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Abstract: We discuss the use of the Newton method in the computation of
max(p 7→ Ep [f ]), where p belongs to a statistical exponential family on a finite state
space. In a number of papers, the authors have applied first order search methods based
on information geometry. Second order methods have been widely used in optimization
on manifolds, e.g., matrix manifolds, but appear to be new in statistical manifolds. These
methods require the computation of the Riemannian Hessian in a statistical manifold. We
use a non-parametric formulation of information geometry in view of further applications in
the continuous state space cases, where the construction of a proper Riemannian structure is
still an open problem.
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1. Introduction

In this paper, statistical exponential families [1] are thought of as differentiable manifolds along
the approach called information geometry [2] or the exponential statistical manifold [3]. Specifically,
our aim is to discuss optimization on statistical manifolds using the Newton method, as is suggested
in ([4] (Ch. 5 and 6)); see also the monograph [5]. This method is based on classical Riemannian
geometry [6], but here, we put our emphasis on coordinate-free differential geometry; see [7,8].
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We mainly refer to the above-mentioned references [2,4], with one notable exception in the
description of the tangent space. Our manifold will be an exponential family EV of positive densities, V
being a vector space of sufficient statistics. Given a one-dimensional statistical model p(t) ∈ EV , t ∈ I ,
we define its velocity at time t to be its Fisher score s(t) = d

dt
ln p(t) [9]. The Fisher score s(t) is a

random variable with zero expectation with respect to p(t), Ep(t) [s(t)] = 0. Because of that, the tangent
space at p ∈ EV is a vector space of random variables with zero expectation at p. A vector field is a
mapping from p to a random variable V (p), such that for all p ∈ E , the random variable V (p) is centered
at p, Ep [V (p)] = 0. In other words, each point of the manifold has a different tangent space, and this
tangent space can be used as a non-parametric model space of the manifold. In this formalism, a vector
field is a mapping from densities to centered random variables, that is, it is what in statistics is called a
pivot of the statistical model. To avoid confusion with the product of random variables, we do not use
the standard notation for the action of a vector field on a real function. This approach is possibly unusual
in differential geometry, but it is fully natural from the statistical point of view, where the Fisher score
has a central place. Moreover, this approach scales nicely from the finite state space to the general state
space; see the discussion in [9] and the review in [3].

A complete construction of the geometric framework based on the idea of using the Fisher scores as
elements of the tangent bundle has been actually worked out. In this paper, we go on by considering a
second order geometry based on the non-parametric settings.

Our main motivation for such a geometrical construction is its application to combinatorial
optimization using exponential families, whose first order version was developed in [10–14]. We give
here an illustration of the methods in the following toy example.

Consider the function f(x1, x2) = a0 + a1x1 + a2x2 + a12x1x2, with x1, x2 = ±1, a0, a1, a2, a12 ∈
R. The function f is a real random variable on the sample space Ω = {+1,−1}2 with the
uniform probability λ. Note that the coordinate mappings X1, X2 of Ω generate an orthonormal basis
1, X1, X2, X1X2 of L2(Ω, λ) and that f is the general form of a real random variable on such a space.
Let P> be the open simplex of positive densities on (Ω, λ), and let EV be a statistical model, i.e., a subset
of P>. The relaxed mapping F : EV → R,

F (p) = Ep [f ] = a0 + a1 Ep [X1] + a2 Ep [X2] + a12 Ep [X1X2] , (1)

is strictly bounded by the maximum of f , F (p) = Ep [f ] < maxx∈Ω f(x), unless f is constant. We are
looking for a sequence pn, n ∈ N, such that Epn [f ] → maxx∈Ω f(x) as n → ∞. The existence of such
a sequence is a nontrivial condition for the model E . Precisely, the closure of EV must contain a density,
whose support is contained in the set of maxima {x ∈ Ω|f(x) = max f}. This condition is satisfied by
the independence model, V = Span {X1, X2}, where we can write:

F (η1, η2) = a0 + a1η
1 + a2η

2 + a12η
1η2, ηi = Ep [Xi] , (2)

See Figure 1.
The gradient of Equation (2) has components ∂1F = a1 + a12η

2, ∂2F = a2 + a12η
1, and the flow

along the gradient produces increasing values for F ; however, the gradient flow does not converge to
the maximum of F ; see the dotted line in Figure 2. However, one can follow the suggestion by [15]
and use a modified gradient (the “natural” gradient) flow that produces better results in our problem; see
Figure 3. Full details on this example are given in Section 2.5.2.
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Figure 1. Relaxation of the Function (2) on the independence model. a1 = 1, a2 = 2,
a12 = 3.
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Figure 2. Gradient flow of the Function (2). The domain has been increased to include
values outside the square [−1,+1]2.
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Figure 3. Gradient flow (blue line) and natural gradient flow (black line) for the
Function (2), starting at (−1/4,−1/4).
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In combinatorial optimization, the values of the function f are assumed to be available at each point,
and the curve of steepest ascent of the relaxed function is learned through a simulation procedure based
on exponential statistical models.

In this paper, we introduce, in Section 2, the geometry of exponential families and its first order
calculus. The second order calculus and the Hessian are discussed in Section 3. Finally, in Section 4, we
apply the formalism to the discussion of the Newton method in the context of the maximization of the
relaxed function.

2. Models on a Finite State Space

We consider here the exponential statistical manifold on the set of positive densities on a measure
space (Ω, µ) with Ω finite and counting measure µ. The setup we describe below is not strictly required
in the finite case, because in such a case, other approaches are possible, but it provides a mathematical
formalism that has its own pros and that scales naturally to the infinite case.

We provide below a schematic presentation of our formalism as an introduction to this section.

• Two different exponential families can actually be the same statistical model, as the set of densities
in the two exponential families are actually equal. This fact is due to both the arbitrariness of the
reference density and the fact that sufficient statistics are actually a vector basis of the vector
space generated by the sufficient statistics. In a non-parametric approach, we can refer directly to
the vector space of centered log-densities, while the change of reference density is geometrically
interpreted as a change of chart. The set of all possible such charts defines a manifold.
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• We make a specific interpretation of the tangent bundle as the vector space of Fisher’s scores at
each density and use such tangent spaces as the space of coordinates. This produces a different
tangent space/space of coordinates at each density, and different tangent spaces are mapped
one onto another by a proper parallel transport, which is nothing else than the re-centering of
random variables.
• If a basis is chosen, a parametrization is given, and such a parametrization is, in fact, a new chart,

whose values are real vectors. In the real parametrization, the natural scalar product in each scores
space is given by Fisher’s information matrix.
• Riemannian gradients are defined in the usual way. It is customary in information geometry to

call “natural gradient” the real coordinate presentation of the Riemannian gradient. The natural
gradient is computed by applying the inverse of the Fisher information matrix to the Euclidean
gradient. It seems that there are tree gradients involved, but they all represent the same object
when correctly understood.
• The classical notion of expectation parameters for exponential families carries on as another chart

on the statistical manifold, which gives rise to a further presentation of a geometrical object.
• While the statistical manifold is unique, there are at least three relevant connections as structures

on the vector bundles of the manifold: one relating to the exponential charts, one relating to the
expectation charts and one depending on the Riemannian structure.

2.1. Exponential Families As Manifolds

On the finite sample space Ω, #Ω = n, let a set of random variables B = {X1, . . . , Xm} be given,
such that

∑
J αjXj is constant if, and only if, the αj’s are zero, or, equivalently, such that X0 =

1, X1, . . . , Xm are affinely independent. The condition implies, necessarily, the linear independence
of B. A common choice is to take a set of linearly independent and µ-centered random variables.

