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Abstract:

 In this paper, some new results on the multiple-access wiretap channel (MAC-WT) are provided. Specifically, first, we investigate the degraded MAC-WT, where two users transmit their corresponding confidential messages (no common message) to a legitimate receiver via a multiple-access channel (MAC), while a wiretapper wishes to obtain the messages via a physically degraded wiretap channel. The secrecy capacity region of this model is determined for both the discrete memoryless and Gaussian cases. For the Gaussian case, we find that this secrecy capacity region is exactly the same as the achievable secrecy rate region provided by Tekin and Yener, i.e., Tekin–Yener’s achievable region is exactly the secrecy capacity region of the degraded Gaussian MAC-WT. Second, we study a special Gaussian MAC-WT, and find the power control for two kinds of optimal points (max-min point and single user point) on the secrecy rate region of this special Gaussian model.
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1. Introduction

Transmission of confidential messages has been studied in the literature of several classes of channels. Wyner, in his well-known paper on the wiretap channel [1], studied the problem of how to transmit the confidential messages to a legitimate receiver via a degraded broadcast channel, while keeping the eavesdropper as ignorant of the messages as possible. Measuring the uncertainty of the eavesdropper by equivocation, the capacity-equivocation region was established. Furthermore, the secrecy capacity was also established, which provided the maximum transmission rate with perfect secrecy. After the publication of Wyner’s work, Csiszár and Körner [2] investigated a more general situation: broadcast channels with confidential messages (BCC). In this model, a common message and a confidential message were sent through a general broadcast channel. The common message was assumed to be decoded correctly by the legitimate receiver and the eavesdropper, while the confidential message was only allowed to be obtained by the legitimate receiver. This model is also a generalization of the model in [3], where no confidentiality condition is imposed. The capacity-equivocation region and the secrecy capacity region of BCC [2] were totally determined, and the results were also a generalization of those in [1]. Based on Wyner’s work, Leung- Yan-Cheong and Hellman studied the Gaussian wiretap channel (GWC) [4] and showed that its secrecy capacity was the difference between the main channel capacity and the overall wiretap channel capacity. Some other related works on the wiretap channel (including feedback, side information and secret key) can be found in [5–12].

Recently, by using the approach of [1,2], the information-theoretical security for other multi-user communication systems has been widely studied.

For the relay channel, Lai-Gamal [13] and Xu et al. [14] studied the relay-eavesdropper channel, where a source wishes to send messages to a destination while leveraging the help of a relay node to hide those messages from the eavesdropper. Inner and outer bounds on the capacity-equivocation region were provided in these papers. In addition, Oohama [15] studied the relay channel with confidential messages, where a relay helps the transmission of messages from one sender to one receiver. The relay is considered not only as a sender that helps the message transmission, but also as a wiretapper who can obtain some knowledge about the transmitted messages. Measuring the uncertainty of the relay by equivocation, the inner and outer bounds on the capacity-equivocation region were provided in [15].

For the interference channel, Liu et al. [16] studied the interference channel with two confidential messages and provided inner and outer bounds on the secrecy capacity region. In addition, Liang et al. [17] studied the cognitive interference channel with one common message and one confidential message, and the capacity-equivocation region was totally determined for this model.

For the multiple-access channel (MAC), the security problems are split into two directions.


	The first is that two users wish to transmit their corresponding messages to a destination, and meanwhile, they also receive the channel output. Each user treats the other user as a wiretapper and wishes to keep its confidential message as secret as possible from the wiretapper. This model is usually called the MAC with confidential messages, and it was studied by Liang and Poor [18]. An inner bound on the capacity-equivocation region is provided for the model with two confidential messages, and the capacity-equivocation region is still not known. Furthermore, for the model of MAC with one confidential message [18], both inner and outer bounds on the capacity-equivocation region are derived. Moreover, for the degraded MAC with one confidential message, the capacity-equivocation region is totally determined.


	The second is that an additional wiretapper has access to the MAC output via a wiretap channel, and therefore, how to keep the confidential messages of the two users as secret as possible from the additional wiretapper is the main concern of the system designer. This model is usually called the multiple-access wiretap channel (MAC-WT). An inner bound on the secrecy capacity region of the degraded Gaussian MAC-WT was provided in [19], and a n-letter form of the secrecy capacity region of the degraded Gaussian MAC-WT was shown in (Theorem 6 in [20]). Moreover, an inner bound on the secrecy capacity region of the general Gaussian MAC-WT was provided in [21]. In [22,23], the MAC-WT with partially cooperating encoders (one encoder is allowed to conference and the other does not transmit any message) was studied, and inner and outer bounds on the capacity-equivocation region of this model were provided. The MAC-WT with two conference links between the encoders was investigated in [24], and inner and outer bounds on the secrecy capacity region were established for this model. Besides these works on the discrete memoryless and Gaussian cases of MAC-WT, He et al. [25] studied the MIMO MAC-WT, where the channel matrices of the legitimate users are fixed and revealed to all of the terminals, whereas the channel matrices of the eavesdropper are arbitrarily varying and only known to the eavesdropper. Recently, Zaidi et al. ([26,27]) investigated the secrecy problem of MIMO x-channels with output feedback and delayed CSI (an extension of the model of MAC-WT). The optimal sum secure degrees of freedom (SDoF) region was characterized in [26,27], and the artificial noise technique was used to construct the corresponding encoding-decoding scheme.




