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Abstract: The Principle of Maximum Entropy is often used to update probabilities due to 

evidence instead of performing Bayesian updating using Bayes’ Theorem, and its use often 

has efficacious results. However, in some circumstances the results seem unacceptable and 

unintuitive. This paper discusses some of these cases, and discusses how to identify some 

of the situations in which this principle should not be used. The paper starts by reviewing 

three approaches to probability, namely the classical approach, the limiting frequency 

approach, and the Bayesian approach. It then introduces maximum entropy and shows its 

relationship to the three approaches. Next, through examples, it shows that maximizing 

entropy sometimes can stand in direct opposition to Bayesian updating based on reasonable 

prior beliefs. The paper concludes that if we take the Bayesian approach that probability is 

about reasonable belief based on all available information, then we can resolve the conflict 

between the maximum entropy approach and the Bayesian approach that is demonstrated in 

the examples. 
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1. Introduction 

The Principle of Maximum Entropy is often used to update probabilities due to evidence instead of 

performing Bayesian updating using Bayes’ Theorem, and its use often has efficacious results. 

However, in some circumstances the results seem unacceptable and unintuitive. This paper discusses 

some of these, and discusses how to identify some of the situations in which this principle should not 

be used. First, we provide a brief discussion of the three major approaches to probability in order to 

provide background and context. See [1] for a more complete introduction. 

The classical approach to probability refers to most efforts to deal with probability up to and 

including the time of Laplace (1749–1827). Laplace and his contemporaries did not consider their 

efforts an “approach”; it is a term applied retrospectively. At its heart we find Laplace’s definition  

of probability [2]: 

The theory of chance consists in reducing all the events of some kind to a certain number of cases 

equally possible, that is to say, such as we may be equally undecided about in regard to their 

existence, and in determining the number of cases favorable to the event whose probability is 

sought. The ratio of this number to that of all the cases possible is the measure of the probability. 

Probabilities are assigned within the framework of the classical approach by using the principle of 

indifference (a term first used by J.M. Keynes in 1921 [3]). The fundamental idea is that “alternatives 

are always to be judged equiprobable if we have no reason to expect or prefer one over the other” [4]. 

Classical examples of applying the principle of indifference include assigning 1/2 to the probability of 

heads in a coin toss, and assigning 1/52 to the probability of each card in an ordinary deck of 52 cards. 

Many paradoxes have been developed concerning applications of the principle of indifference. 

Neapolitan [1] discusses some of them.  

Laplace and his contemporaries believed in determinism, as is evident from the following statement [2]: 

We ought then to regard the present state of the universe as the effect of its anterior state and as the 

cause of the one which is to follow. Given for one instant an intelligence which could comprehend all 

the forces by which nature is animated and the respective situation of the beings who compose it—

an intelligence sufficiently vast to submit these data to analysis—it would embrace in the same 

formula the movements of the greatest bodies of the universe and those of the lightest atom; for it, 

nothing would be uncertain and the future, as the past, would be present to its eyes. 

Suppose now that we assign 5.0)( headsP  in the case of a coin toss, and we toss the coin 1000 

times. How many times would we expect heads to occur? Today, most of us would say about 500. This 

notion of probability as a relative frequency of the occurrence of an event was formalized in the early 

20th century by Richard von Mises (although he had 19th century precursors such as Cournot and 

Venn). Specifically, if an experiment is repeated n  times and )(ES n  is the number of times an event 

E  occurs, then von Mises [5] defined the probability of E  as follows: 

.
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This is called the limiting frequency approach to probability. The argument is that if, for example, 

we tossed a coin 1000 times, it might turn up head 543 times, after 10,000 tosses there might be 5067 

heads, and after 100,000 tosses 50,085 heads. The point is that as the number of repetitions of the 

experiment increases, the number of stable digits in the relative frequency increases. Therefore, 

according to the theory, there is a limiting value and that value is the probability. Of course, this cannot 

be established empirically since we can never proceed indefinitely; however, von Mises [5] said that 

this approach is applicable whenever we have “sufficient reason to believe that the relative frequency 

of the observed attribute would tend to a fixed limit if the observations were indefinitely continued.” In 

1946 Kerrich [6] conducted many experiments concerning games of chance such as throwing a die. He 

found that the relative frequency did seem to converge and it converged to the value obtained using the 

principle of indifference.  
Inherent in the von Mises theory is that separate trials of experiment are independent. That is, 

suppose 5.0)( headsP , and we repeatedly toss the coin 11 times. Then regardless of whether we 

observe 10 straight heads, 10 straight tails, or some mixture of the two, )(headsP  is still 5.0  on the 

11th toss. That is, the relative frequency of heads on the 11th toss in the limit is 5.0  for all the 

different combinations of occurrences on the first 10 tosses. In 1971 Iverson et al. [7] conducted 

experiments substantiating that this is the case. 