We write V = Span {X1, . . . , Xm} and define the following exponential family of positive densities
p ∈ P>:

EV =
{
q ∈ P>

∣∣q ∝ eV p, V ∈ V
}
. (3)

Given any couple p, q ∈ EV , then there exist a unique set of parameters θ = θp(q), such that:

q = exp

(∑
j

θj eUpXj − ψp(θ)

)
· p (4)

where eUp is the centering at p, that is,

eUp : V 3 U 7→ U − Ep [U ] ∈ eUpV . (5)

The linear mapping eUp is one-to-one on V and eUpXj , j = 1, . . . ,m, and is a basis of eUpV . We view
each choice of a specific reference p as providing a chart centered at p on the exponential family EV ,
namely:

σp : exp

(∑
j

θj eUpXj − ψp(θ)

)
· p 7→ θ, (6)



Entropy 2014, 16 4265

If:

U = eUpU + Ep [U ] =
m∑
j=1

θj eUpXj + Ep [U ] , (7)

then:

Ep [U eUpXi] =
m∑
j=1

θj Ep [eUpXi
eUpXj] , (8)

so that θ = I−1
B (p)Ep [U eUpX], where:

IB(p) = [Covp (Xi, Xj)]ij = Ep [XX ′]− Ep [X]Ep [X ′] (9)

is the Fisher information matrix of the basis B = {X1, . . . , Xm}.
The mappings:

σp : EV 3 q 7→ U 7→ θ ∈ Rm (10)

where:

sp : q 7→ U = log

(
q

p

)
− Ep

[
log

(
q

p

)]
, (11)

σp : q 7→ θ = I−1
B (p)Ep [U eUpX] = I−1

B (p)Ep
[
log

(
q

p

)
eUpX

]
, (12)

are global charts in the non-parametric and parametric coordinates, respectively. Notice that
Equation (12) provides the regression coefficients of the least squares estimate on eUpV of
the log-likelihood.

We denote by ep : Rm → EV the inverse of σp, i.e.,

ep(θ) = exp

(
m∑
j=1

θj eUpXj − ψp(θ)

)
· p, (13)

so that the representation of the divergence q 7→ D (p ‖q) in the chart σp is ψp:

ψp(θ) = log
(
Ep
[
e
∑m
j=1 θ

j eUpXj
])

= Eθ
[
log

(
p

ep(θ)

)]
= D (p ‖ep(θ)) . (14)

The mapping IB : p 7→ Covp (X,X) ∈ Rm×m is represented in the chart centered at p by:

IB,p(θ) = IB(ep(θ)) = [Covep(θ) (Xi, Xj)]i,j = Hessψp(θ), (15)

See [1].

2.2. Change of Chart

Fix p, p̄ ∈ EV ; then, we can express p in the chart centered at p̄,

p = exp
(
Ū − kp(Ū)

)
· p̄, Ū ∈ eUp̄V , kp̄(Ū) = log

(
Ep̄
[
eŪ
])
. (16)

In coordinates Ū =
∑m

j=1‘ θ̄
j eUp̄Xj .
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For all q ∈ EV , q = exp (U − kp(U)) p, U ∈ eUpV , kp(U) = log
(
Ep
[
eU
])

, in coordinates
U =

∑m
j=1‘ θ

j eUpXj , we can write:

q = exp (U − kp(U)) · p
= exp (U − kp(U)) exp

(
Ū − kp̄(Ū)

)
· p̄

= exp
(
U − kp(U) + Ū − kp̄(Ū)

)
· p̄

= exp
((

(U + Ū)− Ep̄ [U ]
)
−
(
kp(U)− kp̄(Ū) + Ep̄ [U ]

))
· p̄, (17)

hence, the non-parametric coordinate of q in the chart centered at p̄ is U + Ū − Ep̄ [U ] = eUp̄(U) + Ū .
From Equation (12):

σp̄(q) = I−1
V (p̄)Ep̄

[
(
eUp̄U + Ū)

eUp̄X
]

= θ + θ̄ (18)

This provides the change of charts σp̄ ◦ σ−1
p : θ 7→ θ + θ̄. This atlas of charts defines the affine

manifold (EV , (σp)). This fact has deep consequences that we do not discuss here, e.g., our manifold is
an instance of a Hessian manifold [16].

2.3. Tangent Bundle

The space of Fisher scores at p is eUpV , and it is identified with the tangent space of the
manifold at p, TqEV ; see the discussion in [3,9]. Let us check the consistency of this statement with
our θ-parametrization.

Let:

q(τ) = exp

(
m∑
j=1

θj(τ)
eUq(0)X − ψq(0)(τ)

)
· q(0), (19)

τ ∈ I , I an open interval containing zero, a curve in EV . In the chart centered at q(0), we have from
Equation (12):

σq(0)(q(τ)) = I−1
B (q(0))Eq(0)

[
log

(
q(τ)

q(0)

)
eUq(0)X

]
= I−1

B (q(0))Eq(0)

[(
m∑
j=1

θj(τ)
eUq(0)Xj − ψq(0)(θ(τ))

)
eUq(0)X

]

= I−1
B (q(0))

m∑
j=1

θj(τ)Eq(0)

[
eUq(0)Xj

eUq(0)X
]

= I−1
B (q(0))Eq(0)

[
eUq(0)X

eUq(0)X
]
θ

= θ(τ). (20)

The vector space eUpV is represented by the coordinates in the base eUpB. The tangent bundle TEV
as a manifold is defined by the charts (σp, σ̇p) on the domain:

TEV = {(p, v)|p ∈ EV , v ∈ TpEV} (21)
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with:

(σp, σ̇p) : (q, V ) 7→
(
I−1
B (p)Ep

[
log

(
q

p

)
eUpX

]
, I−1
B (p)Ep [V eUpX]

)
. (22)

The dot notation σ̇p for the charts on the tangent spaces is justified by the computation in
Equation (23) below:

d

dt
σq(0)(q(τ))

∣∣∣∣
τ=0

= I−1
B (q(0))Eq(0)

[
d

dτ
log (q(τ))

∣∣∣∣
τ=0

eUq(0)X

]
=

I−1
B (q(0))Eq(0)

[
δq(0)

eUq(0)X
]

= σ̇q(0)(δq(0)). (23)

The velocity at τ = 0 is δq(0) = d
dτ

log (q(τ))
∣∣
τ=0
∈ Tq(0)EV and:

d

dτ
θ(τ)

∣∣∣∣
τ=0

= I−1
B (q(0))Eq(0)

[
d

dτ
log (q(τ))

∣∣∣∣
τ=0

eUq(0)X

]
= I−1

B (q(0))Eq(0)

[
δq(0)

eUq(0)X
]
, (24)

which is consistent with both the definition of tangent space as set of Fisher scores and with the chart of
the tangent bundle as defined in Equation (22).

The velocity at a generic τ is δq(τ) = d
dτ

log (q(τ)) ∈ Tq(τ)EV and has coordinates at p:

d

dτ
θ(τ) = I−1

B (q(0))Eq(0)

[
d

dτ
log (q(τ))

eUq(0)X

]
= I−1

B (q(0))Eq(0)

[
δq(τ)

eUq(0)X
]
. (25)

If V,W are vector fields on TEV , i.e., V (p),W (p) ∈ TpEV = eUpV , p ∈ EV , we define a Riemannian
metric g(V,W )) by:

g(V,W )(p) = gp(V (p),W (p)) = Ep [V (p)W (p)] (26)

In coordinates at p, V (p) =
∑

j σ̇
j
p(V ) eUpXj , W (p) =

∑
j σ̇

j
p(W ) eUpXj , so that:

gp(V (p),W (p)) = σ̇p(V )′IB(p)σ̇p(W ). (27)

2.4. Gradients

Given a function φ : EV → R let φp = φ ◦ ep, ep = σ−1
p , its representation in the chart centered at p:

EV
φ // R

Rm

ep

OO

φp

>> (28)

The derivative of θ 7→ φp(θ) at θ = 0 along α ∈ Rm is:

∇φp(0)α = ∇φp(0)I−1
B (p)IB(p)α =

(
I−1
B (p)∇φp(0)′

)′
IB(p)α = gp(I

−1
B (p)∇φp(0)′,α). (29)

The mapping ∇̃φ : p 7→ I−1
B (p)(∇φp(0))′ ∈ Rm that appears in Equation (29) is Amari’s natural

gradient of φ : EV ; see [15]. It is a standard notion in Riemannian geometry; cf. [4] (p. 46).
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More generally, the derivative of θ 7→ φp(θ) at θ along α ∈ Rm is:

∇φp(θ)α = ∇φp(θ)I−1
B (ep(θ))IB(ep(θ))α =(

I−1
B (ep(θ))∇φp(θ)′

)′
IB(ep(θ))α = gep(θ)(I

−1
B (ep(θ))∇φp(θ)′,α). (30)