In this paper, first, we study the degraded MAC-WT, see Figure 1. The motivation of this work is to find the secrecy capacity region of the general (not degraded) MAC-WT. However, it is difficult to find a tight outer bound on the secrecy capacity region of the general MAC-WT, and thus, in this paper, we focus on the secrecy capacity region of the degraded MAC-WT. Compared with the capacity result of (Theorem 6 in [20] ) (n-letter form), the main contribution of this paper is the single-letter characterization of the secrecy capacity region of the degraded MAC-WT.

Figure 1. The degraded multiple-access wiretap channel (MAC-WT).
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In Figure 1, two users transmit their corresponding confidential messages (no common message) to a legitimate receiver via a multiple-access channel (MAC), while an eavesdropper wishes to obtain the messages via a physically degraded wiretap channel. The secrecy capacity region of the model of Figure 1 is determined for both the discrete memoryless and Gaussian cases. Furthermore, for the Gaussian case, we find that the secrecy capacity region provided in this paper is exactly the same as the achievable secrecy rate region provided by Tekin and Yener [21]. Then, we study the power control for two kinds of optimal points (max-min point and single user point) on the secrecy rate region of a special Gaussian MAC-WT and find that these optimum points tend to be constants when the power tends to infinity.

In this paper, random variab1es, sample values and alphabets are denoted by capital letters, lower case letters and calligraphic letters, respectively. A similar convention is applied to the random vectors and their sample values. For example, UN denotes a random N-vector (U1, ...,UN), and uN = (u1, ..., uN) is a specific vector value in  [image: Entropy 16 04693f8] that is theN-th Cartesian power of  [image: Entropy 16 04693f9]. [image: there is no content] denotes a randomN−i+1-vector (Ui, ...,UN), and [image: there is no content] is a specific vector value in [image: there is no content]. Let PV (v) denote the probability mass function Pr{V = v}. Throughout the paper, the logarithmic function is to base two.

The organization of this paper is as follows. In Section 2, the secrecy capacity region of the degraded discrete memoryless MAC-WT is given by Theorem 1. In Section 3, the secrecy capacity region of the degraded Gaussian MAC-WT is given by Theorem 2. The power control for a special Gaussian MAC-WT is investigated in Section 4. Final conclusions are provided in Section 5.



2. Degraded Discrete Memoryless Multiple-Access Wiretap Channel

In this section, a description of the model of Figure 1 is given by Definition 1 to Definition 3. The secrecy capacity region [image: there is no content]D composed of all achievable secrecy pairs (R1,R2) in the model of Figure 1 is characterized in Theorem 1, where the achievable secrecy pair (R1,R2) is defined in Definition 4.


Definition 1. (Channel encoder)

The confidential messages W1and W2take values in  [image: Entropy 16 04693f10],  [image: Entropy 16 04693f11], respectively. W1and W2are independent and uniformly distributed over their ranges. The input of Encoder 1 (Encoder 2) is W1(W2), while the output of Encoder 1 (Encoder 2) is [image: there is no content]. We assume that the encoders are stochastic encoders, i.e., the encoder [image: there is no content] is a matrix of conditional probabilities [image: there is no content], where [image: there is no content], wi ∈  [image: Entropy 16 04693f12], and [image: there is no content] is the probability that the message wi is encoded as the channel input [image: there is no content]. Note that [image: there is no content] is independent of [image: there is no content]. The transmission rates of the confidential messages are [image: there is no content] and [image: there is no content].



Definition 2. (Channels)

The MAC is a discrete memoryless channel (DMC) with a finite input alphabet  [image: Entropy 16 04693f13] ×  [image: Entropy 16 04693f14], a finite output alphabet  [image: Entropy 16 04693f15] and transition probability PY|X1,X2(y|x1, x2). Note that [image: there is no content]. The inputs of the MAC are [image: there is no content] and [image: there is no content], while the output is YN.

