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Abstract: Emergence is a common phenomenon, and it is also a general and important 

concept in complex dynamic systems like artificial societies. Usually, artificial societies 

are used for assisting in resolving several complex social issues (e.g., emergency 

management, intelligent transportation system) with the aid of computer science. The 

levels of an emergence may have an effect on decisions making, and the occurrence and 

degree of an emergence are generally perceived by human observers. However, due to the 

ambiguity and inaccuracy of human observers, to propose a quantitative method to 

measure emergences in artificial societies is a meaningful and challenging task. This article 

mainly concentrates upon three kinds of emergences in artificial societies, including 

emergence of attribution, emergence of behavior, and emergence of structure. Based on 

information entropy, three metrics have been proposed to measure emergences in a 

quantitative way. Meanwhile, the correctness of these metrics has been verified through 

three case studies (the spread of an infectious influenza, a dynamic microblog network, and 

a flock of birds) with several experimental simulations on the Netlogo platform. These 

experimental results confirm that these metrics increase with the rising degree of 

emergences. In addition, this article also has discussed the limitations and extended 

applications of these metrics. 
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1. Introduction 

An emergence is a general phenomenon which is also an important feature of complex dynamic 

systems [1]. The emergence means the global properties, behaviors, structures or patterns of a complex 

system arising from localized individual behaviors [2]. Usually, an emergence is always connected 

with the concept of self-organization [3], which may be due to the local nonlinear self-organized 

interactions between individuals in a complex dynamic system. In the natural world, there are a large 

number of emergences like fish schools and flocks of birds, and such emergences can assist the 

individuals in avoiding dangers or achieving a macro-level goal. However, in the real society, an 

emergency represents an event or situation that could pose an immediate risk to health, life, property or 

the environment [4], and an emergency may give rise to some emergences, which may have a negative 

impact on the individuals in the society and even result in a great loss of life and property, e.g., an 

outbreak of H7N9, H1N1 or SARS. In order to avoid such terrible emergences, emergency 

management is put in place to control and manage this kind of emergency. Because of the 

nonrepeatability and high-cost of experiments in the real society, borrowing the idea of artificial society 

and parallel societies, social computing [5] is  emerging to aid in meeting the challenge in emergency 

management. Artificial society is taken as the foundation of social computing, which is an abstract and 

mapping of the real society and comprises multiple agents from bottom-up. Hence, emergency 

management experiments could be performed in artificial societies, where emergency management 

policies could also be evaluated and refined. As one knows, various emergencies may cause different 

emergences if without effective emergency management policies. The degree of an emergence can 

reflect the effectiveness of an emergency management policy. According to different levels of the 

emergence, experts could adopt corresponding emergency management policies to respond to 

emergencies. Usually, an emergence is perceived by human observers, even though the meaning of the 

emergence observed by humans is not clear enough and levels of the emergence may be ambiguous. 

There is a lack of a general metric to measure the degree of an emergence in artificial societies. 

Therefore, the motivation and purpose of this paper are to propose quantitative metrics to measure the 

levels of emergences. 

Some research has attempted to provide effective methods to measure emergences. The idea of 

entropy is one of these approaches. It is well known that the concept of entropy has been widely 

applied in various disciplines with distinct definitions. Generally, the entropy is conceived as a metric 

of the disorder in a complex dynamic system [6,7]. There are several entropies in various domains 

such as thermodynamic entropy [8], Boltzmann’s entropy [9,10], social entropy [11,12], information 

entropy [13], and generalized entropy [14], etc. Moreover, entropy could also be used to measure the 

self-organization in complex dynamic systems [15]. Self-organization generally could result in 

emergences, but the entropy for self-organization is not the same as the metric of emergence [16]. 

Reference [16] has proposed a relative entropy redundancy only to measure emergences of attributes in 

complex dynamic systems but not the emergence of behaviors or structures. Evolution in the biosphere 

could be taken as an emergence (a particular macroscopic behavior) derived from micro-level 

organismic interactions [17], and evolutionary activity is introduced as an objective, quantitative, and 

observable metric for evolution (emergence). A simple approach with the usage of statistics could 

measure the degree of evolutionary activity (i.e., the levels of the emergence), where persistent usage 
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of a new gene could be seen as an evolutionary activity. Emergence can also be considered as a matter 

of degree, which can be defined by the amount of simulations to get a fact [18]. Meanwhile, a metric 

using interaction statistics from the agent-based simulations [19] has been used for detecting 

emergences of attributes and behaviors in the simulations. When continuous attributes are considered, 

and some new technical metrics like divergence measures for probability densities to measure 

emergences [20]. In the same way, these methods in [20] only focus on emergences of attributes or 

behaviors but not emergences of structure. 