Let us compare ∇φq(0) and ∇φp(θ) when q = ep(θ). As φp = φ ◦ ep and φq = φ ◦ eq, we have the
change of charts:

φq = φ ◦ eq = φ ◦ ep ◦ σp ◦ eq = φp ◦ σp ◦ eq, (31)

hence∇φq(0) = ∇φp(σp(q))J(σp ◦ eq)(0), where J(σp ◦ eq) is the Jacobian of σp ◦ eq. As σp ◦ eq(θ) =

θ + σp(q), we have J(σp ◦ eq) = Id, and in conclusion, ∇φep(θ)(0) = ∇φp(θ). For all p ∈ EV and
θ ∈ Rm,

∇̃φ(ep(θ)) = I−1
B (ep(θ))∇φp(θ). (32)

Alternatively, for all q, p ∈ EV , ∇̃φ : EV → Rm is defined by:

∇̃φ(q) = I−1
B (q)∇φp(σp(q)). (33)

The Riemannian gradient of φ : EV is the vector field ∇φ, such that DY φ = g(∇φ, Y ). Note that the
Riemannian gradient takes values in the tangent bundle, while the natural gradient takes values in Rm.
We compute the Riemannian gradient at p as follows. If y = σ̇p(Y (p)),

DY φ(p) = dφp(0)y = gp(∇̃φ(p),y) = Ep [∇φ(p)Y (p)] , (34)

hence ∇̃φ(p) = I−1
B (p)∇φp(0)′ is the representation in the chart centered at p of the vector field∇φ : EV .

Explicitly, we have (see Equation (22)),

∇̃φ(p) = I−1
B (p)(∇φp(0))′ = I−1

B (p)Ep [∇φ(p) eUpX] , (35)

∇φ(p) =
∑
j

(∇̃φ(p))j eUpXj (36)

The Euclidean gradient∇φp(θ) is sometimes called the “vanilla gradient.” It is equal to the covariance
between the Riemannian gradient∇φ(p) and the basisX , (∇φp(0))′ = Ep [∇φ(p) eUpX].

We summarize in a display the relations between our three gradients: Euclidean ∇φp(0), natural
∇̃φ(p) and Riemannian∇φ(p).

TEV
(σp,σ̇p)//

π

��

R2m

π1
��

EV σp
// Rm

TpEV
σ̇p // Rm

IB(p)

��
EV

∇φ(p)

OO

∇φp(0)
// Rm

σ̇p ◦ ∇φ(p) = I−1
B ∇φp(0) = ∇̃φ(p)

(37)
In the following, we shall frequently use the fact that the representation of the gradient vector field

∇φ in a generic chart centered at p is:

(∇φ)p(θ) = σ̇p(∇φ(ep(θ))) = (∇̃φ)(ep(θ)) = I−1
B,p(θ)∇φp(θ). (38)

It should be noted that the leftmost term (∇φ)p(θ) is the presentation of the gradient in the charts of the
tangent bundle, while in the rightmost term, ∇φp(θ) denotes the Euclidean gradient of the presentation
of the function φ in the charts of the manifold.



Entropy 2014, 16 4269

2.4.1. Expectation Parameters

As ψp is strictly convex, the gradient mapping θ 7→ (∇ψp(θ))′ is a homeomorphism from the space
of parameters Rm to the interior of the convex set generated by the image of eUpX; see [1]. The function
µp : EV defined by:

µp(q) = Eq [eUpX] = Eq [X]− Ep [X] = (∇ψp(θ))′, θ = σp(q) (39)

is a chart for all p ∈ EV . The value of the inverse q = Lp(µ) is characterized as the unique q ∈ EV , such
that µ = Eq [eUpX], i.e., the maximum likelihood estimator.

Let us compute the change of chart from p to p̄:

µp̄ ◦ µ−1
p (η) = η̄ = η + Ep [X]− Ep̄ [X] . (40)

In fact, µ = ELp(µ) [eUpX] and µ̄ = µp̄(Lp(µ)) = ELp(µ) [eUp̄X].
We do not discuss here the rich theory started in [2] about the duality between σp and µp. We limit

ourselves to the computation of the Riemannian gradient in the expectation parameters. If φ : EV ,

φp(θ) = φ ◦ ep(θ) = φ ◦ Lp ◦ µp ◦ ep(θ) = (φ ◦ Lp) ◦ (∇ψp)(θ), (41)

because µp ◦ ep(θ) = Eep(θ) [eUpX] = ∇φp(θ), hence:

∇φp(θ) = ∇(φ ◦ Lp)(∇ψp(θ)) Hessψp(θ), (42)

∇̃φ(p) = IV(p)−1(∇(φ ◦ Lp)(0) Hessψp(0))′ = (∇(φ ◦ Lp)(0))′, (43)

∇φ(p) = ∇(φ ◦ Lp)(0) eUpX, (44)

that is, the natural gradient ∇̃φ at p = Lp(µ) is equal to the Euclidean gradient of µ 7→ φ ◦ Lp(µ)

at µ = 0.

2.4.2. Vector Fields

If V is a vector field of TEV and φ : EV is a real function, then we define the action of V on φ, ∇V φ,
to be the real function:

∇V φ : EV 3 p 7→ ∇V φ(p) = ∇φp(0)σ̇p (V (p)) . (45)

We prefer to avoid the standard notation V φ, because in our setting, V (p) is a random variable, and the
product V (p)φ(p) is otherwise defined as the ordinary product.

Let us represent∇V φ in the chart centered at p:

(∇V φ)p(θ) = ∇V φ(ep(θ)) = ∇φep(θ)(0)σ̇ep(θ) (V (ep(θ))) = ∇φp(θ)Vp(θ), (46)

where we have used the equality∇φep(θ)(0) = ∇φp(θ) and Vp(θ) = σ̇ep(θ) (V (ep(θ))).
If W is a vector field, we can compute∇W∇V φ at p as:

∇W∇V φ(p) = ∇(∇V φ)p(0)σ̇p(W (p))

= Vp(0)′Hessφp(0)Wp(0) +∇φp(0)JVp(0)Wp(0), (47)
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where J denotes the Jacobian matrix.
The Lie bracket [W,V ]φ (see [7] (§4.2), [8] (V, §1), [4] (Section 5.3.1)) is given by:

[W,V ]φ(p) = ∇W∇V φ(p)−∇V∇wφ(p) = ∇φp(0) (JVp(0)Wp(0)− JWp(0)Vp(0)) , (48)

because of Equation (47) and the symmetry of the Hessian.
The flow of the smooth vector field V : EV is a family of curves γ(t, p), p ∈ EV , t ∈ Jp, Jp open real

interval containing zero, such that for all p ∈ EV and t ∈ Jp,

γ(0, p) = p, (49)

δγ(t, p) = V (γ(t, p)). (50)

As uniqueness holds in Equation (50) (see [8] (VI, §1) or [7] (§4.1)), we have semi-group property
γ(s+ t, p) = γ(s, γ(t, p)), and Equation (50) is equivalent to δγ(0, p) = V (γ(0, p)), p ∈ EV .

If a flow of V is available, we have an interpretation of∇V φ as a derivative of φ along γ(t, p),

d

dt
φ(γ(t, p))

∣∣∣∣
t=0

= ∇φp(σp(γ(t, p)))

(
d

dt
σp(γ(t, p))

)∣∣∣∣
t=0

= ∇φp(0)V (p) = ∇V φ(p). (51)

2.5. Examples

The following examples are intended to show how the formalism of gradients is usable in performing
basic computations.

