though simplified mean field models of the form
given by Equations (24) and (25) have been extensively used in mathematical neuroscience literature to
describe large neural populations, the complex large-scale interconnected system given by Equations (7)
and (8) is essential in indentifying the mechanisms of action for general anesthesia. We postulate that
unconsciousness is associated with reduced physiologic parameter variability, reflecting the inability
of the central nervous system to adapt. The degree of consciousness is a function of the numerous
coupling in the network properties of the brain that form a complex large-scale, interconnected system.
Complexity here refers to the quality of a system wherein interacting subsystems self-organize to
form hierarchical evolving structures exhibiting emergent system properties, and hence, a complex
dynamical system is a system that is greater than the sum of its subsystems or parts. This complex
system—involving numerous nonlinear dynamical subsystem interactions making up the system—has
inherent emergent properties that depend on the integrity of the entire dynamical system and not merely
a mean field simplified reduced-order model.



Entropy 2014, 16 3991

As in thermodynamics, neuroscience is a theory of large-scale systems wherein graph theory [116] can
be used in capturing the (possibly dynamic) connectivity properties of network interconnections, with
neurons represented by nodes, synapses represented by edges or arcs, and synaptic efficacy captured by
edge weighting giving rise to a weighted adjacency matrix governing the underlying directed dynamic
graph network topology. However, unlike thermodynamics, wherein energy spontaneously flows from a
state of higher temperature to a state of lower temperature, neuron membrane potential variations occur
due to ion species exchanges which evolve from regions of higher chemical potentials to regions of
lower chemical potentials (i.e., Gibbs’ chemical potential [114]). And this evolution does not occur
spontaneously but rather requires a hierarchical (i.e., hybrid) continuous-discrete architecture for the
opening and closing of specific gates within specific ion channels.

Merging our proposed dynamical neuroscience framework developed in Sections 2 and 3 with system
thermodynamics [110,112,114] by embedding thermodynamic state notions (i.e., entropy, energy, free
energy, chemical potential, etc.) within our dynamical system framework can allow us to directly
address the otherwise mathematically complex and computationally prohibitive large-scale dynamical
model given by Equations (7) and (8). In particular, a thermodynamically consistent neuroscience
model would emulate the clinically observed self-organizing, spatio-temporal fractal structures that
optimally dissipate energy and optimize entropy production in thalamocortical circuits of fully conscious
patients. This thermodynamically consistent neuroscience framework can provide the necessary tools
involving multistability, synaptic drive equipartitioning (i.e., synchronization across time scales), energy
dispersal, and entropy production for connecting biophysical findings to psychophysical phenomena
for general anesthesia. In particular, we hypothsize that as the model dynamics transition to an
anesthetized state, the system will involve a reduction in system complexity—defined as a reduction in
the degree of irregularity across time scales—exhibiting partial synchronization of neural oscillators (i.e.,
thermodynamic energy equipartitioning). This would result in a decrease in system energy consumption
(myocardial depression, respiratory depression, hypoxia, ischemia, hypothension, venodialtion), and
hence, a decrease in the rate of entropy production. In other words, unconsciousness is characterized
by system decomplexification, which is manifested in the failure to develop efficient mechanisms to
dissipate energy thereby pathologically retaining higher internal (or local) entropy levels.

The human brain is isothermal and isobaric, that is, the temperatures of the subnetworks of the brain
are equal and remain constant, and the pressure in each subnetwork also remains constant. The human
brain network is also constantly supplied with a source of (Gibbs) free energy provided by chemical
nourishment of the blood to ensure adequate cerebral blood flow and oxygenation, which involves a
blood concentration of oxygen to ensure proper brain function. Information-gathering channels of the
blood also serve as a constant source of free energy for the brain. If these sources of free energy are
degraded, then internal (local) entropy is produced.

In the transition to an anesthetic state, complex physiologic work cycles (cardiac respiratory
pressure-volume loops, mithochondrial ATP production) necessary for homeostasis follow regressive
diffusion and chemical reaction paths that degrade energy production and decrease the rate of entropy
production. Hence, in an isolated large-scale network (i.e., a network with no energy exchange between
the internal and external environment) all the energy, though always conserved, will eventually be
degraded to the point where it cannot produce any useful work (oxygenation, ventilation, heart rate
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stability, organ function). Hence, all motion would cease leading the brain network to a state of
unconsciousness (semistability) wherein all or partial [117] subnetworks will possess identical energies
(energy equipartition or synchronization) and, hence, internal entropy will approach a local maximum
or, more precisely, a saddle surface in the state space of the process state variables. Thus, the transition
to a state of anesthetic unconsciousness involves an evolution from an initial state of high (external)
entropy production (consciousness) to a temporary saddle state characterized by a series of fluctuations
corresponding to a state of significantly reduced (external) entropy production (unconsciousness).