Due to the diversity of agents, artificial societies and emergences, proposing a general metric for 

measuring emergences in artificial societies is a challenging task. Generally, emergences can be 

divided into two kinds: weak emergences and strong emergences. As we know, a strong emergence 

means the macro-level property of a system, which cannot be found in the properties of the system’s 

parts or in the local interactions between the systems’ parts [21]. A strong emergence is a macro-level 

property and in principle it cannot be identified from the sum of micro-level properties. The strong 

emergence cannot be simulated by a computer, however, the emergent macro-level properties have 

irreducible causal powers [22–24]. A classic case of strong emergence is the emergence of 

consciousness such as the qualia of pain from the neurobiological processes [25]. Its hard to measure 

such an strong emergence. Compared with strong emergences, weak emergences are in principle 

identifiable from micro-level individuals [26], and weak emergences are derivable and the  

micro-to-macro derivable tracks should be non-trivial, which can be amenable to computer  

simulations [23]. In addition, there is another form of definition for weak emergence, i.e., macrostate P 

of a system S with micro-level dynamic state D is weakly emergent iff P can be derived from D and S’s 

external conditions but only by simulation [18]. Hence, weak emergence is the focus of this paper, and 

we will not discuss from strong emergence to weak emergence. Aiming to measuring emergences in 

artificial societies, this paper introduces a general artificial society model—the zombie-city [27] to 

overcome the diversity of artificial societies by modeling artificial societies with this general model, 

and borrows the idea of information entropy to propose metrics for measuring the emergences, 

including the emergences of attribute, behavior and structure. Through three case studies with 

experimental simulations on Netlogo, these metrics can correctly measure the levels of attribute, 

behavior and structure emergences in artificial societies, and the results show that these metrics 

increase with the rising levels of emergences. 

The remaining sections of this article are organized as follows. Section 2 introduces the metrics for 

measuring emergences in artificial societies constructed with the zombie-city model, and this section 

presents the definitions of agents, entropy of disorder in artificial societies, and metrics for measuring 

emergences. Section 3 studies three cases to confirm the effectiveness and correctness of the metrics. 

Section 4 discusses the limitations of these metrics and extended applications of these metrics for 

emergency management in artificial societies. Section 5 summarizes the results of this paper, and 

foresees the future works. 
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2. Method for Measuring Emergences 

2.1. Prerequisite Knowledge  

In information theory, it can be taken as an emergence that larger information is produced in a 

communication system. The metric of emergence [28] could be simply described by Equation (1): 

outE=I / inI . (1) 

where Iin represents the input information and Iout denotes the output information. It is well known, 

however, that an artificial society is different from a communication system. A communication system 

is considered as a whole, but an artificial society comprises multiple agents. An emergence in a 

communication system is generally considered as the whole behavior of the system and caused by the 

complexity of the communication system, while the emergence in an artificial society is created by 

individuals and their nonlinear interactions or other behaviors, as shown in Figure 1. Therefore, the 

metric of emergences in the communication system cannot be directly used to measure emergences in 

artificial societies. 

Figure 1. (a) Emergence in a communication system; (b) Emergence in an artificial society. 

Emergence

Communication system

Emergence

Artificial Society

Agent

Agent
Agent

Agent

Agent

 
(a) (b) 

The social system is a special complex dynamic system, and an artificial society is the mapping of 

the social system with several complex features like diversity. This paper focuses on the artificial 

societies modeled with the zombie-city model, which is a general artificial society model and can be 

used in social computing for emergency management. Figure 2 presents the meta-model of the zombie-

city model, including agents, roles, environment, social network and rules, etc. Agents have their own 

capabilities, one of which is the interaction. Meanwhile, agents may carry viruses, and a virus is an 

abstract concept, which could not only denote an infectious virus but also indicate information and 

other concepts. Based-on the zombie-city model, an artificial society AS could be defined as:  