2.5.1. Expectation

Let f be any random variable, and define F : EV by F (p) = Ep [f ]. In the chart centered at p, we
have:

Fp(θ) =

∫
f exp

(∑
j

θj eUpXj − ψp(θ)

)
· p dµ (52)

and the Euclidean gradient:
∇Fp(0) = Covp (f,X) ∈ (Rm)′. (53)

The natural gradient is:

∇̃F (p) = Covp (X,X)−1 Covp (X, f) ∈ Rm, (54)

and the Riemannian gradient is:

∇F (p) = (∇̃F (p))′ eUpX = Covp (f,X) Covp (X,X)−1 eUpX ∈ TpEV . (55)

From Equation (55), it follows that ∇F (p) is the L2(p)-projection f onto eUpV , while ∇̃F (p) in
Equation (54) are the coordinates of the projection. Let us consider the family of curves:

γ(t, p) = exp

(
m∑
j=1

t(∇̃F (p))j eUpXj − ψp(t∇̃F (p))

)
· p, t ∈ R. (56)
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The velocity is:

δγ(t, p) =
d

dt

(
m∑
j=1

t(∇̃F (p))j eUpXj − ψp(t∇̃F (p))

)
= ∇F (p)− Eγ(t,p) [∇F (p)] , (57)

which is different from ∇F (γ(t, p)), unless f ∈ V ⊕ R. Then, γ is not, in general, the flow of ∇F , but
it is a local approximation, as δγ(0, p) = ∇F (p).

These computation are the basis of model-based methods in combinatorial optimization; see [10–14].

2.5.2. Binary Independent Variables

Here, we present, in full generality, the toy example of the Introduction; see [17] for more information
on the application to combinatorial optimization. Our example is a very special case of Ising exactly
solvable models [18], our aim being here to explore the geometric framework.

Let Ω = {+1,−1}m with counting measure µ, and let the space V be generated by the coordinate
projections B = {X1, . . . , Xd}. Note that we use here the coding +1,−1 (from physics) instead of
the coding 0, 1, which is more common in combinatorial optimization. The exponential family is
EV = {exp (

∑m
J=1 θ

jXj − ψλ(θ)) · 2−m}, λ(x) = 2−m for x ∈ Ω being the uniform density. The
independence of the sufficient statistics Xj under all distributions in EV implies:

ψλ(θ) =
m∑
j=1

ψ(θj), ψ(θ) = log (cosh(θ)) . (58)

We have:

∇ψλ(θ) = [tanh(θj) : j = 1, . . . , d]

= ηλ(θ), (59)

Hessψλ(θ) = diag
(
cosh−2(θj) : j = 1, . . . , d

)
= diag

(
e−2ψ(θj) : j = 1, . . . , d

)
= IB,λ(θ), (60)

IB,λ(θ)−1 = diag
(
cosh2(θj) : j = 1, . . . , d

)
= diag

(
e2ψ(θj) : j = 1, . . . , d

)
. (61)

The quadratic function f(X) = a0 +
∑

j ajXj +
∑
{i,j} ai,jXiXj has expected value at p = eλ(θ),

i.e., relaxed value, equal to:

F (p) = Fλ(θ) = Eθ [f(X)] = a0 +
∑
j

aj tanh(θj) +
∑
{i,j}

ai,j tanh(θi) tanh(θj), (62)

and covariance with Xk ∈ B equal to:

Covθ (f(X), Xk) =
∑
j

aj Covθ (Xj, Xk) +
∑
{i,j}

ai,j Covθ (XiXj, Xk)

= ak Varθ (Xk) +
∑
i 6=k

ai,k Eθ [Xi] Varθ (Xk)

= cosh−2(θk)

(
ak +

∑
i 6=k

ai,k tanh(θi)

)
. (63)
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In the computation, we have used the independence and the special algebra of±1, which impliesX2
i = 1,

so that Covθ (XiXj, Xk) = 0 if i, j 6= k, otherwise Covθ (XiXk, Xk) = Eθ [Xi] − Eθ [Xi]Eθ [Xk]
2;

see [13].
The Euclidean gradient, the natural gradient and the Riemannian gradient are, respectively,

∇Fλ(θ) =

[
cosh−2(θj)

(
aj +

∑
i 6=j

ai,j tanh(θi)

)
: j = 1, . . . , d

]
, (64)

∇̃F (eλ(θ)) =

[
aj +

∑
i 6=j

ai,j tanh(θi) : j = 1, . . . , d

]
, (65)

∇F (eλ(θ)) =
m∑
j=1

(
aj +

∑
i 6=j

ai,j Eθ [Xi]

)
(Xj − Eθ [Xj]) . (66)

The (natural) gradient flow equations are:

θ̇j(t) = aj +
∑
i 6=j

ai,j tanh(θi(t)), j = 1, . . . , d. (67)

Equations (64)–(66) are usable in practice if the aj’s and the ai,j’s are estimable. Otherwise, one can
use Equation (63) and the following forms of the gradients:

∇Fλ(θ) = [Covθ (Xj, f(X)) : j = 1, . . . , d] , (68)

∇̃F (eλ(θ)) =
[
cosh2(θj) Covθ (f(X), Xj) : j = 1, . . . , d

]
, (69)

in which case, the gradient flow equations are:

θ̇j(t) = cosh2(θj) Covθ (f(X), Xj) , j = 1, . . . , d. (70)

Let us study the relaxed function in the expectation parameters ηj = ηj(θ), j = 1, . . . , d,

Fλ(η) = a0 +
∑
j

ajη
j +

∑
{i,j}

ai,jη
iηj, η ∈]− 1,+1[m. (71)

The Euclidean gradient with respect to η has components:

∂jFλ(η) = aj +
∑
i 6=j

ai,jη
i, (72)

which are equal to the components of the natural gradient; see Section 2.4.1. As:

η̇j(t) =
d

dt
tanh(θj(t)) = cosh−2(θj(t))θ̇j(t) =

(
1− ηj(t)2

)
θ̇j(t), j = 1, . . . ,m, (73)

the gradient flow expressed in the η-parameters has equations:

η̇j(t) =
(
1− ηj(t)2

)(
aj +

∑
i 6=j

ai,jη
i(t)

)
, j = 1, . . . , d. (74)

Alternatively, in vector form,

η̇(t) = diag
(
1− ηj(t)2 : j = 1, . . . , d

)
(a+ Aη(t)) , (75)

where a = [aj : j = 1, . . . , d]t and Ai,j = 0 if i = j, Aij = ai,j . The matrix A is symmetric with zero
diagonal, and it has the meaning of the adjacency matrix of the (weighted) interaction graph. We do not
know a closed-form solution of Equation (74). An example of a numerical solution is shown in Figure 3.
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2.5.3. Escort Probabilities

For a given a > 0, consider the function C(a) : EV defined by C(a)(p) =
∫
pa dµ. We have:

C(a)
p (θ) =

∫
exp

(
a

m∑
j=1

θj eUpXj − aψp(θ)

)
pa dµ (76)

and:

dC(a)
p (0)α =

∫
a

(
m∑
j=1

αj eUpXj

)
pa dµ =

m∑
j=1

αj
∫
a eUpXjp

a dµ =
m∑
j=1

αj Covp
(
Xj, ap

a−1
)
, (77)

that is, the Euclidean gradient is ∇C(a)
p (0) = Covp (apa−1,X) (row vector). The natural gradient is

computed from Equation (35) as:

∇̃C(a)(p) = I−1
B (p)(∇C(a)

p (0))′ = Covp (X,X)−1 Covp
(
X, apa−1

)
, (78)

while the Riemannian gradient follows from Equation (36):

∇C(a)(p) = Covp
(
apa−1,X

)
Covp (X,X)−1 eUpX. (79)

Note that the Riemannian gradient is the orthogonal projection of the random variable apa−1 onto the
tangent space TpEV = eUpV .

The probability density pa/C(p) is called the escort density in the literature on non-extensive
statistical mechanics; see, e.g., [19] (Section 7.4).

We compute now the tangent mapping of EV 3 p 7→ pa/C(a)(a) ∈ P>. Let us extend the basis
X1, . . . , Xm to a basis X1, . . . , Xn, n ≥ m, whose exponential family is full, i.e., equal to P>. The
non-parametric coordinate of q =

(
exp

(∑m
j=1 θ

j eUpXj − ψp(θ)
)
p
)a
/C

(a)
p (θ) in the chart centered

at p̄ = pa/C
(a)
p (0) is the p̄-centering of the random variable:

log

(
q

p̄

)
= log


(

exp
(∑m

j=1 θ
j eUpXj − ψp(θ)

)
p
)a
/C

(a)
p (θ)

pa/C
(a)
p (0)


= a

m∑
j=1

θj eUpXj − aψp(θ) + lnC
(a)
( 0)− lnC(a)

p (θ), (80)

that is,

v = a
m∑
j=1

θj
eUp̄Xj. (81)

The coordinates of v in the basis eUp̄X1, . . . ,
eUp̄Xn are (aθ1, . . . , aθm, 0, . . . , 0), and the Jacobian of

θ 7→ (aθ,0n−m) is the m× n matrix [aIm|0m×(n−m)].
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2.5.4. Polarization Measure

The polarization measure has been introduced in Economics by [20]. Here, we consider the qualitative
version of [21]. If π is a distribution of a finite set, the probability that in three independent samples from
π there are exactly two equal is 3

∑
j π

2
j (1− πj). If p ∈ EV , define:

G(p) =

∫
p2(1− p) dµ = C(2)(p)− C(3)(p), (82)

where C(2) and C(3) are defined as in Example 2.5.3.
From Equation (78), we find the natural gradient:

∇̃G(p) = Covp (X,X)−1 Covp
(
X, 2p− 3p2

)
. (83)

Note that ∇̃G(p) = 0 if p is constant; see Figure 4.