The wiretap channel is a DMC with finite input alphabet Y, finite output alphabet Z and transition probability PZ|Y (z|y). The wiretapper’s equivocation to the confidential messages W1and W2is defined as:



[image: there is no content]



(1)






Definition 3. (Decoder)

The decoder for the legitimate receiver is a mapping fD:   [image: Entropy 16 04693f16] →   [image: Entropy 16 04693f10] ×   [image: Entropy 16 04693f11], with input YN and outputs W̆1, W̆2. Let Pe be the error probability of the receiver, and it is defined as Pr{(W1,W2) ≠ (W̆1, W̆2)}.



Definition 4. (Achievable secrecy pair (R1,R2) in the model of Figure 1)

A secrecy pair (R1,R2) (where R1,R2> 0) is called achievable if, for any ε > 0 (where ε is an arbitrary small positive real number and ε → 0), there exists a channel encoder-decoder (N,Δ, Pe), such that:



[image: there is no content]



(2)




Theorem 1 gives a single-letter characterization of the secrecy capacity region [image: there is no content]D, which is composed of all achievable secrecy pairs (R1,R2) in the model of Figure 1.



Theorem 1

A single-letter characterization of the secrecy capacity region [image: there is no content]D is as follows,



[image: there is no content]








for some distribution:



[image: there is no content]










Proof

The converse proof of Theorem 1 is given in Section 7, and it is from the standard technique used in [1,2]. Now, we focus on the direct (achievability) proof of Theorem 1, and it is considered into two cases.


	Case 1: the pair (R1 = I(X1; Y |U) − I(X1;Z|U,X2),R2 = I(X2; Y |X1, U) − I(X2;Z|U)) is achievable.


	Case 2: the pair (R1 = I(X1; Y |X2, U) − I(X1;Z|U),R2 = I(X2; Y |U) − I(X2;Z|U,X1)) is achievable.




The encoding schemes for Case 1 and Case 2 are roughly illustrated in Figures 2 and 3, respectively. The proposed achievable encoding schemes combine the random binning, superposition coding and artificial noise techniques.

Figure 2. The encoding scheme for Case 1.
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Figure 3. The encoding scheme for Case 2.
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In Figure 2, the dummy message w* is encoded as uN, and the channel input [image: there is no content] represents the superposition code in which the confidential message w1 is superimposed on w*. In addition, the channel input [image: there is no content] represents the random binning codeword encoded by the confidential message w2.

Analogously, in Figure 3, the dummy message w* is encoded as uN, and the channel input [image: there is no content] represents the superposition code in which the confidential message w2 is superimposed on w*. In addition, the channel input [image: there is no content] represents the random binning codeword encoded by the confidential message w1.

The details of the complete proof will be provided in Section 6.



Remark 1

There are some notes on Theorem 1; see the following.


	The MAC-WT was first investigated by Tekin and Yener [19,21]. In [21], an achievable secrecy rate region (inner bound on the secrecy capacity region) is given by:





[image: there is no content]








Letting U be a constant, it is easy to see that the region [image: there is no content]D of Theorem 1 reduces to [image: there is no content]Di, i.e., [image: there is no content]Di ⊆ [image: there is no content]D.


	Note that the above [image: there is no content]Di is constructed according to the random binning technique. In this paper, we combine the artificial noise technique (the dummy message w*can be also viewed as an artificial noise) with the classical random binning technique to construct the encoding scheme of the model of Figure 1. To be more specific, first, we randomly choose a dummy message (artificial noise) w*. Second, the transmitted codeword is constructed by using the double binning technique, where the index of the bin is related to w*and the index of the sub-bin is related to the transmitted message w1or w2. Finally, we randomly choose a codeword in sub-bin w1or w2to transmit. By using this double binning technique, we prove that [image: there is no content]D is achievable. Here, note that the double binning technique (combination of artificial noise and binning) is also used in [22,23]. By using the Markov chain (X1,X2) → Y → Z and letting Re = R1, V = const, V1 = X1, V2 = X2and C12 = 0, it is easy to see that the third inequality of (Theorem 2 in [22]) reduces to R1 ≤ I(X1; Y |X2, U) − I(X1;Z|U), and it is coincident with the first inequality of [image: there is no content]D.


	The region [image: there is no content]D is convex. The proof is directly obtained by introducing a time sharing random variable into Theorem 1, and thus, it is omitted here.