AS:: = < AG, RO, EN, SN, RU >, where AG means the set of agents in this artificial society, RO 

represents the set of roles, EN means the environment made up of grids, SN is the set of social 

relationships between agents, and RU denotes the set of rules in the artificial society [27]. The 

emergence in the artificial society is initiated by agents and their nonlinear interactions or behaviors 

from the micro-level to the macro-level. Here, we should give a general definition of an agent in the 

artificial society as Agent:: = < ID, AT, CAP, SR, Ro, Beh, Env >, where ID is the identification 

number of an agent, AT denotes the values of attributes that the agent owns, CAP indicates the 
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capabilities that the agent has, SR means the ID set of agents who have social relationships with this 

agent, Ro means the role that this agent is playing at the current moment, Beh represents the behavior 

that the agent is performing at the current moment, and Env means the place that the agent is inhabiting 

at the current moment. All these concepts could be expressed by a serial of digits. For example, one 

agent i could be defined as Agent_i :: = < i, {01101010, 11111010}, {10101000, 11011101}, {l, k, j}, 

00, 10101000, (10, 12) >. As agents in the artificial society are numerically expressed, the physical 

statistical method could be used to aid in measuring emergences in artificial societies. 

Figure 2. Meta-model of the zombie-city model. 
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2.2. Metrics of Various Emergences 

Without metrics for measuring emergences, emergences are usually ambiguously perceived by 

human observers. In an artificial society modeled based-on the zombie-city model, emergences could 

be divided into three kinds of emergences, including attribute emergence, behavior emergence, and 

structure emergence, and these emergences all belong to the weak emergence class. Various 

applications may concentrate diverse kinds of emergences, and emergences in the artificial society 

represent the meaning of “order” but not “disorder”. The order is also depending on the selection of 

certain attributes, behaviors, or structures. As one knows, entropy can express the disorder levels of a 

complex dynamic system. Emergences in artificial societies can also be measured with the assist of the 

entropy in information theory. Artificial society as a complex system has its own attributes, behaviors 

and structures. Therefore, emergences in artificial societies can also be subdivided into emergence of 

attribute, emergence of behavior and emergence of structure. Table 1 shows the classifications, 

applications and metrics of emergences. 

Emergence of an attribute means the emergent macro-level attribute of the system, which is 

reducible from micro-level individuals’ attributes or local interactions between individuals, and one 

single individual does not hold the emergent attribute. For example, outbreak of an infectious influenza 
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could be seen as an emergence of attribute, but the individual’s attribute could not reflect the 

emergence. Meanwhile, the emergence of behavior means that the macro-level emergent behavior of 

the system derived from the micro-level individuals’ behaviors, and one single individual’s behavior 

cannot represent the whole emergent behavior of the system. For instance, emergence of interactions is 

an emergence of behavior, and the individual’s interaction behavior could not show the emergence of 

interactions. Emergence of behavior could be seen as emergence of attribute, e.g., emergence of 

interactions could be seen as an emergence of attribute (interaction can be denoted this attribute). In 

addition, emergence of structure means the emergent macro-level whole structure, which is derived 

from the micro-level individuals’ attributes, behaviors, interactions between individuals or local 

structures, and the emergent structure of the system cannot be hold by any individuals. For example, 

the social network structure of an artificial society follows scale-free, and the social relationships of 

any individuals could not represent the property of this emergence of structure.  

Table 1. Classifications, applications and metrics of emergences. 

Classifications Applications Metrics 

Weak 
emergence 

Emergence of attribute Outbreak of infectious disease 
Relative 

entropy, e.g., 
E(t), ES(t), 

EC(t). 

Emergence of behavior Emergence of interactions 

Emergence 
of structure 

Emergence of distribution
Matthew effect in the wealth 

distribution, power-law distribution 

Emergence of cluster Flocking birds, fish school 

Strong emergence 
emergence of consciousness like 
qualia from the neurobiological 

processes 

Multi-scale 
variety [21] 

2.2.1. Emergence of Attribute and Behavior  

Due to the similarity between attribute emergence and behavior emergence, we could give the 

definition of metrics for measuring both emergence of attribute and emergence of behavior. Before 

presenting the computation of entropy, we should declare some notations and parameters. AS means an 

artificial society, N denotes the number of agents in the artificial society, m indicates the number of an 

attribute’s values that agents possibly have or the number of behaviors that agents possibly perform (in 

different scenes, the values of m may be different), and pi(t) means the statistical probability of agents 

owning the ith value of an attribute or performing the ith behavior at t moment. Then, based on the 

information entropy, we could give the entropy of the artificial society in Equation (2): 

2
1

( ) ( ) log ( )
m

i iH t p t p t  , (2)

As we know, the entropy of an artificial society as defined in Equation (2) will reach the maximum 

value presented in Equation (3), while all values of these pi(t) are the same at t moment, i.e., any  

pi(t) = 1/m. If the entropy of an artificial society reaches the maximum value, we could conclude that 

this artificial society is in an absolute disorder:  
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2