Figure 4. Normalized polarization.
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3. Second Order Calculus

In this section, we turn to considering second order calculus, in particular Hessians, in order to prepare
the discussion of the Newton method for the relaxed optimization of Section 4.

3.1. Metric Derivative (Levi–Civita connection)

Let V,W : EV be vector fields, that is, V (p),W (p) ∈ TpEV = eUpV , p ∈ EV . Consider the real
function R = g(V,W ) : EV → R, whose value at p ∈ EV is R(p) = gp(V (p),W (p)) = Ep [V (p)W (p)].
Assuming smoothness, we want to compute the derivative of R along the vector field Y : EV , that is,
(DYR)(p) = dRp(0)α, with α = σ̇p(Y (p)). The expression of R in the chart centered at p is, according
to Equation (27),

θ 7→ Rp(θ) = σ̇p(V (ep(θ)))′IB(ep(θ))σ̇p(W (ep(θ))) = Vp(θ)′IB,p(θ)Wp(θ), (84)
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where Vp and Wp are the presentation in the chart of the vector fields V and W , respectively.
The i-th component ∂iRp(θ) of the Euclidean gradient∇Rp(θ) is:

∂iRp(θ) = ∂i (Vp(θ)′IB,p(θ)Wp(θ)) =

∂iVp(θ)′IB,p(θ)Wp(θ) + Vp(θ)′∂iIB,p(θ)Wp(θ) + Vp(θ)′IB,p(θ)∂iWp(θ) =(
∂iVp(θ) +

1

2
I−1
B,p(θ)∂iIB,p(θ)Vp(θ)

)′
IB,p(θ)Wp(θ)+

Vp(θ)′IB,p(θ)

(
∂iWp(θ) +

1

2
I−1
B,p(θ)∂iIB,p(θ)Wp(θ)

)
, (85)

so that the derivative at θ along α = σ̇ep(θ)(Y (ep(θ))) is:

dRp(θ)α =

(
dVp(θ)α+

1

2
I−1
B,p(θ) (dIB,p(θ)α)Vp(θ)

)′
IB,p(θ)Wp(θ)+

Vp(θ)′IB,p(θ)

(
dWp(θ)α+

1

2
I−1
B,p(θ) (dIB,p(θ)α)Wp(θ)

)
. (86)

Proposition 1. If we define DY V to be the vector field on EV , whose value at q = ep(θ) has coordinates
centered at p given by:

σ̇p(DY V (q)) = dVp(θ)α+
1

2
I−1
B (p) (dIB,p(θ)α)Vp(θ), α = σ̇p(Y (q)), (87)

then:
DY g(V,W ) = g(DY V,W ) + g(V,DYW ), (88)

i.e., Equation (87) is a metric covariant derivative; see [6] (Ch. 2 §3), [8] (VIII §4), [4] (§5.3.2).

The metric derivative Equation (87) could be computed from the flow of the vector field Y . Let
(t, p) 7→ γ(t, p) be the flow of the vector field V , i.e., δγ(t, p) = V (γ(t, p)) and γ(0, p) = p. Using
Equation (23), we have:

d

dt
σ̇(V (γ(t, p)))

∣∣∣∣
t=0

=
d

dt
Vp(σp(γ(t, p)))

∣∣∣∣
t=0

= dVp(σp(γ(t, p)))
d

dt
σp(γ(t, p))

∣∣∣∣
t=0

= dVp(0)σ̇p(δγ(0, p)) = dVp(0)σ̇p(Y (p)), (89)

and:

d

dt
IV(γ(t, p))

∣∣∣∣
t=0

=
d

dt
IB,p(σpγ(t, p))

∣∣∣∣
t=0

= dIB,p(0)σ̇p(δγ(0, p)) = dIB,p(0)σ̇p(Y (p))Vp(0), (90)

so that:

σ̇(DY V (p)) =
d

dt
σ̇V (γ(t, p))

∣∣∣∣
t=0

+
1

2
I−1
V (p)

d

dt
IV(γ(t, p))

∣∣∣∣
t=0

. (91)

Let us check the symmetry of the metric covariant derivative to show that it is actually the unique
Riemannian or Levi–Civita affine connection; see [6] (Th. 3.6).
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The Lie bracket of the vector fields V and W is the vector field [V,W ], whose coordinates are:

[V,W ]p(θ) = dVp(0)σ̇p(W (p))− dWp(0)σ̇p(V (p)). (92)

As the ij entry of ∂kIB,p(0) is ∂k∂i∂jψp(0), then the symmetry (dIB,p(0)α)β = (dIB,p(0)β)α holds,
and we have:

σ̇p (DWV (p)−DVW (p)) =

dVp(0)σ̇p(W (p)) +
1

2
I−1
B (p) (dIB,p(0)σ̇p(W (p)))Vp(0)

− dWp(0)σ̇p(V (p))− 1

2
I−1
B (p) (dIB,p(0)σ̇p(V (p)))Wp(0)

= σ̇[V,W ](p). (93)

The term Γk(p) = 1
2
I−1
p (0)∂kdIB,p(0) of Equation (87) is sometimes referred to as the Christoffel

matrix, but we do not use this terminology in this paper. As:

IB,p(θ) = IB(ep(θ)) =
[
Covep(θ) (Xi, Xj)

]
i,j=1,...,m

= [∂i∂jψp(θ)]i,j=i,...,m , (94)

we have ∂kIB(ep(θ)) = [∂i∂j∂kψp(θ)]i,j=i,...,m =
[
Covep(θ) (Xi, Xj, Xk)

]
i,j=i,...,m

and:

Γk(p) =
1

2
[Covp (Xi, Xj)]

−1
i,j=i,...,m [Covp (Xi, Xj, Xk)]i,j=i,...,m (95)

.
If V,W are vector fields of TEV , we have:

Γ(p, V,W ) =
1

2
I−1
B (p) Covp (X, V,W )

=
1

2
I−1
B (p)Ep [eUpXVW ] , (96)

which is the projection of V (p)W (p)/2 on eUpV .
Notice also that:

(dI−1
p (0)α)IB,p(0) = −I−1

p (0)(dIB,p(0)α)I−1
p (0)IB,p(0)y = −I−1

p (0) (dIB,p(0)α) . (97)

3.2. Acceleration

Let p(t), t ∈ I , be a smooth curve in EV . Then, the velocity δp(t) = d
dt

log (p(t)) is a vector field
V (p(t)) = δp(t), defined on the support p(I) of the curve. As the curve is the flow of the velocity
field, we can compute the metric derivative of the velocity along the the velocity itself Dδpδp from
Equation (91) with V (p(0)) = δp(0); we can use Equation (91) to get:

σ̇p(Dδpδp)(p(0)) =
d

dt
σ̇p(0) (δ(p(t)))

∣∣∣∣
t=0

+
1

2
I−1
B (p(0))

d

dt
IB(p(t))

∣∣∣∣
t=0

=

d2

dt2
σp(0)(p(t))

∣∣∣∣
t=0

+
1

2
I−1
B (p(0))

d

dt
IB(p(t))

∣∣∣∣
t=0

. (98)
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which can be defined to be the Riemannian acceleration of the curve at t = 0.
Let us write θ(t) = σp(p(t)), p = p(0) and:

p(t) = exp

(
m∑
j=1

θj(t) eUpXj − ψp(θ(t))

)
· p, (99)

so that σ̇p(δp)(0) = θ̇(0) and d2

dt2
σp(p(t))

∣∣∣
t=0

= θ̈(0). We have:

d

dt
IB(p(t))

∣∣∣∣
t=0

=
d

dt
IB,p(θ(t))

∣∣∣∣
t=0

=
d

dt
Hessψp(θ(t))

∣∣∣∣
t=0

= Covp(X,X,

m∑
j=1

θ̇j(t)Xj) (100)

so that the acceleration at p has coordinates:

θ̈(0) +
1

2

m∑
i,j=1

θ̇i(0)θ̇j(0) Covp (X,X)−1 Covp(X, Xi, Xj) =

θ̈(0) +
1

2
Covp (X,X)−1 Covp(X,

m∑
i

θ̇i(0)Xi,
m∑
j=1

θ̇j(0)Xj). (101)

A geodesic is a curve whose acceleration is zero at each point. The exponential map is the mapping
Exp: TEV → EV defined by:

(p, U) 7→ Expp U = p(1), (102)

where t 7→ p(t) is the geodesic, such that p(0) = p and δp(0) = U , for all U , such that the geodesic
exists for t = 1.