3. Degraded Gaussian Multiple-Access Wiretap Channel


3.1. Secrecy Capacity Region of the Degraded Gaussian Multiple-Access Wiretap Channel

In this subsection, we investigate the Gaussian case of the model of Figure 1, where the channel input-output relationships at each time instant i (1 ≤ i ≤ N) are given by:



[image: there is no content]



(1)




and:



[image: there is no content]



(2)




where η1,i ~  [image: Entropy 16 04693f17](0,N1) and η2,i ~  [image: Entropy 16 04693f17] (0,N2). The random vectors [image: there is no content] and [image: there is no content] are independent with i.i.d. components. The channel inputs [image: there is no content] and [image: there is no content] are subject to the average power constraints P1 and P2, respectively, i.e.,



[image: there is no content]



(3)




Note that [image: there is no content] is independent of [image: there is no content].


Theorem 2

The secrecy capacity region [image: there is no content]G of the Gaussian model of Figure 1 is given by:
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where:
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and:



[image: there is no content]










Proof

The proof of Theorem 2 is considered in the following two parts:


	(Proof of  [image: Entropy 16 04693f18]): The direct proof follows by computing the mutual information terms in Theorem 1 with the following distributions: X1 = U + V, U ~  [image: Entropy 16 04693f17](0, αp1), V ~  [image: Entropy 16 04693f17](0, (1 − α)p1) and X2 ~  [image: Entropy 16 04693f17](0, p2). U, V and X2 are independent. The details are omitted here. The converse proof follows from Section 7, and it is omitted here, too. Thus, the proof of  [image: Entropy 16 04693f18] is completed.


	(Proof of [image: there is no content]): The direct proof follows by computing the mutual information terms in Theorem 1 with the following distributions: X2 = U + V, U ~  [image: Entropy 16 04693f17](0, αp2), V ~  [image: Entropy 16 04693f17](0, (1 − α)p2) and X1 ~  [image: Entropy 16 04693f17](0, p1). U, V and X1 are independent. The details are omitted here. The converse proof follows from Section 7, and it is omitted here, too. Thus, the proof of [image: there is no content] is completed.




The proof of Theorem 2 is completed.




3.2. Discussions

First, note that an achievable secrecy rate region of the degraded Gaussian MAC-WT is provided in [21], and it is given by:



[image: there is no content]








The secrecy capacity region [image: there is no content]G is achieved when α = 0, and it coincides with Tekin–Yener’s inner bound [image: there is no content]Gi, i.e., Tekin–Yener’s inner bound [image: there is no content]Gi is, in fact, the secrecy capacity region of the degraded Gaussian MAC-WT. The rigorous proof is as follows.


Proof

Observing that the region  [image: Entropy 16 04693f17] of Theorem 2 can be rewritten as:



[image: there is no content]








It is easy to see that the region  [image: Entropy 16 04693f17] achieves its maximum when α = 0. Analogously, the region [image: there is no content] achieves its maximum when α = 0. Note that the regions  [image: Entropy 16 04693f18] and [image: there is no content] are exactly the same as the region [image: there is no content]Gi if α = 0. Thus, the proof is completed.





4. Power Control for Two Kinds of Optimal Points on the Secrecy Rate Region of a Special Gaussian Multiple-Access Wiretap Channel

In this section, we investigate a special Gaussian MAC-WT; see Figure 4. The model of Figure 4 is characterized by:

Figure 4. A special Gaussian multiple-access wiretap channel.
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[image: there is no content]



(1)




where NM,NW ~  [image: Entropy 16 04693f17](0, 1) and [image: there is no content].

An achievable secrecy rate region [image: there is no content] of the model of Figure 4 is given by (2), where p1 and p2 are transmission powers for the codewords [image: there is no content] and [image: there is no content], respectively, and 0 ≤ p1, p2 ≤ P. Note that the region [image: there is no content] is directly from [21].



[image: there is no content]



(2)




In addition, the optimum power control for the maximization of the total secrecy sum rate is given by:



[image: there is no content]



(3)




and the corresponding maximum secrecy sum rate [image: there is no content] is given by:



[image: there is no content]



(4)




In the remainder of this section, the power control for two kinds of optimum points (max-min point and single user point) on the secrecy rate region of Figure 4 is provided in Sections 4.1 and 4.2. Numerical examples and discussions are in Section 4.3.


4.1. Max-Min Point

We first define an optimal point in the following sense:



[image: there is no content]



(5)





Theorem 3

For the model of Figure 4, the optimum point [image: there is no content] satisfies:



[image: there is no content]








[image: there is no content]is achieved if[image: there is no content].



Proof

First, for convenience, define:



[image: there is no content]



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)




Then, (2) can be rewritten as:



[image: there is no content]



(9)




The calculation of [image: there is no content] depends on the following three cases; see Figure 5. The regions  [image: Entropy 16 04693f18] and [image: there is no content] of these three figures imply that R1 ≤ R2 and R1 ≤ R2, respectively. In region  [image: Entropy 16 04693f18], [image: there is no content], and in region [image: there is no content], [image: there is no content].

