
Entropy 2014, 16, 4566-4582; doi:10.3390/e16084566 
 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 
Article 

Chaos Synchronization Error Technique-Based Defect Pattern 
Recognition for GIS through Partial Discharge Signal Analysis 

Hung-Cheng Chen, Her-Terng Yau * and Po-Yan Chen 

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, 
Taiwan; E-Mails: hcchen@ncut.edu.tw (H.C.C.); baboy0806@yahoo.com.tw (P.Y.C.) 

* Author to whom correspondence should be addressed; E-Mails: pan1012@ms52.hinet.net or 
htyau@ncut.edu.tw; Tel.: +886-4-23924505 (ext.7229); Fax: +886-4-23924419. 

Received: 31 May 2014; in revised form: 30 July 2014 / Accepted: 31 July 2014 /  
Published: 13 August 2014 
 

Abstract: The work is aimed at using the chaos synchronization error dynamics (CSED) 
technique for defect pattern recognition in gas insulated switchgear (GIS). The radiated 
electromagnetic waves generated due to internal defects were measured by the self-made 
ultrahigh frequency (UHF) micro-strip antenna, so as to determine whether partial 
discharge will occur. Firstly, a data pretreatment is performed on the measured raw data for 
the purpose of computational burden reduction. A characteristic matrix is then constructed 
according to dynamic error trajectories in a chaos synchronization system, subsequent to 
which characteristics are extracted. A comparison with the existing Hilbert-Huang 
Transform (HHT) method reveals that the two characteristics extracted from the CSED 
results presented herein using the fractal theory were recognized at a higher rate pattern. 

Keywords: partial discharge; insulation deterioration; chaos synchronization; fractal 
theory; extension theory 

 

1. Introduction 

There have been a great number of studies based on sound, chemical, optical, electric approaches, etc., 
on defect pattern recognition techniques according to the detected partial discharge signals released 
from a gas insulated switchgear (GIS) [1,2]. Currently, the main techniques include the conventional 
partial discharge impulse current and ultrahigh frequency (UHF) approaches. Some noise components 
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below 150 MHz are observed in our test field, according to which an UHF sensor with bandwidth 
between 400 MHz and 1.3 GHz is designed to filter the noise. It is a non-contact online monitoring 
technology to monitor the normal operation of a GIS by means of the released electromagnetic signals. 
An impulsive radiation emission, over the frequency spectrum from DC to above 1 GHz, is caused by 
high pressure SF6 gas the moment a partial discharge arises. In contrast, most noise interference such 
as corona in a power system occupies the frequency band below 150 MHz, and undergoes rapid decay 
during wave propagation in air, that is, an elevated signal to noise ratio is hence seen due to the lower 
level noise interference over the UHF band. 

Nevertheless, the electromagnetic signal is rather weak over the UHF band, and hence a high 
sensitivity detection module, either a MHz narrow- or GHz broadband [3], is found necessary. In most 
cases, a narrow band detection module requires a spectrum analyzer together with a low noise, high 
gain preamplifier to handle the received signal in the presence of ultrahigh frequency noise 
components. As a more popular alternative, a broadband detection module needs a nanosecond 
sampling oscilloscope along with a 250–300 MHz high pass filter [4]. The sensitivity of the HUF 
approach is subject to a number of features, i.e. the detection module sensitivity, the strength of partial 
discharge signals and defect types. In this work, an investigation is made into the electromagnetic 
signals received by a microstrip antenna for defect pattern recognition, since the electromagnetic wave 
leakage from a GIS experiences weak propagation decays in air. Hence, the use of a microstrip antenna 
as well as a broadband power amplifier, and a detection module, as implemented in [5], is designed so 
as to meet the PD analysis requirements. 

As suggested in [6–13], a partial discharge phenomenon can be characterized in most cases by the 
partial discharge phase, mean discharge number, mean discharge, mean discharge frequency, and so 
on, and the commonly seen approaches for defect pattern recognition include Fourier transform, 
Discrete Fourier Transform, Hilbert-Huang Transform (HHT), etc. Although the embedded 
characteristics can be extracted directly from partial discharge signals, a large database is required 
when statistics are performed on the characteristics of interest over a long time span. Neverthless, a 
100% recognition rate cannot be ensured. In early days, a partial discharge signal was recognized by 
means of the features revealed on an elliptical trajectory. However, as a consequence of the long term 
technology progress made over the years, commercial instruments are now able to accurately sense 
partial discharge signals [14,15], emanating from an insulation facility, analyze the dielectric 
punchthrough process, provide a maintenance message and prevent catastrophes, but such commercial 
instruments, costing as much as a million dollars, preprocess field detected signals in their front end 
circuits, due to which part of intrinsic physical meanings contained in the signals are lost. For this 
sake, a diagnostic tool for pattern recognition of GIS defects is presented in this work.  