1 1
log

m mMAXH   , (3) 

( )
( ) MAX

MAX

H H t
E t

H


 . (4) 

Entropy increases with decreasing order, but emergence increases with increasing order. Thus, 

emergence increases with decreasing entropy. A metric for measuring emergences of attribute and 

behavior could be defined as in Equation (4). When H(t) = HMax, the value of metric E(t) is 0, which 

means the artificial society absolutely has no emergences of attribute or behavior. When the value of 

an attribute of all agents is the same or all agents perform a same behavior, H(t) is equal to 0 and then 

E(t) is 1, which means the emergence of an attribute or behavior has appeared in the artificial society. 

Metric E(t) denotes the levels of an emergence, and E(t) increases with the growing levels of the 

emergence. As shown in Figure 3, there are four scenes (different moments) of an artificial society, 

and this artificial society contains 12 agents.  

Figure 3. (a) Agents play three roles at moment a; (b) Agents play three roles at moment b; 

(c) All agents play the same role at moment c; (d) All agents play different roles at moment d. 
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When agents play different roles, they will have different colors. The emergence in which agents 

play the same role is not only an emergence of behavior but also an emergence of role attribute (the 

role could be considered as one attribute of agents). Through human observing, we could see the 

absolute emergence of playing the same role appears at moment c, and at moment d the system is 

in an utter disorder. Hence, we could calculate their entropies. The entropy of the artificial society 

in Scene (a) (i.e., at moment a) H(a) is about 1.585, i.e., H(a) = −∑1/3log21/3 ≈ 1.585. As the same, 

H(b) = −(5/6log25/6 + 1/12 log21/12 + 1/12log21/12) ≈ 0.817, H(c) = 0, H(d) = −∑1/12log21/12 ≈ 3.585, 

and HMax = −∑1/12log21/12 ≈ 3.585. Then, we could acquire the metric values of metric E(t) for 
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measuring emergences in these four scenes: E(a) ≈ 0.558, E(b) ≈ 0.772, E(c) = 1, and E(d) = 0. These 

results have clearly and correctly reflected the levels of emergences of attribute and behavior. 

2.2.2. Emergence of Structure 

The meaning of structure emergence in artificial societies is also as diverse as flocks of birds, fish 

schools, and the Matthew effect (that means the rich get richer and the poor get poorer) in society, etc. 

The structure emergence depends on the observers’ views. For instance, it is assumed that we focus on 

whether or not the degree distribution follows the power-law. If the degree distribution of a social 

network of an artificial society follows the power-law, we can say that there is an emergence of 

structure in the artificial society. Moreover, emergences like flocks of birds and fish schools are both 

structure emergences. Hence, we could divide structure emergences into two kinds: emergent 

distribution of an attribute or behavior, and emergent clustering or community. 

First, we will discuss a structure emergence of distribution like wealth distribution (Matthew effect), 

degree distribution (scale-free), etc. Usually, such emergences are perceived by human observers in an 

equivocal way. Without any quantitative evaluations, humans directly estimate and judge whether or 

not this kind of emergence appears. Human observers should have the memory of the objective 

distribution, and then estimate if the real distribution follows the objective distribution. In order to 

quantitatively measure this kind of emergence, some notations and parameters should be defined. N 

denotes the number of agents, M means the maximum number of value intervals of an item (like 

wealth and degree), ri indicates the probability (in the objective distribution) that the value of this item 

is in the ith value interval, and pi(t) represents the estimated probability that the value of this item is 

during the ith value interval at moment t. In addition, 

1

| ( ) |i i
M

i
i

r p t

r





 means the ith relative probability 

redundancy. As presented in Equation (5), the entropy HS(t) means the disorder between the estimated 

distribution and the objective distribution at moment t. In addition, the entropy HS could get the 

maximum value (signed as HS_Max), when the values of all 
1

| ( ) |i i
M

i
i

r p t

r




  are the same and equal to 

1

1

| ( ) |
1

M

i i
i

M

i
i

r p t

r










. Equation (6) is the definition of HS_Max. Above all, we could calculate the value of 

metric ES(t) of distribution emergence with ES(t) and HS_Max, as shown in Equation (7). 1

1

| ( ) |
1

M

i i
i

M

i
i

r p t

r











means the whole probability with the same distribution. When two distributions are the same, the value 

of 1

1

| ( ) |
1

M

i i
i

M

i
i

r p t

r










is 1, thus the value of HS(t) is 0 and ES(t) is equal to 1. 
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_ 2