In contrast, in a healthy conscious human entropy dissipation occurs spontaneously and, in accordance
with Jaynes’ maximum entropy production principle [86,118], energy dispersal is optimal leading
to a maximum entropy production rate. Hence, low entropy in (healthy) human brain networks is
synonymous with consciousness and the creation of order (negative entropy) reflects a rich fractal
spatio-temporal variability which, since the brain controls key physiological processes such as ventilation
and cardiovascular function, is critical for delivering oxygen and anabolic substances as well as clearing
the products of catabolism to maintain healthy organ function. And in accordance with the second law
of thermodynamics, the creation and maintenance of consciousness (internal order—negative entropy) is
balanced by the external production of a greater degree of (positive) entropy. This is consistent with the
maxim of the second law of thermodynamics as well as the writings of Kelvin [119], Gibbs [120,121],
and Schrödinger [122] in that the creation of a certain degree of life and order in the universe is inevitably
coupled by an even greater degree of death and disorder [110].

In a network thermodynamic model of the human brain, consciousness can be equated to the brain
dynamic states corresponding to a low internal system entropy. In recent research [112], the author
shows that the second law of thermodynamics provides a physical foundation for the arrow of time.
In particular, the author shows that the existence of a global strictly increasing entropy function on
every nontrivial network thermodynamic system trajectory establishes the existence of a completely
ordered time set that has a topological structure involving a closed set homeomorphic to real line, which
establishes the emergence of the direction of time flow. Thus, awareness of the passage of time is a
direct consequence of regressive changes in the continuous rate of entropy production taking place in
the brain and eventually leading (in finite time) to a state of no entropy production (i.e., death). Since
these universal regressive changes in the rate of entropy production are spontaneous, continuous, and
decreasing in time, human experience perceives time flow as unidirectional. However, since the rate of
time flow and the rate of system entropy regression (i.e., free energy consumption) are bijective (i.e.,
one-to-one and onto), the human experience of time flow is subjective.

During the transition to an anesthetized state, the external and internal free energy sources are
substantially reduced or completely severed in part of the brain leading the human brain network
to a semistable state corresponding to a state of local saddle (stationary) entropy. Since all motion
in the state variables (synaptic drives) ceases in this unconscious (synchronized) state, our index for
the passage of time vanishes until the anesthetic wears off allowing for an immediate increase of
the flow of free energy back into the brain and other parts of the body. This, in turn, gives rise
to a state of consciousness wherein system entropy production is spontaneously resumed. Merging
system thermodynamics with multistability theory and mathematical neuroscience with the goal of
providing a mathematical framework for describing the anesthetic cascade mechanism is the subject
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of current research. In addition, connections between thermodynamics, neuroscience, and the arrow of
time [110,112,113] are also being explored to develop an understanding on how the arrow of time is built
into the very fabric of our conscious brain.

12. An Electromagnetic Field Theory of Consciousness

The cerebral cortex can be modeled by a columnar topology, where thousands of 0.3–0.6 mm-wide
cortical macrocolumns are compactly organized in a parallel configuration to create the approximately
4 mm-thick cerebral cortex [123]. Macrocolumns are bundles of approximately 100, 000 neurons which
are arranged in six distinguishable layers and create a six-layered structure of the cortex; see Figure 21.
Layers I, II, III, V, and VI are mainly composed of excitatory pyramidal cells, whereas Layer IV is almost
free of pyramidal cells and is mainly composed of stellate cells. The apical dendrites of pyramidal cells
perpendicularly extend towards the cortex superficial layer (Layer I), where they receive inputs from
other parts of the brain.

Figure 21. Schematic representing the connective topology within the six-layer
cortical macrocolumn.
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Information is communicated inside the brain by electrical signals, or more specifically, by the
creation and transmission of ions. The electrical signal received by dendrites at synapses travels along the
dendrites to the cell body, and the resulting cell-generated signal travels to another cell along the axon.
Thus, the spatial topology of the cortex dictates the paths along which the ions can flow through and the
locations where they can reside. Based on the specific columnar topology of the cerebral cortex described
above, the major portion of the electric current inside the cortex, which is conducted by pyramidal cells,
flows radially through the cortex.
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The almost evenly distributed short-range current flow through stellate cells in Layer IV do not
significantly contribute to the global orientation of the current flow through the cortex. When apical
dendrites of pyramidal cells receive excitatory inputs through synapses in Layer I, positive ions flow
through them from synaptic clefts toward cell bodies, creating a deficit of positive ions at the synaptic
clefts. The positive ions flowing through apical dendrites generate a transient radial current and, due to
the capacitive characteristics of the cell membrane, accumulate around the cell membrane. As a result,
macroscopic electrical activities in cerebral cortex possess four global behaviors (see Figures 21 and 22).
Namely, (i) at Layer I, the potential transition due to the activity of neurons is negative; (ii) at layers II,
III, V, and VI, the potential transition due to the activity of neurons is positive; (iii) no significant potential
transition is observed in Layer IV; and (iv) transient currents due to neuron activity flows radially inside
the cortex.