Described as a random-like dynamic behavior in a deterministic system, chaos is an exclusive form 
of nonlinear system, and its applications can be found in a wide variety of research fields [16–21], e.g., 
in adaptive control systems, signal processing, fluid mechanics, encryption, and so on. It features a 
high sensitivity to initial values, fractal dimensions, random-like properties, unpredictability, and the 
like. In this study, analysis of partial discharge signals is made through a chaos synchronization 
system. A proper choice of parameters enables the Slave to automatically track the Master system, and 
dynamic errors are found between the signals in a normal case and a defect one [22]. A pretreatment is 
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conducted on measured raw data in such a way that the computational load and the amount of noise are 
reduced, while characteristics embedded in partial discharge signals are well preserved. 

This work aims to build a diagnostic tool able to identify the latent defects for a GIS at an early 
stage. Distinct types of defective GISes give rise to distinct partial discharge patterns which are 
sampled over a single 60 Hz cycle. Under the assumption that an ideal zero amplitude normal signal 
occupies the same time interval as the defect one, both the defect and the normal signals are 
respectively applied to the Master and the Slave in a chaos synchronization system, then the tracking 
error trajectories are treated as characteristics. The self-similarity between the same type of partial 
discharge signals is reflected in the low tracking error, and a characteristic matrix is constructed 
thereby. By use of fractal theory, the fractal dimension and the lacunarity are extracted as both 
characteristics. The use of fractal features to identify different defect typologies has been proposed  
in [23] and the approach was abandoned because it was found to be ineffective. That is, the fractal 
features cannot do well in some defect typologies. However, it does perform well in our paper when 
combined with chaos synchronization from the experimental results. Therefore, our paper combined 
with chaos synchronization could improve the fractal features to be more effective for dealing with the 
PD defect typologies. In this study, the first 20 samples in each defect type are regarded as training 
samples, while the remaining 20 are used as test samples. This proposal, as opposed to the HHT 
approach [23,24] employing an energy-frequency-time characteristic matrix, demonstrates a 
satisfactory defect recognition rate when applied to a chaos synchronization scheme [25]. 

2. Chaos Synchronization Error Dynamics 

The system in which a chaotic system is used to track the chaotic behavior of another system is 
called chaos synchronization error dynamics (CSED) [19]. Generally, a chaotic system contains 
Master and Slave systems that exist in a master and servant relationship. The characteristic signal of 
PD is transient in a real physical system. Recording and analyzing these characteristics are impractical. 
In addition to requiring the construction of a massive database, analyzing the characteristics of long 
signals takes a lot of time. Therefore, this study proposes a chaos synchronization system, where the 
Master system is defined as the driving system; the Slave system is the response system, and the Slave 
system tracks the Master system to within a cycle period. 

In this study, the most typical Lorenz chaotic system was used to demonstrate the chaos 
synchronization error dynamics fault diagnosis in PD system. A Lorenz system is described as a third 
order differential equation involving three parameters. In early days, it was developed for complicated 
weather forecasts, expressed as the nonlinear atmosphere convection equation, that is: 
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where x, y, z represent three state variables, and a, b, c three system parameters. A Lorenz chaos 
synchronization error dynamics system is configured as: 
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(3)  

where u1, u2, u3 denote the control terms in a slave system. With the dynamic error trajectories as the 
targets, u1, u2, u3 are set to zeros in a chaos synchronization error dynamics system [22]. In Equations (2) 
and (3), x1 = x[i], y1 = x[i + 1], z1 = x[i + 3], x2 = y[i], y2 = y[i + 1], z2 = y[i + 2], i = 1, 2, 3, …, n − 2, x 
and y respectively represent the sample sequences of the defect and the normal signals, and n denotes 
the total number of samples. Defining dynamic errors as e1 = x1 − x2, e2 = y1 − y2, e3 = z1 − z2, a 
dynamic error (DE) system is derived from Equations (2) and (3) as: 
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(4)  

where scaling factors a, b, c in Equations (2) and (3) are three nonzero parameters. As shown in Figure 1, 
a normal and a defect PD signal, dynamic error E1, E2, E3, and a phase plot of a chaos synchronization 
error dynamics are illustrated. 