The exponential map is a particular retraction, that is, a family of mappings Rp, p ∈ E , from the
tangent space at p to the manifold; here R : TpE → E , such that Rp(0) = p and dRp(0) = Id;
see [4] (§5.4). It should be noted that exponential manifolds have natural retractions other than Exp,
a notable one being the exponential family itself. A retraction provides a crucial step in a gradient search
algorithms by mapping a direction of increase of the objective function to a new trial point.

3.2.1. Example: Binary Independent 2.5.2 Continued.

Let us consider the binary independent model of Section 2.5.2. We have

IB(eλ(θ)) = IB,λ(θ) = diag
(
cosh−2(θj) : j = 1, . . . , d

)
, (103)

it follows that

∂kIB,λ(θ) = ∂k diag
(
cosh−2(θj) : j = 1, . . . , d

)
= −2 cosh−3(θk) sinh(θk)Ekk, (104)

where Ekk is the d × d matrix with entry one at (k, k), zero otherwise. The k-th Christoffel’s matrix in
the second term in the definition of the metric derivative (aka Levi–Civita connection) is:

ΓkB(eλ(θ)) = Γkλ(θ) =
1

2
I−1
B,λ(θ)∂kIB,λ(θ) = − tanh(θk)Ekk. (105)
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In terms of the moments, we have IB,λ(θ) = Covθ (X,X ′) = Hessψλ(θ). As ∂k∂i∂jψλ(θ) =

Covθ (Xk, Xi, Xj), we that can write:

∂kIB,λ(θ) = ∂k diag (Varθ (Xj) : j = 1, . . . , d)

= Covθ (Xk, Xk, Xk)E
kk (106)

and:

Γkλ(θ) =
1

2
Covθ (Xk, Xk)

−1 Covθ (Xk, Xk, Xk)E
kk

=
1

2
(1− (ηk)2)−1(−2ηk + 2(ηk)3)Ekk = −ηkEkk. (107)

The equations for the geodesics starting from θ(0) with velocity θ̇(0) = u are:

θ̈k(t) +
m∑
ij=1

Γkij(θ(t))θ̇i(t)θ̇j(t) = θ̈k(t)− tanh(θk(t))(θ̇k(t))2 = 0, k = 1, . . . , d. (108)

The ordinary differential equation:

θ̈ − tanh(θ)θ̇2 = 0 (109)

has the closed form solution:

θ(t) = gd−1

(
gd(θ(0)) +

θ̇(0)

cosh(θ(0))
t

)
= tanh−1

(
sin

(
gd(θ(0)) +

θ̇(0)

cosh(θ(0))
t

))
(110)

for all t, such that:

− π/2 < gd(θ(0)) +
θ̇(0)

cosh(θ(0))
t < π/2, (111)

where gd: R→]− π/2,+π/2[ is the Gudermannian function, that is, gd′(x) = 1/ coshx, gd(0) = 0; in
closed form, gd(x) = arcsin(tanh(x)). In fact, if θ is a solution of Equation (109), then:

d

dt
gd(θ(t)) =

θ̇(t)

cosh(θ(t))
(112)

d2

dt2
gd(θ(t)) = −sinh(θ(t))(̇θ(t))2

cosh2(θ(t))
+

θ̈(t)

cosh(θ(t))

=
1

cosh(θ(t))

(
θ̈(t)− tanh(θ(t))(θ̇(t))2

)
= 0, (113)

so that t 7→ gd(θ(t)) coincides (where it is defined) with an affine function characterized by the
initial conditions.

In particular, at t = 1, the geodesic Equation (110) defines the Riemannian exponential
Exp: TEV → EV . If (p, U) ∈ TEV , that is, p ∈ EV and U ∈ TpEV , then σλ(p) = θ(0) and
U =

∑
uj

eUpXj , σ̇λ(U) = u. If:

− π/2 < gd(θj) +
uj

cosh(θj)
< π/2, (114)
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then we can take θ̇(0) = u and t = 1, so that:

Expp : U
σ̇λ7−→ u 7→

[
gd−1

(
gd(θj) +

uj
cosh(θj)

)
: j = 1, . . . , d

]
eλ7−→

m∏
j=1

exp

(
gd−1

(
gd(θj) +

uj
cosh(θj)

)
Xj − ψ

(
gd−1

(
gd(θj) +

uj
cosh(θj)

)))
2−m. (115)

We have:

exp
(
gd−1(v)

)
= exp

(
tanh−1(sin(v))

)
=

√
1 + sin v

1− sin v
(116)

and:

ψ
(
gd−1(v)

)
= + log

(
gd−1(sin v)

)
= log

(
1

cos v

)
, (117)

hence u 7→ Expp

(∑d
j=1 uj

eUpXj

)
is given for:

u ∈
d×
j=1

]
cosh(θj)(−π/2− gd(θj)), cosh(θj)(π/2− gd(θj))

[
, (118)

by:

Expθ(u) =
m∏
j=1

cos

(
gd(θj) +

uj
cosh(θj)

)1 + sin
(

gd(θj) +
uj

cosh(θj)

)
1− sin

(
gd(θj) +

uj
cosh(θj)

)


Xj
2

=

m∏
j=1

(
1 + sin

(
gd(θj) +

uj
cosh(θj)

)
Xj

)
2−m ∈ EV . (119)

The expectation parameters are:

ηi(t) = Eθ=0

[
Xi

m∏
j=1

(
1 + sin

(
gd(θj) +

tuj
cosh(θj)

)
Xj

)]
= sin

(
gd(θj) +

tuj
cosh(θj)

)
, (120)

and:
gd(θj) = arcsin(ηj), cosh(θj) =

1

(1− (ηj)2)
1
2

, (121)

so that the exponential in terms of the expectation parameters is:

Expη(u) =
(

sin
(

arcsin ηj +
(
1− (ηj)2

) 1
2 uj

)
: j = 1, . . . ,m

)
. (122)

The inverse of the Riemannian exponential provides a notion of translation between two elements of
the exponential model, which is a particular parametrization of the model:

−−→η1η2 = Exp−1
η1
η2 =

[(
(1− (ηji )

2
)− 1

2
(
arcsin ηj2 − arcsin ηj1

)
: j = 1, . . . ,m

]
(123)

In particular, at θ = 0, we have the geodesic:

t 7→
d∏
j=1

(1 + sin(tuj)Xj) 2−m, |t| < π

2 max |uj|
(124)



Entropy 2014, 16 4280

See in Figure 5 some geodesic curves.

Figure 5. Geodesics from η = (0.75, 0.75).
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3.3. Riemannian Hessian

Let φ : EV → R with Riemannian gradient ∇φ(p) =
∑

i(∇̃φ)i(p)
eUpXi, ∇̃φ(p) = I−1

B (p)∇φp(0).
The Riemannian Hessian of φ is the metric derivative of the gradient ∇φ along the vector field Y , that
is, HessY φ = DY∇φ; see [6] (Ch. 6, Ex. 11), [4] (§5.5). in the following, we denote by the symbol
Hess, without a subscript, the ordinary Hessian matrix.