In a sense, the limiting frequency approach subsumes the classical approach because in practice 

probabilities obtained with the principle of indifference are about equal to the observed relative 

frequencies. However, it allows us to apply probability theory to a much broader domain. For example, 

suppose we are repeatedly tossing a thumbtack, and when it lands on its flat head we say “heads” while 

when it lasts with the point and top touching we say “tails”. Due to the asymmetry of the thumbtack 

we would not apply the principle of indifference and say 5.0)( headsP . However, we can toss the 

thumbtack 000,10  times and if it lands heads 6673 times, we can approximate )(headsP  by 6673.0 . 

Most applications of probability in statistics concern relative frequencies that cannot be obtained using 

the principle of indifference. For example, if we do a randomly controlled experiment where we give 

1000 individuals medication X for hair regrowth and give 1000 individuals placebo, and investigated 

the fractions of individuals that regrow hair, we are estimating assumed objective probabilities (infinite 

relative frequencies) by the observed relative frequencies. 

Both of the approaches just presented assume, in some sense, that objective probabilities exist. The 

classical approach assumes a probability is logically correct based on the information, while the 

limiting frequency approach assumes a probability is a physical property of nature. 
Suppose now that we are considering betting on the football game between the Chicago Bears and 

the Detroit Lions. To ascertain a fair bet, gambler Joe needs to assess the probability of the Bears 

winning. If he would be willing to give up $6 if the Bears lose for the promise to receive $4 if they 

win, then for Joe 6.0)( BearsWinP . If Mary would be willing to give up $7 if they lose for the 

promise to receive $3 if they win then for Mary 7.0)( BearsWinP . This is called the subjective or 

Bayesian approach to probability. This approach also evolved largely in the 20th century, and is 

discussed at length in [8,9]. According to this approach, objective probabilities do not always exist; 

however we can ordinarily assign a probability that is a property of an individual’s belief. There are 

many versions of “Bayesians,” some of which deny the existence of objective probabilities. Good [10] 

states there are 46,656 varieties of Bayesians. Versions include subjective, personalist, objective, 
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empirical Bayes (EB), semi-EB, semi-Bayes, epistemic, intuitionist, logical, fuzzy, hierarchical, 

pseudo, quasi, compound, parametric, nonparametric, hyperparametric, and non-hyperparametric 

Bayes. In a sense, the Bayesian approach subsumes the relative frequency approach in the following 

way. First, it allows us to apply probability to events such as the Bears/Lions football game. Since this 

game will only be played once, the limiting frequency approach, which requires a repeatable 

experiment, is not applicable. There are many important applications of probability that involve such 

events, not the least of which is economic forecasting. Second, suppose we have a repeatable 

experiment such as a coin toss. Then we say the sequence that represents the outcome of a number of 

repetitions of the experiment is exchangeable for an individual, if all sequences that are the same 

length and have the same number of occurrences of heads are assigned the same probability by the 

individual. That is, if we let 0 represent “tails” and 1 represent “heads”, the sequences 1000100100 and 

1110000000 are assigned the same probability. Furthermore, any other sequence containing three 

heads and seven tails has that same probability. The assumption of exchangeability in the subjective 

approach is analogous to the assumption of independence in the relative frequency approach. As  

Zabell [11] discusses, if we assume exchangeability then, except for the case of very strong prior 

beliefs (e.g. the individual says she knows the probability of heads for certain and no number of 

repetitions of the experiment will affect her belief) than after the experiment is repeated n  times the 

individual’s )(headsP  must be about equal to the relative frequency of heads when n  is large. 