Figure 22. Transient electromagnetic neronal dipole. Solid lines represent the electric field
and the dashed lines represent the magnetic field.
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Sparse activities of neurons in a region of the cortex do not generate significant electromagnetic
effect in the cortex. However, when a large portion of neurons in a column or adjacent columns are
hyperactivated, that is, fire synchronously, the resulting electromagnetic field due to the structured
movement and ion configuration described above is strong enough to create significant electromagnetic
interference inside the cortex; see Figure 22.

The state of unconsciousness due to the induction of general anesthesia can potentially be due to
the strong electromagnetic pattern formation in the cerebral cortex. Available physiological evidence
strongly suggests that the excitatory input signals received from the reticular activating system [123]
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are crucial in maintaining the conscious state of cerebral activities. Anesthetics are believed to prolong
the post synaptic potential of inhibitory neurons, which mainly reside in Layer IV of the cortex [123].
Inhibitory neurons provide negative feedback signals for the population of neurons of cortical columns,
and hence, can play an essential role in the stability of the highly interconnected network of neurons
as well as the global behavior of these neurons. In particular, anesthetics can reduce the inflow of free
energy to the brain leading to global or partial [117] synchronization of neuron firing.

Synchronization in the population of neurons present in Layers II, III, V, and VI of the cortex can
create a strong electromagnetic pattern. The resulting electromagnetic field can affect the reception
of signals from the reticular activating system by reducing the conduction velocity, partially or totally
blocking, or even reflecting the incoming signals. Consequently, the cortex loses a large amount of its
crucial background wash of input signals, which can result in loss of consciousness [15].

Even though electromagnetic field models have been proposed to explain consciousness (see [124]
and the references therein), these models are largely based on emperical observation and lack
precise mathematical formulations. A mathematical framework for fostering precision, completeness,
and self-consistency in understanding the anesthetic cascade in the human brain using system
thermodynamics and electromagnetic field theories are the subject of current research by the authors.

13. Conclusions

With advances in biochemistry, molecular biology, and neurochemistry there has been impressive
progress in the understanding of the function of single neurons. Using the example of the mechanism of
action of general anesthesia, the past decade has seen a remarkable explosion of our understanding
of how anesthetic agents affect the properties of neurons. However, despite this advance, we still
do not understand how molecular mechanisms translate into the induction of general anesthesia at
the macroscopic level. In particular, there has been little focus on how the molecular properties of
anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is,
lack of responsiveness to noxious stimuli. This clinical property leads to consideration of anesthesia
as a nearly binary (on-or-off) variable, and the relationship between the concentration of an anesthetic
agent in the central nervous system and the anesthetic state is described in terms of the probability of
responsiveness as a function of anesthetic concentration [10]. In clinical studies, the typical observation
is that at low concentrations of anesthetic agent the probability of responsiveness (to noxious stimuli)
is high, possibly unity. Then as the anesthetic concentration increases there is a sharp transition to a
probability of responsiveness that is low and possibly zero.

In this paper, we developed a synaptic drive firing rate model to model the central nervous system
as a (possibly discontinuous) autonomous dynamical system and showed that the transition to the
anesthetic state exhibits multistability; that is, the system exhibits multiple attracting equilibria under
asymptotically slowly changing system parameters directly affected by anesthetic concentrations. In
future research we plan to merge system thermodynamics, multistability theory, and dynamic network
graph-theoretic notions to develop a framework for understanding central nervous system behavior
characterized by abrupt transitions between mutually exclusive conscious and unconscious states.
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Such phenomena are not limited to general anesthesia and can be seen in biochemical systems,
ecosystems, gene regulation and cell replication, as well as numerous medical conditions (e.g., seizures,
epilepsy, schizophrenia, hallucinations, etc.) and are obviously of great clinical importance but have
been lacking rigorous theoretical frameworks. The primary impact of such frameworks will be to allow
for the development of models that go beyond words to dynamic equations, leading to mathematical
models with greater precision and self-consistency. Mathematical formulations enforce self-consistency
and while “self-consistency is not necessarily truth, self-inconsistency is certainly falsehood.” And
within the context of general anesthesia, a dynamical system formulation for neuroscience can foster
the development of new frameworks that will allow us to interpret experimental and clinical results,
connect biophysical findings to psychophysical phenomena, explore new hypothesis based on the
cognitive neuroscience of consciousness and develop new assertions, and improve the reliability of
general anesthesia. In addition, such a framework can establish a scientific basis for new metrics of
anesthetic depth by making the assessment of consciousness a mechanistically grounded tool.
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