Figure 5. All cases for the calculation of [image: there is no content].
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Therefore, from Figure 5a, it is easy to see that:



[image: there is no content]



(10)




Similarly, from Figure 5b, we see that:



[image: there is no content]



(11)




From Figure 5c, we see that:



[image: there is no content]



(12)




By using the well-known method of Lagrange multipliers on (10), (11) and (12), Theorem 3 is proven.




4.2. Single User Point

We now investigate another point, called the single user point, on which the legitimate receiver tries to maximize the secrecy rate R1 (or R2) with the help of the senders, i.e., [image: there is no content].


Theorem 4

For the model of Figure 4, the optimum point [image: there is no content] satisfies:



[image: there is no content]








The optimum power control achieving [image: there is no content] is given by:



[image: there is no content]








The optimum point [image: there is no content] satisfies:


	If [image: there is no content],





[image: there is no content]











The optimum power control achieving [image: there is no content] is given by:



[image: there is no content]









	If [image: there is no content],





[image: there is no content]











The optimum power control achieving [image: there is no content] is given by:



[image: there is no content]










Proof

By using (2), [image: there is no content] and [image: there is no content] can be rewritten as [image: there is no content] and [image: there is no content], respectively. Here, a, b and c are defined in (6), (7) and (8), respectively.

By using the method of Lagrange multipliers, Theorem 4 is proven.




4.3. Numerical Examples and Discussions

Figure 6 shows the max-min point [image: there is no content] and the maximum secrecy sum rate [image: there is no content] for α = 0.2 and α = 0.4. It is easy to see that [image: there is no content] increases while α decreases and that [image: there is no content] increases while α increases. Furthermore, [image: there is no content] tends to be a constant (0.5) while P tends to infinity. [image: there is no content] tends to be [image: there is no content] while P tends to infinity.

Figure 6. The [image: there is no content] and [image: there is no content] for α = 0.2 and α = 0.4.
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Figure 7 shows the single user points [image: there is no content] and [image: there is no content] for α = 0.2 and α = 0.4. It is easy to see that the curve for [image: there is no content] is always better than that for [image: there is no content]. Furthermore, [image: there is no content] and [image: there is no content] tend to be the same constant [image: there is no content], while P tends to infinity. In addition, for a fixed α, when P tends to infinity, [image: there is no content] and [image: there is no content] are the same.

Figure 7. The [image: there is no content] and [image: there is no content] for α = 0.2 and α = 0.4.
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The above results show that the secrecy rate region of Gaussian MAC-WT behaves significantly different from the classical capacity of Gaussian MAC. When classical capacity is concerned, the max-min point is always attained when the sum rate R1 + R2 is also maximized. However, for secrecy capacity, the point max(R1 + R2) does not necessarily coincide with [image: there is no content] all the time.




5. Conclusions

In this paper, first, we study the degraded multiple-access wiretap channel (MAC-WT). The secrecy capacity region is determined for both the discrete memoryless and Gaussian cases. Furthermore, for the Gaussian case, we find that the secrecy capacity region provided in this paper is exactly the same as the achievable secrecy rate region provided by Tekin and Yener. Then, we study the power control for two kinds of optimal points (max-min point and single user point) on the secrecy rate region of a special Gaussian MAC-WT and find that these optimum points tend to be constants when the power tends to infinity.



6. Direct Proof of Theorem 1

We consider the achievability proof of Theorem 1 for the case that the pair (R1 = I(X1; Y |X2, U) − I(X1;Z|U),R2 = I(X2; Y |U) − I(X2;Z|U,X1)) is achievable, and the achievability proof for the pair (R1 = I(X1; Y |U) − I(X1;Z|U,X2),R2 = I(X2; Y |X1, U) − I(X2;Z|U)) follows by symmetry.

The coding scheme combines the random binning, superposition coding and artificial noise techniques; see Figure 3. Define the messages W1, W2 and W*(dummy message) taking values in the alphabets  [image: Entropy 16 04693f10],  [image: Entropy 16 04693f11] and  [image: Entropy 16 04693f19], respectively, where:



[image: there is no content]








Fix the joint probability mass function PZ,Y,X1,X2,U (z, y, x1, x2, u). For arbitrary ε > 0, define:



[image: there is no content]



(1)






[image: there is no content]



(2)






[image: there is no content]



(3)






[image: there is no content]



(4)




where (a) is from the Markov chain U → Y → Z and ε1 → 0 as N → ∞.

Here, note that:



[image: there is no content]



(5)




where (b) is from the Markov chain U → X2 → Y .