Exhibited in Figure 1a are a normal signal and a partial discharge signal, i.e., the defect, which 
arises from a GIS defect. The raw data are collected over a single 60 Hz cycle in hopes of defect 
pattern recognition. The respective dynamic error trajectories E1, E2, E3 for a Lorenz chaos 
synchronization system are exhibited in Figure 1b, where deviations of E1, E3 are seen away from 
zeros. A point worthy of mention is that the occurrence of partial discharge is reflected in the dynamic 
error trajectories which do not as expected converge to zero in the presence of inevitable noise 
interference. Demonstrated in Figure 1c is a phase plane trajectory for E1, E2, E3, where a number of 
spikes representing partial discharge are seen as the validation of this proposal. 
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Figure 1. Illustration of (a) a normal and a defect PD signal, (b) dynamic error E1, E2, E3, 
and (c) a phase plot of a chaos synchronization system. 

 
(a) 

 
(b) 

 
(c) 

3. Fractal and Extension Theories 

Although the CS error dynamic can present information about the defect of partial discharge, graphs 
cannot easily capture microvariations among signals. Therefore, a numerical value is used to represent 
this characteristic information. This study uses the error dynamics E1, E2 and E3 to construct the 
characteristic matrix, which must be able to express the characteristics and properties of the defect 
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signals. Then, fractal theory is utilized to obtain the characteristic value, which is finally used in the 
clustering method for training and testing. A more detailed introduction of fractal theory process and 
the extension concept can be found elsewhere [26–32]. 

4. Method 

4.1. Characteristic Extraction 

An investigation is made into four types of defects. As exhibited in Figure 2 for a Lorenz chaos 
synchronization system as described by Equations (4) and (5), a partial discharge event of each defect 
type can be characterized by such quantities as the signal frequency and amplitude, etc., and  
self-similarity can be found between the same type of defect.  

Figure 2. Typically single partial discharge signal for defect (a) Type I, (b) Type II,  
(c) Type III and (d) Type IV. 

  
(a) (b) 

  

(c) (d) 

In this work, a defect signal is applied to the master reference system, where the set composed of 
the defect signal samples 1 to 33,298 is indicated by x1, 2 to 33,299 is by y1, and 3 to 33,300 is by z1. 
Likewise, a normal signal is applied to the Slave tracking system, where the set consisting of the 
normal signal samples 1 to 33,298 is denoted by x2, 2 to 33,299 is by y2, and 3 to 33,300 is by z2. The 
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tracking dynamic errors, E1, E2, E3 are evaluated by Equations (4) to (6). Differences in trajectories E1, 
E2, E3 are demonstrated in Figure 3 among four types of defects. In particular, as demonstrated in 
Figure 4, different dot distribution patterns and densities are seen across various defect types, and  
self-similarity is viewed between the same types of defect, so that such two quantities are extracted as 
two characteristics. 

Figure 3. Error trajectories E1, E2 for defect (a) Type I, (b) Type II, (c) Type III, and (d) Type IV. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Distributions of errors E1, E2 for defect (a) Type I, (b) Type II, (c) Type III, and (d) Type IV. 

  
(a) (b) 
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Figure 4. Cont. 

  
(c) (d) 

4.2. Construction of the Characteristic Matrix 

The density and number of distributed points are extracted, as mentioned in the previous section. 
First, these characteristics are represented in a matrix, and the characteristic values of these 
characteristics are obtained by calculating this matrix. Figure 5 presents the procedure for the 
construction of the characteristic matrix. First, E1 and E2 are represented as the x and y axes, and 
program automatically determines the maximum values bmax for all defect types of |E1| and |E2|. The 
maximum value bmax and minimum value −(bmax) define the extent of the x and y axes. This step 
ensures that the matrices for all defects have the same size. The extreme values at the limits of the 
minimum range are set to −(bmin) and bmin. These are divided by number of grid cells to obtain the 
spacing value. Finally, the matrix size is determined by dividing the boundary value by the spacing. 

Figure 5. Procedure of constructing a characteristic matrix. 

The original data are pre-processed, 
and each batch contains 33300 

points of data

The malfunction signal and normal 
signal are respectively inputted into 

the Master and Slave systems

Chenlee-Chaotic system generates 
the dynamic errors (E1, E2, E3)

The program automatic captures 
the margins and intervals of (E1, E2, 

E3) to determine the size of the 
characteristic matrix

Sum up E3 included in the grids 
corresponding to E1 and E2

After completing the characteristic 
matrix, use the fractal theory to 

calculate the gap and fractal 
dimensions in the matrix  

Following the construction of the matrices as described above, the grid cells represent the positions 
that correspond to E1 and E2. However, only the density characteristic is shown in this study, so all the 
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E3 in the E1 and E2 grid cells are summed, so the total amplitude value represents the number of 
distributed points. More distributed points corresponds to a higher total amplitude value, so this 
characteristic matrix can express the density of the E1, E2 distributions , and the total amplitude value 
for E3 represents the number of distributed points. 