2. The Principle of Maximum Entropy 

One interpretation of the principle of indifference is that there is an experiment which uses some 

physical process to randomly obtain exactly one of the alternatives, and that this process treats all of 

the alternatives equitably. Another interpretation is that we should apply it whenever the information 

gives us no reason to choose one alternative over the other. This interpretation assume that it is not 

necessary that there is a physical process that treats all the alternatives equitably; rather it is only 

necessary that there is nothing in the information to imply that they are not treated equitably. Jaynes [12] 

is a proponent of this interpretation. According to Jaynes, assigning values equitably in such a case is 

the least presumptive assignment of probabilities. Based on this idea, Jaynes developed an extension to 

the principle of indifference called the principle of maximum entropy. Before describing this principle, 

we note that Jaynes does not call probabilities, obtained with the principle of maximum entropy, 

“objective” in the sense of the relative frequency approach. However he does state [12]: 

But it is just the point of the maximum-entropy principle that it achieves “objectivity” of our 

inferences in the sense that we base our predictions only on the information that we do, in fact, have... 

and 

The probabilities .... are an entirely correct description of our state of knowledge... 

Therefore, it seems that Jaynes’ approach does consider probabilities objective in the sense of the 

logical approaches of Keynes [3] and Carnap [13]. That is, he feels that there are logically correct 

probabilities based on the information. 

Jaynes extends the principle of indifference as follows: If there is information about the experiment 

which implies that the probabilities cannot all be n/1 , then the least presumptuous assignment of 
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probabilities is the one which comes as close as possible to distributing the probabilities equitably 

while satisfying the information. Jaynes calls this rule for assigning probabilities the principle of 

maximum entropy. If we define the entropy H  in the experiment by: 

,ln
1

ii

n

i

ppH 


  

where ip  is the probability of the i th alternative, then it can be shown that H  is minimized when 

1ip  for some i , and maximized when npi /1  for all i . The principle of maximum entropy states 

that in the light of information which implies that the probabilities cannot all be n/1 , the least 

presumptuous assignment of probabilities is the one which maximizes H . 

Jaynes illustrates the principle with his Brandeis dice problem. He supposes a six-sided die for 

which it is known, in repeated rolls, that the average number of spots is 4.5, not 3.5, as would be 

expected for a fair die. That is:  

.5.4
6

1




i
i

ip  

Given this information and nothing else, the problem is to determine the probabilities of the six 

sides turning up on the next role. According to the principle of maximum entropy, the solution is the 

one that maximizes H  relative to the mean value constraint. Jaynes solves the problem as a standard 

variational problem using the Lagrange multiplier technique. He determines the probabilities to be: 

}.34379.0,23977.0,16545.0,11416.0,0777.0,05435.0{},,,,,{ 654321 pppppp  

Jaynes [12] offers cogent evidence justifying the principle of maximum entropy. In particular, he 

shows that the principle predicts results in physics that agree with our macroscopic measurements. 

Jaynes [12] notes: 

The price is that we must loosen the connections between probability and frequency, by returning 

to the original viewpoint of Bernoulli and Laplace. The only new feature is that their Principle of 

Insufficient Reason is now generalized to the Principle of Maximum Entropy. Once this is accepted, 

the general formalism of statistical mechanics...can be derived in a few lines without wasting a 

minute on ergodic theory... 

The price we have paid for this simplification is that we cannot interpret the canonical distribution 

as giving the frequencies with which a system goes into the various states. But nobody has ever 

needed that interpretation anyway. In recognizing that the canonical distribution represents only 

our state of knowledge when we have certain partial information derived from macroscopic 

measurements, we are not losing anything we had before. 

So, Jaynes is able to substantiate the existence of probabilities using the principle of maximum 

entropy with evidence which is not relative frequencies, dismissing, in the case of these applications to 

physics, Nagel’s [14] criticism of the classical approach, which was that there is no proof that the 

probabilities obtained using the principle of indifference will agree with relative frequencies. 
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3. Difficulties with the Principle of Maximum Entropy 

When Jaynes extends the principle of maximum entropy from applications to physics to problems 

such as the Brandeis dice problem, the physical evidence for the probabilities no longer exists, and we 

need some other evidence if we are to claim the principle achieves “objectivity of our inferences....” [12]. 

Jaynes’ does provide a justification for maximizing entropy in the case of the Brandeis dice 

problem. However, the justification is relative to the interpretation that the mean value constraint is 

determined from repeated throws of the die. Jaynes [12] states the following: 

When a die is tossed, the number of spots up can have any value i  in 61  i . Suppose a die has 

been tossed N  times and we are told only that the average number of spots was not 3.5 as we 

would expect from an “honest” die but 4.5. Given this information and nothing else, what 

probability should we assign to i  spots in the next toss? 