From Equation (87), we have the coordinates of HessY φ(p). Given a generic tangent vector α, we
compute from Equation (38):

d(∇φ)p(θ)α|θ=0 = d
(
I−1
B,p(θ)∇φp(θ)

)
α
∣∣
θ=0

= (dI−1
B,p(0)α)∇φp(0) + I−1

B,p(0) Hessφp(0)α

= −I−1
B (p)(dIB,p(0)α)∇̃φ(p) + I−1

B (p) Hessφp(0)α (125)

and, upon substitution of (∇φ)p to Vp in Equation (87),

σ̇p(HessY φ(p)) = d(∇φ)p(0)α+
1

2
I−1
B (p) (dIB,p(0)α) (∇φ)p(0), α = Sp(Y (p))

= −I−1
B (p)(dIB,p(0)α)∇̃φ(p) + I−1

B (p) Hessφp(0) +
1

2
I−1
B (p) (dIB,p(0)α) ∇̃φ(p)

= I−1
B (p) Hessφp(0)α− 1

2
I−1
B (p) (dIB,p(0)α) ∇̃φ(p)

= I−1
B (p)

(
Hessφp(0)α− 1

2
(dIB,p(0)α) ∇̃φ(p)

)
(126)
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HessY φ is characterized by knowing the value of g(HessY φ,X) : EV for all vector fields X . We have
from Equation (126), with α = σ̇p(Y (p)) and β = σ̇p(X(p)),

gp(HessY (p) φ(p), X(p)) = β′Hessφp(0)α− 1

2
β′ (dIB,p(0)α) ∇̃φ(p). (127)

This is the presentation of the Riemannian Hessian as a bi-linear form on TEV ; see the comments
in [4] (Prop. 5.5.2-3). Note that the Riemannian Hessian is positive definite if:

α′Hessφp(0)α ≥ 1

2
α′ (dIB,p(0)α) ∇̃φ(p), α ∈ Rm. (128)

4. Application to Combinatorial Optimization

We conclude our paper by showing how the geometric method applies to the problem of finding the
maximum of the expected value of a function.

4.1. Hessian of a Relaxed Function

Here is a key example of vector field. Let f be any bounded random variable, and define the relaxed
function to be φ(p) = Ep [f ], p ∈ P>. Define F (p) to be the projection of f , as an element of L2(p),
onto TpEV = eUpV , i.e., F (p) is the element of eUpV , such that:

Ep [(f − F (p))v] = 0, v ∈ eUpV (129)

In the basis eUpB, we have F (p) =
∑

i f̂p,i
eUpXi and:

Covp (f,Xj) =
∑
i

f̂p,i Ep [eUpXi
eUpXj] , j = 1, . . . ,m, (130)

so that f̂p = I−1
B (p) Covp (X, f) and

F (p) = f̂ ′p
eUpX = Covp (f,X) I−1

B (p) eUpX. (131)

Let us compute the gradient of the relaxed function φ = E· [f ] : EV . We have φp(θ) = Eep(θ) [f ], and
from the properties of exponential families, the Euclidean gradient is∇φp(0) = Covp (f,X). It follows
that the natural gradient is:

∇̃φp(0) = I−1
B (p) Covp (X, f) = f̂ , (132)

and the Riemannian gradient is∇φ(p) = F (p).
From the properties of exponential families, we have:

Hessφp(0) = Covp (X,X, f) ,

so that, in this case, Equation (127), when written in terms of the moments, is:

β′Covp (X,X, f)α− 1

2
β′Covp (X,X,α ·X) Covp (X,X)−1 Covp (X, f) . (133)
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4.1.1. Example: Binary Independent 2.5.2 and 3.2.1 Continued

We list below the computation of the Hessian in the case of two binary independent variables.
Computations were done with Sage [22], which allows both the reduction x2

i = 1 in the ring of
polynomials and the simplifications in the symbolic ring of parameters.

Covη (X, f) =

(
−(η2

1 − 1)a1 − (η2
1η2 − η2)a12

−(η2
2 − 1)a2 − (η1η

2
2 − η1)a12

)
=

(
−(η1 − 1)(η1 + 1)(a12η2 + a1)

−(η2 − 1)(η2 + 1)(a12η1 + a2)

)
(134)

Covη (X,X) =

(
−η2

1 + 1 0

0 −η2
2 + 1

)
=

(
−(η1 − 1)(η1 + 1) 0

0 −(η2 − 1)(η2 + 1)

)
(135)

Covη (X,X)−1 Covη (X, f) =

(
a12η2 + a1

a12η1 + a2

)
= ∇F (η) (136)

Covη (X,X, f) =(
2 (η3

1 − η1)a1 + 2 (η3
1η2 − η1η2)a12 (η2

1η
2
2 − η2

1 − η2
2 + 1)a12

(η2
1η

2
2 − η2

1 − η2
2 + 1)a12 2 (η1η

3
2 − η1η2)a12 + 2 (η3

2 − η2)a2

)
=(

2 (η1 − 1)(η1 + 1)(a12η2 + a1)η1 (η2 − 1)(η2 + 1)(η1 − 1)(η1 + 1)a12

(η2 − 1)(η2 + 1)(η1 − 1)(η1 + 1)a12 2 (η2 − 1)(η2 + 1)(a12η1 + a2)η2

)
(137)

Covη (X,X)−1 Covη (X,X, f) =

(
−2 (a12η2 + a1)η1 −a12η

2
2 + a12

−a12η
2
1 + a12 −2 (a12η1 + a2)η2

)
(138)

Covη (X,X,∇F (η)) =(
2 (a12η2 + a1)(η1 + 1)(η1 − 1)η1 0

0 2 (a12η1 + a2)(η2 + 1)(η2 − 1)η2

)
(139)

Covη (X,X)−1 Covη (X,X,∇F (η)) = (
−2 (a12η2 + a1)η1 0

0 −2 (a12η1 + a2)η2

)
(140)

The Riemannian Hessian as a matrix in the basis of the tangent space is:

HessF (η) = Covη (X,X)−1

(
Covη (X,X, f)− 1

2
Covη (X,X,∇F (η))

)
=(

−(a12η2 + a1)η1 −a12(η2 + 1)(η2 − 1)

−a12(η1 + 1)(η1 − 1) −(a12η1 + a2)η2

)
(141)
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As a check, let us compute the Riemannian Hessian as a natural Hessian in the Riemannian
parameters, Hess φ ◦ Expp(u)

∣∣
u=0

; see [4] (Prop. 5.5.4). We have:

F ◦ Expη(u) =

a12 sin

(√
−η2

1 + 1u1 + arcsin (η1)

)
sin

(√
−η2

2 + 1u2 + arcsin (η2)

)
+

a1 sin

(√
−η2

1 + 1u1 + arcsin (η1)

)
+ a2 sin

(√
−η2

2 + 1u2 + arcsin (η2)

)
(142)

and:

HessF ◦ Expη(u)
∣∣
u=0

=(
(η2

1 − 1)a12η1η2 + (η2
1 − 1)a1η1 (η2

1 − 1)(η2
2 − 1)a12

(η2
1 − 1)(η2

2 − 1)a12 (η2
2 − 1)a12η1η2 + (η2

2 − 1)a2η2

)
=(

(a12η2 + a1)(η1 + 1)(η1 − 1)η1 a12(η1 + 1)(η1 − 1)(η2 + 1)(η2 − 1)

a12(η1 + 1)(η1 − 1)(η2 + 1)(η2 − 1) (a12η1 + a2)(η2 + 1)(η2 − 1)η2

)
. (143)

Note the presence of the factor Covη (X,X).

4.2. Newton Method

The Newton method is an iterative method that generates a sequence of points pt, with t = 0, 1, . . . ,
that converges towards a stationary point p̂ of a F (p) = Ep [f ], p ∈ EV , that is, a critical point of the
vector field p 7→ ∇F (p), ∇F (p̂) = 0. Here, we follow [4] (Ch. 5–6), and in particular Algorithm 5 on
Page 113.