1 1
log

M+1 M+1S MAXH   , (6) 

_

_

( )
( ) S MAX S

S
S MAX

H H t
E t

H


 . (7) 

As shown in Figure 4, there are three distributions of an artificial society, and its assumed that the 

first distribution in the left chart is also the objective distribution. Thus, the parameter M is 5, and the 

value intervals are [0, 1], (1, 2], (2, 3], (3, 4], and (4, 5]. For the distribution at moment b, this 

distribution is similar to the objective distribution at moment a, and the entropy HS(b) of the 

artificial society at moment b is about 0.569. In the same way, HS(a) = 0, HS(c) ≈ 2.446, and 

HS_Max = −∑1/6log21/6 ≈ 2.585. Then, we could calculate all these metrics of the artificial society in 

these three scenes, i.e., ES(a) = 1, ES(b) ≈ 0.780, and ES(c) ≈ 0.054. The metric values clearly and 

correctly reflect the real levels of emergences in these three scenes. 

Figure 4. (a) The distribution at moment a (Scene a) and also the objective distribution;  

(b) The distribution at moment b (Scene b); (c) The distribution at moment c (Scene c). 
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Another structure emergence is the emergent clustering or community, and flocking is a classic case 

of this kind of emergence. A cluster is a general concept, which represents a set of individuals, objects 

or agents in the same group (called a cluster) that are more similar to each other than those in other 

groups (clusters). It’s assumed that the set Clusters = {C1, C2, …, CM}, where Ci denotes a cluster, and 

each agent should belong to one of these clusters. These clusters may be based-on the physical 

environment or social network. |Ci| means the number of agents that belong to the cluster Ci. In 

addition, N represents the number of agents in the artificial society. Then, |Ci|/N means the probability 

that agents belong to the cluster Ci. The entropy HC(t) could be defined in Equation (8), and Equations (9) 

and (10) present the maximum entropy and metric of emergence, respectively. EC(t) could measure the 

levels of the clustering emergence at moment t: 
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Figure 5 presents four scenes of an artificial society, and agents inhabit the physical environment 

(which comprises grids). In the Scene a (at moment a) and Scene b (at moment b), all agents are in one 

cluster. Hence, both the entropy values (i.e., values of HC(a) and HC(b)) in these two scenes are 0, and 

then the metric value of clustering emergence are 1, i.e., EC(a) = 1 and EC(b) = 1. In the scene c, there 

are two clusters, and one cluster has eight agents and another one contains five agents. Then,  

HC(c) = −(5/13log25/13 + 8/13log28/13) ≈ 0.961, and HC_Max = −∑1/13 log21/13 ≈ 3.7. Thus,  

EC(c) ≈ 0.74. In the same way, EC(d) ≈ 0.099. The value of EC(t) increases with the decreasing number 

of clusters. 

Figure 5. (a) Agents are in one cluster at a moment (Scene a); (b) Agents are in one 

cluster at b moment (Scene b); (c) Agents are in two clusters at c moment (Scene c); (d) 

Agents are in eleven clusters at d moment (Scene d). 
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3. Experiments 

Section 2 presents the definitions of three metrics for diverse emergences, and then in this section 

we will study three cases with experimental simulations to further verify and confirm the effectiveness 

and correctness of these metrics. Through these experiments we could observe whether or not these 

metrics are consistent with the levels of emergences. All simulation experiments in this section are 

performed in the Netlogo platform, which is a widely applied MAS (Multi-agents systems) simulation 

platform. In addition, all these experiments are performed on a workstation with a 2.60 GHz Intel Core i5 

processor and 4 GB RAM running the Win 8 operating system. 

Case 1: The Spread of an Infectious Influenza: 

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

( )
( )

dS t
E t S t

dt
dE t

E t S t E t
dt

dI t
E t R t

dt
dR t

I t
dt



 

 



  

  

  


 


 
(11) 

The first case is about the spread of an infectious influenza. As one knows, the spread of an 

infectious influenza may result in a terrible emergence (the outbreak of this infectious influenza), e.g., 

the outbreak of H1N1, H7N9, or SARS. In this case, it is assumed that the spread model of the 

infectious influenza is the SEIR model, and its mathematical model is depicted by Equation (11). 

Equation (11) defines four states: healthy and susceptible (S), exposed (E), infected (I), healthy and 

recovered (R), and each individual should be in only one of these states [29]. Meanwhile, we will 

discuss the spread of the infectious influenza in a school. It’s assumed that 40% individuals are 

students, 30% individuals are teachers, and 30% individuals are administrators. When an individual is 

infected by the infectious influenza to become exposed or infected, he/she will play patient role. In this 

case, we will concentrate upon the emergence of role attribute.  