Now, the remainder of this section is organized as follows. The code construction is introduced in Section 6.1. For any ε > 0, the proofs of [image: there is no content], limN→∞ Δ ≥ R1 + R2 and Pe ≤ ε are given in Section 6.2.


6.1. Coding Construction

Construction of [image: there is no content]: Generate 2N(I(X1;Y |X2,U)−ε2) i.i.d. codewords [image: there is no content] according to [image: there is no content], and divide them into 2NR1 bins. Each bin contains 2N(I(X1;Y |X2,U)−ε2−R1) codewords. Here, note that:



[image: there is no content]



(6)




where (c) is from (1). For a given confidential message w1, randomly choose a codeword in bin w1 to transmit.

Construction of UN (dummy message): Generate 2NR* i.i.d. codewords uN according to [image: there is no content]. Randomly choose a uN(w*) to transmit. Note that here, UN is independent of [image: there is no content].

Construction of [image: there is no content]: Generate 2N(R2+R*+R**) i.i.d. codewords [image: there is no content] according to [image: there is no content], and divide them into 2NR* bins. Each bin contains 2N(R2+R**) codewords. Divide the codewords in each bin into 2NR2 sub-bins, and each sub-bin contains 2NR** codewords.

For a transmitted dummy message w* and a given message w2, first choose the index of the bin according to w*, and then, choose the index of the sub-bin in bin w* according to w2. Finally, randomly choose a codeword in sub-bin w2 to transmit.

Decoding scheme for the legitimate receiver: for a given yN, try to find a sequence uN(ŵ*), such that (uN(ŵ*), yN) are jointly typical. If there exists a unique sequence with the index ŵ*, put out the corresponding ŵ*, else declare a decoding error. Based on the AEPand (3), the probability Pr{ŵ* = w*} goes to one.

After decoding ŵ*, the legitimate receiver tries to find a sequence [image: there is no content], such that [image: there is no content] are jointly typical. If there exists a unique sequence with the index ŵ2, put out the corresponding ŵ2; else declare a decoding error. Based on the AEP, (2), (3), (4), (5) and the construction of [image: there is no content], the probability Pr{ŵ2 = w2} goes to one.

Finally, after decoding ŵ2 and ŵ*, the legitimate receiver tries to find a sequence [image: there is no content], such that [image: there is no content] are jointly typical. There exists a unique sequence with the index ŵ1; put out the corresponding ŵ1; else declare a decoding error. Based on the AEP, (1) and the construction of [image: there is no content], the probability Pr{ŵ1 = w1} goes to one.



6.2. Proof of the Achievability

By using the above definitions, it is easy to verify that [image: there is no content] and [image: there is no content]. Then, by using the above encoding-decoding scheme, Pe ≤ ε is easy to be checked. It remains to be shown that limN→∞ Δ ≥ R1 + R2; see the following.



[image: there is no content]



(7)




The first term in (7) is bounded as follows.



[image: there is no content]



(8)




where (a) is from [image: there is no content] and UN is independent of [image: there is no content].

Consider the first term in (8); the codeword generation and [18, Lemma 3] ensure that:



[image: there is no content]



(9)




For the second term in (8), using the same approach as that in [2, Lemma 3], we get:



[image: there is no content]



(10)




Now, we consider the last term of (8). From (6), given UN, ZN and W1, the total number of possible codewords of [image: there is no content] is 2N(I(X1;Z|U)−ε 2). By using Fano’s inequality and the fact that ε2 → 0 as N → ∞, we have:



[image: there is no content]



(11)




Substituting (9), (10) and (11) into (8), we have:



[image: there is no content]



(12)




The second term in (7) is bounded as follows.



[image: there is no content]



(13)




where (1) is from [image: there is no content] and (2) is from [image: there is no content] independent of UN and [image: there is no content].

Consider the first term in (13); the codeword generation and ([18] Lemma 3) LP1 ensure that:



[image: there is no content]



(14)




For the second term in (13), using the same approach as that in ([2] Lemma 3), we get:



[image: there is no content]



(15)




Now, we consider the last term of (13). Given UN, ZN, [image: there is no content] and W2, the total number of possible codewords of [image: there is no content] is 2NR**. By using Fano’s inequality and (4), we have:



[image: there is no content]



(16)




Substituting (14), (15) and (16) into (13), we have:



[image: there is no content]



(17)




Substituting (12) and (17) into (7), limN→∞ Δ ≥ R1 + R2 is proven.

The achievability proof of Theorem 1 is completed.




7. Converse Proof of Theorem 1

In this section, we prove the converse part of Theorem 1: all the achievable secrecy pairs (R1,R2) are contained in the set [image: there is no content]D. We will prove the inequalities of Theorem 1 in the remainder of this section.