Let ∇F be a gradient field. We reproduce in our case the basic derivation of the Newton method in
the following. Note that, in this section, we use the notation Hess •[α] to denote Hessα •. Using the
definition of metric derivative, we have for a geodesic curve [0, 1] 3 t 7→ p(t) ∈ EV connecting p = p(0)

to p̂ = p(1) that:

d

dt
gp(t) (∇F (p(t)), δp(t)) = gp(t) (HessF (p(t))[δp(t)], δp(t)) (144)

hence the increment from p to p̂ is:

gp̂ (∇F (p̂), δp(1))− gp (∇F (p), δp(0)) =

∫ 1

0

gp(t) (HessF (p(t))[δp(t)], δp(t)) dt. (145)

Now, we assume that ∇F (p̂) = 0 and that in Equation (145), the integral is approximated by the
initial value of the integrand, that is to say, the Hessian is approximately constant on the geodesic from
p to p̂; we obtain:

− gp (∇F (p), δp(0)) = gp (HessF (p)[δp(0)], δp(0)) + ε. (146)

If we can solve the Newton equation:

HessF (p(t))[u] = −∇F (p) (147)
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then u is approximately equal to the initial velocity of the geodesic connecting p to p̂, that is,
p̂ = Expp(u).

The particular structure of the exponential manifold suggests at least two natural retractions
that could be used to move from u to p̂. Namely, we have the Riemannian exponential
(θt,θt+1) 7→ Expθt(θt+1 − θt) and the e-retraction coming from the exponential family itself and
defined by (θt,θt+1) 7→ eθt(θt+1 − θt), with θt+1 − θt = ut.

In the θ parameters, with the e-retraction, the Newton method generates a sequence (θt) according to
the following updating rule:

θt+1 = θt − λHessF (θt)
−1∇̃F (θt) (148)

where λ > 0 is an extra parameter intended to control the step size and, in turn, the convergence to θ̂;
see [5].

We can rewrite Equation (148) in terms of covariances as:

θt+1 = θt − λ
(

Covθt(X,X, f)− 1

2
Covθt(X,X, ∇̃F (θt))

)−1

∇̃F (θt). (149)

4.3. Example: Binary Independent

In the η parameters, the Newton step is:

u = −HessF (η)−1∇F (η) =

 a212η1+a12a2+(a1a12η1+a1a2)η2

a212η
2
1+(a12a2η1+a212)η22−a212+(a1a12η21+a1a2η1)η2

a1a2η1+a1a12+(a12a2η1+a212)η2
a212η

2
1+(a12a2η1+a212)η22−a212+(a1a12η21+a1a2η1)η2

 (150)

and the new η in the Riemannian retraction is:

Expη(u) =

 sin

(
(a212η1+a12a2+(a1a12η1+a1a2)η2)

√
−η21+1

a212η
2
1+(a12a2η1+a212)η22−a212+(a1a12η21+a1a2η1)η2

+ arcsin (η1)

)
sin

(
(a1a2η1+a1a12+(a12a2η1+a212)η2)

√
−η22+1

a212η
2
1+(a12a2η1+a212)η22−a212+(a1a12η21+a1a2η1)η2

+ arcsin (η2)

)
.

 (151)

In Figure 6, we represented the vector field associated with the Newton step in the η parameters, with
λ = 0.05, using the Riemannian retraction, for the case a1 = 1, a2 = 2 and a12 = 3, with:

Expη(u) =

 sin

(
λ

√
−η21+1((3 η1+2)η2+9 η1+6)

3 (2 η1+3)η22+9 η21+(3 η21+2 η1)η2−9
+ arcsin (η1)

)
sin

(
λ

(3 (2 η1+3)η2+2 η1+3)
√
−η22+1

3 (2 η1+3)η22+9 η21+(3 η21+2 η1)η2−9
+ arcsin (η2)

)
 . (152)

The red dotted lines represented in the figure identify the basins of attraction of the vector field and
correspond to the solutions of the explicit equation in η for which the Newton step u is not defined. This
vector field can be compared to that in Figure 7, associated with the Newton step for F (η) using the
Euclidean geometry. In the Euclidean geometry, F (η) is a quadratic function with one saddle point, so
that from any η, the Newton step points in the direction of the critical point. This makes the Newton step
unsuitable for an optimization algorithm. On the other side, in the Riemannian geometry, the vertices of
the polytope are critical points for F (η), and they determine the presence of multiple basins of attraction,
as expected.
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Figure 6. The Newton step in the η parameters, Riemannian retraction, λ = 0.05. The red
dotted lines identify the different basins of attraction and correspond to the points for which
the Newton step is not defined; cf. Equation (150). The instability close to the critical lines
is represented by the longer arrows.
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Figure 7. The Newton step in the η parameters, Euclidean geometry, λ = 0.05.
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Figure 8. The Newton step in the θ parameters, exponential retraction, λ = 0.015. The red
dotted lines identify the different basins of attraction and correspond to the points for which
the Newton step is not defined. The instability along the critical lines, which identifies the
basins of attraction, is not represented.
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Figure 9. The Newton step in the θ parameters, Euclidean geometry, λ = 0.15. The red
dotted lines identify the different basins of attraction and correspond to the points for which
the Newton step is not defined. The instability along the critical lines, which identifies the
basins of attraction, is not represented.
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Figure 8 shows the Newton step in the θ parameters based on the e-retraction of Equation (149), while
Figure 9 represents the Newton step evaluated with respect to the Euclidean geometry. A comparison of
the two vector fields shows that, differently from the η parameters, the number of basins of attraction
is the same in the two geometries; however, the scale of the vectors is different. In particular, notice
how on the plateau, for diverging θ, the Newton step in the Euclidean geometry vanishes, while in
the Riemannian geometry, it gets larger. This behavior suggests better convergence properties for an
optimization algorithm based on the Newton step evaluated using the proper Riemannian geometry. In
the θ parameters, the boundaries of the basins of attraction represented by the red dotted lines have been
computed numerically and correspond to the values of θ for which the update step is not defined.

Finally, notice that in both the η and θ parameters, the step is not always in the direction of descent
for the function, a common behavior of the Newton method, which converges to the critical points.

5. Discussion and Conclusions

In this paper, we introduced second-order calculus over a statistical manifold, following the approach
described in [4], which has been adapted to the special case of exponential statistical models [2,3]. By
defining the Riemannian Hessian and using the notion of retraction, we developed the proper machinery
necessary for the definition of the updating rule of the Newton method for the optimization of a function
defined over an exponential family.

The examples discussed in the paper show that by taking into account the proper Riemannian
geometry of a statistical exponential family, the vector fields associated with the Newton step in the
different parametrizations change profoundly. Not only new basins of attraction associated with local
and global minima appear, as for the expectation parameters, but also the magnitude of the Newton step
is affected, as over the plateau in the natural parameters. Such differences are expected to have a strong
impact on the performance of an optimization algorithm based on the Newton step, from both the point
of view of achievable convergence and the speed of convergence to the optimum.

The Newton method is a popular second order optimization technique based on the computation of
the Hessian of the function to be optimized and is well known for its super-linear convergence properties.
However, the use of the Newton method poses a number of issues in practice.

First of all, as the examples in Figures 6 and 8 show, the Newton step does not always point in the
direction of the natural gradient, and the algorithm may not converge to a (local) optimum of the function.
Such behavior is not unexpected; indeed the Newton method tends to converge to critical points of the
function to be optimized, which include local minima, local maxima and saddle points. In order to
obtain a direction of ascent for the function to be optimized, the Hessian must be negative-definite,
i.e., its eigenvalues must be strictly negative, which is not guaranteed in the general case. Another
important remark is related to the computational complexity associated with the evaluation of the
Hessian, compared to the (natural) gradient. Indeed, to obtain the Newton step d, Christoffel matrices
have to be evaluated, together with the third order covariances between sufficient statistics and the
function, and the Hessian has to be inverted. Finally, notice that when the Hessian is close to being
non-invertible, numerical problems may arise in the computation of the Newton step, and the algorithm
may become unstable and diverge.
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In the literature, different methods have been proposed to overcome these issues. Among them, we
mention quasi-Newton methods, where the update vector is obtained using a modified Hessian, which
has been made negative-definite, for instance, by adding a proper correction matrix.

This paper represents the first step in the design of an algorithm based on the Newton method for the
optimization over a statistical model. The authors are working on the computational aspects related to
the implementation of the method, and a new paper with experimental results is in progress.
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