Figure 6. (a) The spread status of the infectious influenza in the artificial school; 

(b) The metric E(t) of role attribute emergence changes with time. 
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At first, we can construct an artificial society with the zombie-city model, and perform the 

experiments on Netlogo. The population of agents in this artificial school is assumed to be 1000, and 

there are four roles: Student, Teacher, Administrator, and Patient. The Patient role represents the 

agents in the infected state or the exposed state. Susceptible agent may become Exposed agent with the 

probability of ω after interacting with other infected agents. The Exposed agent may become the 

Infected agent with a probability of μ. The Infected agent can become a Recovered agent with the 

probability of λ. Here, it’s assumed the parameters ω = 0.1, μ = 0.5, and λ = 0.25. Figure 6a shows the 

spread status of this infectious influenza in this artificial school. In addition, the levels of the emergence 

of role attribute could be computed with Equations (2), (3), and (4). The parameter pi(t) denotes the 

percent of the ith role at moment t, m is 4 in this case, and then HMax equals 2. E(t) changes with the 

spread status of the infectious influenza. As presented in Figure 6b, the metric E(t) reaches the peak 

point, while almost agents are in the infected or exposed states. Therefore, this metric has clearly and 

correctly reflected the degree of emergence of role attribute. 

Case 2: A Dynamic Microblog Network: 

Nowadays, social media have become a hot research topic which also involve complex dynamic 

systems. A microblog is one of the kinds of social media, whose social network is a complex dynamic 

network. In our previous work, a dynamic microblog network has been proposed. In this case, we will 

evaluate and analyze the levels of a structure emergence, i.e., whether or not the degree distribution of 

this microblog network follows the power-law. One model of this dynamic microblog network is 

detailed as the follows [30]:  

Figure 7. A snapshot of the dynamic microblog network, where N = 250, μ = 5, r0 = 0.0015, 

r1 = 0.1, r2 =0.0015, r3 = 2, and γ = 0.1. 
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Let N indicate the number of nodes in the microblog network, the total out-degree number (np) of 

the network is N(N − 1), and the existing total out-degree number is 1

2e in z    (zi
 represents the  

out-degree of node i). Meanwhile, ownz*
i

 denotes the limited out-degree of node i (i.e., maximum 

out-degree of node i), and maximum out-degree of all nodes follows a power-law as the exponential 

distribution ( ( )
k

p k e 


 ): 

(1) In each time, randomly select npr0 pairs of nodes. For each pair of nodes, randomly choose one 

of these two nodes signed as node i. If out-degree of node i is smaller than ownz*i
, then node i 

will connect to the other one. 

(2) In each time, randomly choose npr1 pairs of nodes. For each pair of nodes, if one of the chose 

nodes (node j) connects to the other (node i), and node i does not connect to node j and  

out-degree of the node i is less than ownz*i
, then node i will connect to node j. 

(3) In each time, randomly select npr2 pairs of nodes. For each pair of nodes, if one of the selected 

nodes (node i) with the smaller in-degree does not connect to the other node and out-degree of 

node i is less than ownz*i
, then node i will connect to the other node.  

(4) In each time, randomly choose nmr3 nodes ( 1
( 1)

2m i in z z   ). For each node, randomly select 

one of nodes from its in-neighbor nodes (called node i), and randomly choose one of nodes 

from its out-neighbor nodes (signed as node j). If node i does not connect to node j and  

out-degree of node i is smaller than ownz*i
, and then node i will connect to node j.  

(5) In each time, randomly choose  ne γ nodes (γ is a constant). For each node, randomly select one 

of its out-links and cancel this link. 

Figure 8. (a)The metric ES(t) of structure emergence changes with time, where γ = 0.001;  