Jaynes [15] then shows that if the mean value is obtained by measuring the outcomes of N repeated 

tosses and exchangeability is assumed, then the maximum entropy probability assignments are 

consistent with achieving the constraint in exponentially more ways than any other assignment of 

probabilities. So, with this interpretation of the mean value constraint, he provides a persuasive 

argument justifying the use of maximum entropy to assign probabilities.  
Before proceeding, we provide a concrete example. Suppose we have a three-sided die (We 

illustrate the problem with a die for the sake of focus. However, our discussion applies to any 

experiment with three outcomes.) with 1, 2, and 3 spots inscribed on the respective sides, and the only 

information about the die is that the average number of spots in repeated rolls is known to be 2, the 

value that would be obtained if the die were fair. For example, perhaps the die was purchased at a 

novelty store, and so we have no reason to believe that it is fair or that it has a particular bias. 

However, a friend later tossed the die many times and found that the mean value is 2. The friend 

shared the mean value with us, but not the actual results of the individual rolls. So, we believe almost 

for certain that the mean values is 2, and this is our only information about the probabilities. Since 

values of 1/3 for all ip  satisfy the mean value constraint, and since these values yield the absolute 

maximum entropy, the maximum entropy solution is easily seen to be 3/1ip  for all i . 

Next we investigate another way to perhaps achieve “objectivity of inferences” in the case of the 

example just presented. Since we have no reason to believe the die is fair, we could consider all 

probability distributions that satisfy the constraints in the problem equally probable. That is, we apply 

the principle of indifference to the probability values themselves. To that end, if we assume ip  has 

some objective value, and if we let ix  be a random variable representing the possible values that ip  

could have, then the constraints in the problem are as follows: 
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If we fix 1x  and solve for 2x  and 3x  we obtain: 
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Since 0  x2 1, the only values of 1x  that are possible are ones satisfying the inequality: 

.1210 1  x  

So, the possible values of 1x  are all values in the interval [0, 0.5], and it is clear each of these values 

can occur in exactly one way; that is, with 13 xx   and 12 21 xx  . Therefore, based on an application 

of the principle of indifference, the probability density function for 1p  having value 1x  in the interval 

]5.0,0[  is the uniform density function 2)05.0/(1  , and the expected value of 1x  is given by: 

.25.02)( 1

5.0

01   dxxxE  

In the same way, if we fix 2x , we find that each value of 2x  in the interval ]1,0[  can occur in 

exactly and that the expected value of 2x , obtained using the principle of indifference, is 0.5. Finally, 

fixing 3x , we find that each value of 3x  in the interval ]5.0,0[  can occur in exactly one way and no 

other values can occur, and therefore the expected value of 3x , obtained using the principle of 

indifference, is 25.0 . 

This solution is clearly different from the maximum entropy solution of 1/3 for all pi. It is also 

intuitively appealing, since, given that 2p  could be as high as 1, while the other probabilities are 

bound above by 0.5, we may be inclined to bet on 2. Once the information gives us reason to prefer 

one alternative over the others, it is troublesome to claim that the probabilities, based on the 

information, are equal. 

Next, let’s investigate the Bayesian solution to obtaining the conditional probabilities given that the 

mean value of 2 for the three-sided die is obtained from N tosses of the die (Jaynes’ interpretation), and 

see how that solution compares to the maximum entropy solution and to our solution obtained by 

applying the principle of indifference to the probabilities. 

 First, we provide further background. Suppose we have a repeatable experiment with a discrete 

number of outcomes such as the tossing of the three-sided die. Zabell [16] shows that if we make 

certain reasonable assumptions about an individual’s beliefs concerning the probabilities of the 

outcomes of the experiment, then that individuals beliefs about those probabilities must be represented 

by a Dirichlet distribution of the probability values. The Dirichlet density function with parameters 

,,...,, 21 kaaa  ,1 i
k
i aM   where kaaa ,...,, 21  are real numbers 0 , is: 
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The Dirichlet density function is denoted by ),...,,;,...,( 21121 kk aaapppDir  . When we use this 

density function to represent our prior belief about a probability that is a relative frequency, intuitively 

the parameter ia  represents the number of times our experience is equivalent to having seen alternative 

i  occur ia  times. For example, in the case of a normal six-sided die bought from a store that sells 

reputable gambling apparatus, we might feel very strongly that all alternatives have the same 

probability and take 50621  aaa   because our prior experience is equivalent to having seen 
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each alternative occur 50 times. In the case of a three-sided die bought at a novelty store, we may have 

no reason to prefer one outcome over the other, but we would not feel strongly that they all have the 

same probability. So we might take 1321  aaa . Figure 1a shows the )50,50,50;,( 21 ppDir  

density function and Figure 1b shows the )1,1,1;,( 21 ppDir . Note that the )50,50,50;,( 21 ppDir  is 

highly peaked at the point )3/1,3/1( . The reason is that we have strong belief the die is fair. Note 

further that )1,1,1;,( 21 ppDir  is uniform over the entire allowable range of values. The reason is that 

we are completely ignorant as to the probability of each outcome. 