4.3. Characteristic Extraction and Clustering Method 

The lacunarity and fractal dimension are extracted using the method that was described in Section 3 
for characteristic extraction. Figure 6 presents three-dimensional diagrams of a characteristic matrix of 
different types. A 512 × 512 characteristic matrix is extracted from the center point. The characteristic 
distributions in Figure 6a,c are clearly different from those in Figure 6b,d. The characteristic 
distributions in Figure 6a,c are wider and the ∑E3 values are larger than those in Figure 6b,c. When the 
three-dimensional characteristic graphs are calculated using fractal theory, the lacunarity and fractal 
dimension values of various defects can be determined. 

Two characteristic values, namely the lacunarity and the fractal dimension, are extracted through 
fractal theory for pattern recognition by means of the extension theory. In each type of defect, the first  
20 samples are treated as the training samples, while the remaining 20 are as the test samples tested in 
the presence of noise interference. 

Figure 6. Three dimensional characteristic for defect (a) Type I. (b) Type II. (c) Type III. (d) Type IV. 

  
(a) (b) 

  
(c) (d) 
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5. Experiment and Results 

5.1. Experiment Models 

In this work, experiments are conducted with four designedly made 15 kV pole-type GIS defect 
models, which are filled with SF6 gas. Figure 7 shows the possible defect models that might be a result 
of human carelessness during GIS construction. The four testing models are designed as follows: 

Type I: Porcelain bushing internal conductor containing oil grease. 
Type II: SF6 gas tank containing 5 mm × 3 mm × 1 mm metal particles. 
Type III: A welding protrusion with size approximately 5 mm × 5 mm × 2 mm on the bearing. 
Type IV: An abrasion defect with 2 mm depth and 10 mm length on a metal ring. 

Figure 7. Four designedly made experiment defect models. 

Type I Type II 

Type III Type IV 

 

5.2. Measurement System 

An experiment environment, as configured in Figure 8, is composed of a control room adjacent to a 
high voltage chamber. The voltage step-up procedure of the PD experiment is according to IEC 62271-203 
for high-voltage switchgear and controlgear—part 203: gas-insulated metal-enclosed switchgear [33]. This 
standard indicates the test voltage for measuring PD intensity, the pre-stress voltage (Upre-stress) should 
be applied for the power-frequency withstand voltage test and maintained at that value for 1 min. 
Partial discharges occurring during this period shall be disregarded. The voltage is then reduced to test 
the voltage for PD measurement, phase-to-earth (Upd-test, ph-ea). In this work, the GIS rated voltage (Ur) 
is 15 kV, Upre-stress is applied at 45 kV for 1 min, and Upd-test, ph-ea = 1.2 Ur/3½ = 10.4 kV according to 
standard for PD measurement.  
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Figure 8. A laboratory configuration for PSD experiments. 
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The electromagnetic signal emanating from the GIS is collected by a self-made detector, and then 
linked to a PC through a data acquisition card. The structure and the measured frequency response of 
the designed microstrip antenna are depicted in Figure 9. The detailed sizes are L1 = 135.56 mm,  
W1 = 149.81 mm, L2 = 104.62 mm, W2 = 3.53 mm, L3 = 47.26 mm, W3 = 34.8 mm and L4 = 37.26 mm. 
Due to financial constraints we could not acquire an ultrahigh speed signal capture card, therefore, in 
order to fit the Shannon theorem, we decreased the bandwidth of the microstrip antenna to 4 MHz 
using a delay circuit in the experimental system. A human-computer interface is developed in the 
LABVIEW environment for real time partial discharge signal processing. There are a total of 160 
discharge signal samples for four types of defects, each with 40 samples, the first 20 of which are 
regarded as training samples, and the rest are as the testing ones. In this study, dynamic error 
trajectories E1, E2, E3 in a chaos synchronization system are plotted, based on which a characteristic 
matrix is constructed, and the lacunarity as well as the fractal dimension is extracted accordingly 
through the fractal theory. In the end, an investigation is made into the recognition accuracy rate and the 
tolerance to noise interference for a chaos synchronization system by use of this proposed approach. 

Figure 9. Designed microstrip antenna structure. 