(b) The metric ES(t) changes with time, where γ=0.1. 
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The microblog is similar to the society, and we could reconstruct an artificial microblog with the 

zombie-city model. Nodes in the microblog could be abstracted as agents, and links between these 

nodes could be considered as the social relationships between these agents. The simulation experiment 

in this case is also performed in Netlogo. In the experiment, these parameters are set as follows: N = 250, 
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μ = 5, r0 = 0.0015, r1 = 0.1, r2 = 0.0015, r3 = 2, and γ = 0.001. Figure 7 shows a snapshot of the 

dynamic microblog network, and we could observe that this network have the feature of clustering. In 

this case, we mainly focus on whether the out-degree distribution of this microblog follows the 

distribution of power-law ( ( )
k

p k e 


 ), which is an emergence of structure. With Equations (5), (6), and 

(7), we could dynamically compute the metric ES(t) with time. As shown in Figure 8a, the value of ES 

quickly grows to nearly 0.98, and then this value is stable with few fluctuations. Because with a 

smaller γ few relations or links will be deleted in each time. If we set γ from 0.001 to 0.1, in each time more 

relations or links will be deleted. As illustrated in Figure 8b, the metric ES(t) fluctuates around 0.8. The 

metric ES(t) has correctly and truly reflected the levels of this structure emergence in a quantitative way. 

Case 3: Flock of Birds (Flocking Birds) 

This case is about a classic emergence in the natural world, i.e., a flock of birds. The phenomenon 

of flocking birds is based on some simple rules without external and central controls, and the process 

of flocking is a self-organized process. The flock of birds could also be taken as an artificial society, 

and we could construct an artificial society of flocking birds with the zombie-city model. The birds 

could be abstracted as agents. The simple rules of flocking could be described as follows [31,32]: 

Figure 9. The processes of flocking. 

Tick=0, Ec(t) is about 0.065 Tick=118, Ec(t) is about 0.523 Tick=338, Ec(t) is about 0.71

Tick=489, Ec(t) is about 0.832Tick=870, Ec(t) is about 0.901 TIck=538, Ec(t) is about 0.754
 

(1) Cohesion: If an agent is far away from its nearest neighbor, and then this agent will turn 

towards its nearest neighbor. 

(2) Separation: If an agent is too close to the nearest neighbor, and then this agent will turn away 

from the nearest neighbor. 

(3) Alignment: All agents keep the average direction of all agents. 
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Its assumed that the population of agents in this artificial society is 300. The simulation experiment 

is also performed on Netlogo. At the initialization, all agents randomly live in the environment, which 

consists of 32 × 32 grids. Figure 9 presents the bird-flocking processes. In this case, we mainly 

concentrate on the levels of the emergence of flocking. The flocking is also a structure emergence, and 

the spatial clustering is the focus of this emergence. Hence, we could quantitatively and dynamically 

compute the metric of this structure emergence with Equations (8), (9), and (10). 

Figure 10. All neighbors of an agent. 
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Algorithm 1: The algorithm of computing clusters of flocking birds. 

Initialization:
1     j =1 
2     N= |AG|
3     foreach  ai ∊AG do
4         ai.cluster_id = 0
5     end
6     foreach ai ∊AG do
7         if ai.cluster_id = 0 then
8            ai.cluster_id = j 
9         end if
10       foreach ak ∊ai.Neighbors do
11          ak.cluster_id=j
12       end
13       p=0
14       repeat
15            foreach  am ∊AG do
16                 if am.cluster_id = j then
17                       foreach al ∊ am.Neighbors do
18                              if al.cluster_id != j then
19                                  al.cluster_id = j
20                              end if
21                       end
22                 end if
23             end
24             p++
25        until  p =N-1         
26        j++
27    end  
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At first, we should design an algorithm to dynamically compute and then detect the clusters, 

because the clusters can change with time. As shown in Figure 10, an agent has eight neighbors. If an 

agent A has no neighbors, the agent A must be in a separate cluster and this cluster only has agent A. If 

agents are in a same cluster, then any one agent should be a neighbor of another agent belonging to this 

cluster. Hence, we could design an algorithm to compute the clusters in the artificial society, and the 

algorithm is presented in Algorithm 1. Each agent has an attribute cluster_id to denote ID of the cluster 

that this agent belongs to. The parameter j could record the total number of clusters, i.e., N = j. In 

addition, the IDs of these clusters are from 1 to j. |Ci| in Equation (8) indicates the number of agents 

whose cluster_id equals i. The entropy HC(t) could be calculated with Equation (8), and  

HC_Max = –log21/300 ≈ 5.044. Real-time metric EC(t) of flocking emergence could be shown in  

Figure 11, and Figure 9 also presents the corresponding EC(t) according to different flocking processes 

at various simulation ticks. In the Figure 11, we could see that metric EC(t) is increasing with some 

fluctuations. For example, as shown in Figure 9, while the tick is 489, there are five clusters and the 

EC(t) is about 0.832. When the tick is 538, there are six clusters and then the EC(t) is about 0.754. 

However, the whole trend of the metric is rising. From these real data, we could conclude that this 

metric EC(t) has accurately reflected the levels of the clustering emergence. 