Figure 1. Two Dirichlet density functions. 
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(a) The )50,50,50;,( 21 ppDir  density function (b) The )1,1,1;,( 21 ppDir  density function 

Suppose we represent our prior belief about the probabilities of the outcomes of the three-sided die 
with the ),,;,( 32121 aaappDir , observe s1 occurrences of 1, s2 occurrences of 2, and s3 occurrences of 

the 3, and assume infinite exchangeability. Then it is possible to show [1,17] that the updated 

conditional probabilities based on these observations are given by: 
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where 321 aaaM   and 321 sssN  . 

Assume our belief about the probabilities of the three alternatives is represented by the Dirichlet 

density function ),,;,( 32121 aaappDir . Let rMVN   represent the event that the sample average equals 

r  in the first N rolls, and let )|2( rMVp N   be the probability of a 2 on the 1N st role given 

rMVN  . If 2NMV , it is not hard to see that we must have s1 = s3. If we assume all possible values 

of s1 and s2 that satisfy this constraint are equally probable given 2NMV  and that N is even, then 

according to Equation 1 the probability of 2 on the 1N st role is given by 
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It is straightforward that: 

.5.0)2|2(lim 
 N

n
MVp  

We obtain a similar result for N odd. Hence the solution, which was obtained by applying the principle 

of indifference to the probability values subject to the mean value constraint, agrees with the solution 
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obtained by representing our belief about the probabilities using the ),,;,( 32121 aaappDir  density 

function, assuming all outcomes that satisfy the mean value constraint are equally probable, and doing 

Bayesian updating.  

So, the maximum entropy solution does not agree with the Bayesian solution if we consider all 

outcomes satisfying the mean value constraint equally probable. We would need to make some other 

assumption about the likelihood of these outcomes to make Bayesian updating consistent with the 

maximum entropy solution. In some particular application perhaps there may be a justification for 

choosing a non-uniform distribution on the outcomes. However, in the absence of any other 

information, it seems least presumptuous to make it uniform.  

Herein lies the conflict between maximizing entropy and using the Bayesian solution we provided. 

Is it least presumptuous to keep the probabilities of the outcomes of the toss as close to uniform as 

possible (maximum entropy solution), or is it least presumptuous to put a uniform distribution on all 

outcomes of the N tosses that satisfy the mean value constraint?  

4. Conclusions 

In general, there is no answer to the question just posed. Rather a way out of this conundrum is to 

carefully analyze each situation and adopt the strategy that seems most applicable, as suggested  

by Seidenfield [18]: 

A pragmatic appeal to successful applications of the MAXENT formalism cannot be dismissed 

lightly. The objections that I raise in this paper are general. Whether (and if so, how) the 

researchers who apply MAXENT avoid these difficulties remains an open question. Perhaps, by 

appealing to extra, discipline-specific assumptions they find ways to resolve conflicts with 

MAXENT theory. A case-by-case examination is called for. 

For example, consider again the case of the three-side die. If one purchased the die at a store which 

is known to sell fair gambling apparatus, then a priori one would believe almost for certain that the die 

was very close to fair, and so maximizing entropy relative to a mean value constraint could be 

regarded as a reasonable source of subjective probabilities. On the other hand, in the case where one 

had no reason to believe a priori that the die was fair (the die was purchased at a novelty store), the 

application of the principle of indifference, as done above, seems to be a more reasonable source of 

subjective probabilities. Notice that in both these situations we are conditioning on more information 

that just the mean value constraint. They represent different cases.  

5. Further Reading 

Dias and Shimony [19] forwarded criticisms of the principle of maximum entropy similar to those 

presented here. Jaynes [20] responds to these criticisms. Uffink [21,22] provides more detailed 

mathematical arguments making points similar to the ones forwarded here. Diaconis and Zabell [23] 

show that there are a number of distance measures that one could use to update probability. You then 

find the nearest probability to the one you start out with, but which incorporates the new constraint. 

They note that these different measures can give quite different answers and there is no natural way to 

choose between them. 
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