(Proof of R1 ≤ I(X1; Y |X2, U) − I(X1;Z|U)):



[image: there is no content]



(1)




where (1) is from the definition of the perfect secrecy; (2) is from Fano’s inequality; (3) is from [image: there is no content]; (4) is from [image: there is no content]; (5) is from the Markov chain [image: there is no content] and the fact that [image: there is no content] is independent of [image: there is no content]; (6) is from the Markov chains [image: there is no content] and Yi → (X1,i,X2,i) → Zi−1; (7) is from J is a random variable (uniformly distributed over {1, 2, ...,N}), and it is independent of [image: there is no content], YN and ZN; (8) is from J is uniformly distributed over {1, 2, ...,N}; and (9) is from the definitions that X1 ≜ X1,J, X2 ≜ X2,J, Y ≜ YJ, Z ≜ ZJ and U ≜ (ZJ−1, J).

By using Pe ≤ ε, ε → 0 as N → ∞, [image: there is no content] and (1), it is easy to see that R1 ≤ I(X1; Y |X2, U) − I(X1;Z|U).

(Proof of R2 + I(X2; Y |X1, U) − I(X2;Z|U)): The proof is analogous to the proof of R1 + I(X1; Y |X2, U) − I(X1;Z|U), and it is omitted here.

Proof of R1 + R2 ≤ I(X1,X2; Y |U) − I(X1,X2;Z|U):



[image: there is no content]



(2)




where (1) is from Fano’s inequality; (2) is from [image: there is no content]; (3) is from Yi → (X1,i,X2,i) → Zi−1 and Zi → (X1,i,X2,i) → Zi−1; (4) is from Yi → Y i−1 → Zi−1; (5) is from J is a random variable (uniformly distributed over {1, 2, ...,N}), and it is independent of [image: there is no content], YN and ZN; (6) is from J is uniformly distributed over {1, 2, ...,N}; and (7) is from the definitions that X1 ≜ X1,J, X2 ≜ X2,J, Y ≜ YJ, Z ≜ ZJ and U ≜ (ZJ−1, J) and the fact that Pe → 0 as N → ∞.

By using limN→∞ Δ ≥ R1 + R2 and (2), it is easy to see that R1 + R2 ≤ I(X1,X2; Y |U) − I(X1,X2;Z|U).

The converse proof of Theorem 1 is completed.






Acknowledgment

This work was supported by a sub-project of the National Basic Research Program of China under Grant 2012CB316100 on Broadband Mobile Communications at High Speeds and the National Natural Science Foundation of China under Grant 61301121.



Author Contributions

Bin Dai and Zheng Ma did the theoretical work and wrote this paper. All authors have read and approved the final manuscript.



Conflicts of Interest

The authors declare no conflict of interest.



References


	1. 
Wyner, A.D. The wire-tap channel. Bell Syst. Tech. J 1975, 54, 1355–1387. [Google Scholar]

	2. 
Csiszár, I.; Körner, J. Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 1978, 24, 339–348. [Google Scholar]

	3. 
Körner, J.; Marton, K. General broadcast channels with degraded message sets. IEEE Trans Inf. Theory 1977, 23, 60–64. [Google Scholar]

	4. 
Leung-Yan-Cheong, S.K.; Hellman, M.E. The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 1978, 24, 451–456. [Google Scholar]

	5. 
Mitrpant, C.; Han Vinck, A.J.; Luo, Y. An achievable region for the Gaussian wiretap channel with side information. IEEE Trans. Inf. Theory 2006, 52, 2181–2190. [Google Scholar]

	6. 
Chen, Y.; Han Vinck, A.J. Wiretap channel with side information. IEEE Trans. Inf. Theory 2008, 54, 395–402. [Google Scholar]

	7. 
Dai, B.; Luo, Y. Some new results on wiretap channel with side information. Entropy 2012, 14, 1671–1702. [Google Scholar]

	8. 
Ahlswede, R.; Cai, N. Transmission, identification and common randomness capacities for wire-tap channels with secure feedback from the decoder. In General Theory of Information Transfer and Combinatorics; Springer-Verlag: Berlin/Heidelberg, Germany, 2006; pp. 258–275. [Google Scholar]

	9. 
Lai, L.; el Gamal, H.; Poor, V. The wiretap channel with feedback: Encryption over the channel. IEEE Trans. Inf. Theory 2008, 54, 5059–5067. [Google Scholar]

	10. 
Ardestanizadeh, E.; Franceschetti, M.; Javidi, T.; Kim, Y. Wiretap channel with secure rate-limited feedback. IEEE Trans. Inf. Theory 2009, 55, 5353–5361. [Google Scholar]