Figure 11. Metric EC for measuring flocking emergence changes with time. 
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4. Discussion 

For these metrics, there are several extended applications, e.g., metric EC(t) could also be used to 

measure the levels of the clustering or community emergence in a social network. However, there are 

still some limitations for these three metrics. Metric E(t) for measuring emergences of attributes or 

behaviors could estimate the levels of one attribute or behavior emergence, but it cannot point out 

which attribute or behavior is emerging. In some applications, people may not know the number (m) of 

the possible values of attribute and m < n, which may be another limitation of the metric E(t). In such 

scenario, we may assume that the value of m is equal to n. For metric ES(t), when the number of value 

intervals in objective distribution is very different from the estimated distribution, we should make 

previous processing to make these two numbers of value intervals as the same. Meanwhile, if people 
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want to acquire an emergence that agents cluster into two or more similar clusters, and EC(t) may have 

a limitation to directly measure this kind of emergence, because the meaning of metric EC(t) is the 

level of structure emergence that agents should cluster into one cluster and community but not two or 

more. Another limitation of these metrics is that these metrics do not capture the time-dependent 

emergences, which may change from time to time [19]. Moreover, there may be some attributes with 

continuous values in practical applications and even some applications may have several continuous 

attributes [20]. These relative entropies for measuring emergences do not consider the continuous 

attributes or behaviors. However, if we measure emergences with these metrics by quantizing the 

continuous variables, then this may result in bad results. In the future work, we should consider the 

continuous attributes and behaviors, and even multiple continuous attribute and behaviors, which could 

be solved by borrowing and referencing the idea of differential entropy and joint entropy, even though 

a continuous entropy may result in negative values. 

Emergences could be considered as special scenarios, and a scenario [33,34] is a runtime situation 

of a system to be observed, which describes the global properties, behaviors, and structures, etc. The 

scenario of emergence is signed as SEmergence. At each moment t, an artificial society is in a scenario 

signed as St. If the scenario of the artificial society satisfies the scenario of the emergence at moment t, 

it could be depicted as St ∝ SEmergence. Figure 12 presents how to abstract dynamic scenarios of the 

artificial society and sense these scenarios by the observer with metrics for measuring emergences, and 

whether an emergence appears could conduct the real society.  

Figure 12. Dynamic scenarios of the artificial society could be sensed by the observer with 

metrics to conduct the real society. 
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In this paper, we could define the SEmergence as the thresholds of metrics of emergences such as E(t), 

EC(t), and ES(t), and St is seen as the real-time value of the metric of emergence. It is assumed that if  
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St ≥ SEmergence then St ∝ SEmergence. As we know, an emergency may give rise to an emergence, which may 

result in the loss of health and property, and even endanger social stability and safety. Emergency 

management policies should be made to control and manage this emergency, and the metrics proposed 

in the paper could be used to evaluate the effectiveness of a policy in an artificial society. When a 

policy makes the corresponding metric with a smaller value, it means that this policy is more effective. 

Therefore, these metrics could be used to conduct the emergency management in the real society. 

5. Conclusions  

Emergence is an important concept in complex dynamic systems; meanwhile, emergences are 

diverse, including emergence of attribute, emergence of behavior, and emergence of structure. It is a 

meaningful task to propose metrics to detect emergences and measure their levels. For example, in 

order to control and manage the spread of H1N1 or H7N9 influenza, a series of emergency 

management policies should be made to respond to different serious or risky scenarios. The degree of 

an emergence (outbreak of H1N1 or H7N9 influenza) could affect and guide emergency management 

policy making experts to implement the corresponding suitable policies. Based on information entropy, 

this paper proposes metrics to measure various emergences in artificial societies modeled with the 

zombie-city model. Through three case studies, the effectiveness and correctness of these metrics have 

been verified. All these metrics decrease with the reduction of levels of emergences. We also have 

discussed the limitations of these metrics. The contributions of this article may be summarized as 

follows: we propose three metrics (E(t), ES(t), and EC(t)) for measuring various emergences, and study 

three complex cases to verify the correctness of these metrics; meanwhile, in the third case study, a 

spatial clustering algorithm has been proposed to calculate clusters in an artificial society. 

Based on these works in this article and their limitations, future work can be foreseen as follows: 

the study more complex cases to further confirm these metrics; use of these metrics to aid in 

emergency management policies making, and then assist in evaluating the effectiveness of a policy; 

considering the continuous variables and multiple continuous variables, improvement of these metrics. 
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