 

5.3. Experiment Results and Discussion 

Presented in Figures 10 and 11 are the bar graphs of the fractal dimension and lacunarity versus the 
defect type respectively, following the analysis on four types of defects in a chaos synchronization 
system by means of fractal theory. Figure 12 is the distributions of the fractal dimension and the 
lacunarity accordingly. In consistency with Figure 6, Type I is of the highest level of fractal dimension 
among all defect types, since a broader distribution of E1, E2 are demonstrated. Yet, the use of merely 
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fractional dimension is found inadequate to recognize all the four defect types, according to which the 
lacunarity is adopted as another characteristic so as to improve the recognition rate. The differences in 
characteristics can be obviously observed in Figures 10 and 11. As exhibited in Figure 13 and as a 
validation of this work, distinct defects can be made distinguishable with ease through the application 
of this proposed approach to a Chen-Lee system, that is, another type of chaos synchronization systems. 

Figure 10. Bar graph of the fractal dimension versus the defect type. 

 

Figure 11. Bar graph of the lacunarity versus the defect type. 

 

Figure 12. Characteristic distributions for various defect types in a Lorenz chaos 
synchronization system. 
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Figure 13. Characteristic distributions for various defect types in a Chen-Lee chaos 
synchronization system. 

 

The input signal to a PD measurement system is presumed to contain some noise inevitably. The 
noise sources may be attributed to the PD detector, environmentally electromagnetic interference, 
human errors, etc. Taking into account the noise interference, 160 sets of testing data are created by 
imposing the uniformly distributed random noise. In this work, the simulative white noise can be 
composed of a group of uniformly distributed random numbers with mean zero and then its normalized 
peak value is specified from ±10 to ±30 on the basis of mean discharge of the original measured  
PD signal. 

As tabulated in Table 1, a 100% recognition rate is reached in the absence of noise interference, 
while an average recognition rate of 85% is achieved in the presence of 10% noise. Likewise, when 
applied to a Chen-Lee chaos synchronization system, a 100% recognition rate is seen again in a noise 
free case, and a 82.5% recognition rate in the presence of 10% noise. However, the HHT method in the 
0% noise case has only an average 62.5% recognition rate in Table 3. The CS method has a higher 
recognition rate than the HHT method under noisy conditions. With the fractal dimension and the 
lacunarity as two characteristics, this proposal, employing a characteristic matrix, is successfully 
applied to defect pattern recognition for two types of chaos synchronization systems. A promoted 
recognition rate is thus expected in the presence of background noise in the event that a third 
characteristic is adopted in futuristic studies. 

Table 1. Recognition accuracy rates with FD-Λ as characteristics in a Lorenz chaos 
synchronization system (%). 

Noise Amount 
Defect Types 

0% ±10% ±20% ±30% 

Type I 100 100 80 70 
Type II 100 80 70 40 
Type III 100 70 60 30 
Type IV 100 90 75 60 
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Table 2. Recognition accuracy rates with FD-Λ as characteristics in a Chen-Lee chaos 
synchronization system (%). 

Noise Amount 
Defect Types 

0% ±10% ±20% ±30% 

Type I 100 80 50 35 
Type II 100 75 60 55 
Type III 100 90 75 30 
Type IV 100 85 70 65 

Table 3. Recognition accuracy rates with FD-Λ as characteristics by an HTT approach (%). 

Noise Amount 
Defect Types 

0% ±10% ±20% ±30% 

Type I 80 70 70 50 
Type II 30 30 20 10 
Type III 90 55 30 10 
Type IV 50 25 10 0 

6. Conclusions 

There is an inevitable insulation fault in a GIS as the consequence of improper installation or 
imperfect manufacturing process. Besides, since the insulation of a GIS is found critical, in particular, 
for the normal operation of a high capacity power plant, it is seen required to have a regular checkup 
on the GIS. Four deliberately defective GISes are employed as test objects, and experiments are 
conducted with a self-made rectangular microstrip antenna together with a broad band power amplifier 
as an electromagnetic signal detection device. For the purpose of computational load reduction, a 
pretreatment is conducted on the measured raw data, while the characteristics are well preserved. 
Subsequently, a characteristic matrix is built by use of the trajectories of dynamic errors E1, E2, E3 in 
the tracking process of a chaos synchronization system. The boundary values are determined by the 
defect type with a high dynamic error trajectory, while the lacunarity is by that with a low dynamic 
trajectory. As a consequence, the dimension of the characteristic matrix corresponding to each defect 
type is specified, and the properties of dynamic error trajectories are characterized therein. By use of 
fractal theory, an improved defect recognition rate is reached by means of extension theory with the 
fractal dimension as well as the lacunarity extracted out of a characteristic matrix. The proposed 
approach yielded better clustering results than the HHT method, proving that the method that was 
proposed herein can extract characteristic information about four defects. In conclusion, this proposal 
is proven as an effective diagnostic tool for defect types in chaos synchronization systems. 
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