	11. 
Merhav, N. Shannon’s secrecy system with informed receivers and its application to systematic coding for wiretapped channels. IEEE Trans. Inf. Theory Special Issue Inf.-Secur 2008, 54, 2723–2734. [Google Scholar]

	12. 
Xu, P.; Ding, Z.; Dai, X. A general framework of wiretap channel with helping interference and state information. IEEE Trans. Inf. Forensics Secur 2014, 9, 182–195. [Google Scholar]

	13. 
Lai, L.; el Gamal, H. The relay-eavesdropper channel: Cooperation for secrecy. IEEE Trans. Inf. Theory 2008, 54, 4005–4019. [Google Scholar]

	14. 
Xu, P.; Ding, Z.; Dai, X. A Hybrid cooperative coding scheme for the relay-ravesdropper rhannel.

	15. 
Oohama, Y. Relay channels with confidential messages. 2007. arXiv:cs/0611125 [cs.IT]. [Google Scholar]

	16. 
Liu, R.; Maric, I.; Spasojevic, P.; Yates, R. Discrete memoryless interference and broadcast channels with confidential messages: Secrecy rate regions. IEEE Trans. Inf. Theory 2008, 54, 2493–2507. [Google Scholar]

	17. 
Liang, Y.; Somekh-Baruch, A.; Poor, H.V.; Shamai, S.; Verdu, S. Capacity of cognitive interference channels with and without secrecy. IEEE Trans. Inf. Theory 2009, 55, 604–619. [Google Scholar]

	18. 
Liang, Y.; Poor, H. Multiple-access channels with confidential messages. IEEE Trans. Inf. Theory 2008, 54, 976–1002. [Google Scholar]

	19. 
Tekin, E.; Yener, A. The Gaussian multiple access wire-tap channel. IEEE Trans. Inf. Theory 2008, 54, 5747–5755. [Google Scholar]

	20. 
Ekrem, E.; Ulukus, S. On the secrecy of multiple access wiretap channel. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, IL, USA, 23–26 September 2008.

	21. 
Tekin, E.; Yener, A. The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. IEEE Trans. Inf. Theory 2008, 54, 2735–2751. [Google Scholar]

	22. 
Awan, Z. H.; Zaidi, A.; Vandendorpe, L. Multiaccess channel with partially cooperating encoders and security constraints. IEEE Trans. Inf. Forensics Secur 2013, 8, 1243–1254. [Google Scholar]

	23. 
Awan, Z.H.; Zaidi, A.; Vandendorpe, L. On multiaccess channel with unidirectional cooperation and security constraints. Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, IL, USA, 1–5 October 2012.

	24. 
Xu, P.; Ding, Z.; Dai, X. Rate regions for multiple access channel with conference and secrecy constraints. IEEE Trans. Inf. Forensics Secur 2013, 8, 1961–1974. [Google Scholar]

	25. 
He, X.; Khisti, A.; Yener, A. MIMO multiple access channel with an arbitrarily varying eavesdropper: Secrecy degrees of freedom. IEEE Trans. Inf. Theory 2013, 59, 4733–4745. [Google Scholar]

	26. 
Zaidi, A.; Awan, Z.H.; Shamai, S.; Vandendorpe, L. Secure degrees of freedom of MIMO X-channels with output feedback and delayed CSI. IEEE Trans. Inf. Forensics Secur 2013, 8, 1760–1774. [Google Scholar]

	27. 
Zaidi, A.; Awan, Z. H.; Shamai, S.; Vandendorpe, L. Secure degrees of freedom of X-channel with output feedback and delayed CSIT. IEEE Trans. Inf. Forensics Secur 2013, 8, 1760–1774. [Google Scholar]





















© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







media/file4.png





nav.xhtml


  entropy-16-04693


  
    		
      entropy-16-04693
    


  




  





media/file11.png





media/file18.png
=
&Y

xew 1o by xew






media/file1.png





media/file16.png
(a) Case 1

(b) Case 2

axmin{ Ry, Ra}

1

(c) Case 3





media/file2.png
W,





media/file13.png
Pyix, x,

Receiver

Wiretapper





media/file7.png





media/file9.png





media/file10.png





media/file5.png
X





media/file15.png
Encoder 1

N
Encoder 2 Wiretapper

Wa X

Nw





media/file12.png
Wi

[IZ

XN

Xy
Encoder 2

Pyix, x,

Receiver





media/file3.png
Wy





media/file0.png





media/file17.png
maxR,+R,)

maxminR, R,)

L L
0 = o

(e e 1o (B "yuews






media/file14.png
Pyix,.x,

Receiver

Wiretapper





media/file8.png
YN





media/file6.png
X,





