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Abstract: In this paper, some new results on the multiple-access wiretap channel
(MAC-WT) are provided. Specifically, first, we investigate the degraded MAC-WT, where
two users transmit their corresponding confidential messages (no common message) to a
legitimate receiver via a multiple-access channel (MAC), while a wiretapper wishes to obtain
the messages via a physically degraded wiretap channel. The secrecy capacity region of this
model is determined for both the discrete memoryless and Gaussian cases. For the Gaussian
case, we find that this secrecy capacity region is exactly the same as the achievable secrecy
rate region provided by Tekin and Yener, i.e., Tekin–Yener’s achievable region is exactly
the secrecy capacity region of the degraded Gaussian MAC-WT. Second, we study a special
Gaussian MAC-WT, and find the power control for two kinds of optimal points (max-min
point and single user point) on the secrecy rate region of this special Gaussian model.

Keywords: multiple-access wiretap channel (MAC-WT); Gaussian multiple-access wiretap
channel (GMAC-WT); secrecy capacity region; power control

1. Introduction

Transmission of confidential messages has been studied in the literature of several classes of channels.
Wyner, in his well-known paper on the wiretap channel [1], studied the problem of how to transmit
the confidential messages to a legitimate receiver via a degraded broadcast channel, while keeping the
eavesdropper as ignorant of the messages as possible. Measuring the uncertainty of the eavesdropper
by equivocation, the capacity-equivocation region was established. Furthermore, the secrecy capacity
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was also established, which provided the maximum transmission rate with perfect secrecy. After the
publication of Wyner’s work, Csiszár and Körner [2] investigated a more general situation: broadcast
channels with confidential messages (BCC). In this model, a common message and a confidential
message were sent through a general broadcast channel. The common message was assumed to be
decoded correctly by the legitimate receiver and the eavesdropper, while the confidential message was
only allowed to be obtained by the legitimate receiver. This model is also a generalization of the model
in [3], where no confidentiality condition is imposed. The capacity-equivocation region and the secrecy
capacity region of BCC [2] were totally determined, and the results were also a generalization of those
in [1]. Based on Wyner’s work, Leung- Yan-Cheong and Hellman studied the Gaussian wiretap channel
(GWC) [4] and showed that its secrecy capacity was the difference between the main channel capacity
and the overall wiretap channel capacity. Some other related works on the wiretap channel (including
feedback, side information and secret key) can be found in [5–12].

Recently, by using the approach of [1,2], the information-theoretical security for other multi-user
communication systems has been widely studied.

For the relay channel, Lai-Gamal [13] and Xu et al. [14] studied the relay-eavesdropper channel,
where a source wishes to send messages to a destination while leveraging the help of a relay node to
hide those messages from the eavesdropper. Inner and outer bounds on the capacity-equivocation region
were provided in these papers. In addition, Oohama [15] studied the relay channel with confidential
messages, where a relay helps the transmission of messages from one sender to one receiver. The relay
is considered not only as a sender that helps the message transmission, but also as a wiretapper who
can obtain some knowledge about the transmitted messages. Measuring the uncertainty of the relay by
equivocation, the inner and outer bounds on the capacity-equivocation region were provided in [15].

For the interference channel, Liu et al. [16] studied the interference channel with two confidential
messages and provided inner and outer bounds on the secrecy capacity region. In addition,
Liang et al. [17] studied the cognitive interference channel with one common message and one
confidential message, and the capacity-equivocation region was totally determined for this model.

For the multiple-access channel (MAC), the security problems are split into two directions.

• The first is that two users wish to transmit their corresponding messages to a destination, and
meanwhile, they also receive the channel output. Each user treats the other user as a wiretapper
and wishes to keep its confidential message as secret as possible from the wiretapper. This
model is usually called the MAC with confidential messages, and it was studied by Liang and
Poor [18]. An inner bound on the capacity-equivocation region is provided for the model with
two confidential messages, and the capacity-equivocation region is still not known. Furthermore,
for the model of MAC with one confidential message [18], both inner and outer bounds on the
capacity-equivocation region are derived. Moreover, for the degraded MAC with one confidential
message, the capacity-equivocation region is totally determined.
• The second is that an additional wiretapper has access to the MAC output via a wiretap channel,

and therefore, how to keep the confidential messages of the two users as secret as possible
from the additional wiretapper is the main concern of the system designer. This model is
usually called the multiple-access wiretap channel (MAC-WT). An inner bound on the secrecy
capacity region of the degraded Gaussian MAC-WT was provided in [19], and a n-letter form
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of the secrecy capacity region of the degraded Gaussian MAC-WT was shown in (Theorem 6
in [20]). Moreover, an inner bound on the secrecy capacity region of the general Gaussian
MAC-WT was provided in [21]. In [22,23], the MAC-WT with partially cooperating encoders
(one encoder is allowed to conference and the other does not transmit any message) was
studied, and inner and outer bounds on the capacity-equivocation region of this model were
provided. The MAC-WT with two conference links between the encoders was investigated
in [24], and inner and outer bounds on the secrecy capacity region were established for this
model. Besides these works on the discrete memoryless and Gaussian cases of MAC-WT,
He et al. [25] studied the MIMO MAC-WT, where the channel matrices of the legitimate
users are fixed and revealed to all of the terminals, whereas the channel matrices of
the eavesdropper are arbitrarily varying and only known to the eavesdropper. Recently,
Zaidi et al. ([26,27]) investigated the secrecy problem of MIMO x-channels with output feedback
and delayed CSI (an extension of the model of MAC-WT). The optimal sum secure degrees of
freedom (SDoF) region was characterized in [26,27], and the artificial noise technique was used to
construct the corresponding encoding-decoding scheme.

In this paper, first, we study the degraded MAC-WT, see Figure 1. The motivation of this work
is to find the secrecy capacity region of the general (not degraded) MAC-WT. However, it is difficult
to find a tight outer bound on the secrecy capacity region of the general MAC-WT, and thus, in this
paper, we focus on the secrecy capacity region of the degraded MAC-WT. Compared with the capacity
result of (Theorem 6 in [20] ) (n-letter form), the main contribution of this paper is the single-letter
characterization of the secrecy capacity region of the degraded MAC-WT.

In Figure 1, two users transmit their corresponding confidential messages (no common message)
to a legitimate receiver via a multiple-access channel (MAC), while an eavesdropper wishes to obtain
the messages via a physically degraded wiretap channel. The secrecy capacity region of the model of
Figure 1 is determined for both the discrete memoryless and Gaussian cases. Furthermore, for the
Gaussian case, we find that the secrecy capacity region provided in this paper is exactly the same as
the achievable secrecy rate region provided by Tekin and Yener [21]. Then, we study the power control
for two kinds of optimal points (max-min point and single user point) on the secrecy rate region of a
special Gaussian MAC-WT and find that these optimum points tend to be constants when the power
tends to infinity.

Figure 1. The degraded multiple-access wiretap channel (MAC-WT).
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In this paper, random variab1es, sample values and alphabets are denoted by capital letters, lower case
letters and calligraphic letters, respectively. A similar convention is applied to the random vectors and
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their sample values. For example, UN denotes a randomN -vector (U1, ..., UN), and uN = (u1, ..., uN) is
a specific vector value in UN that is theN -th Cartesian power of U . UN

i denotes a randomN−i+1-vector
(Ui, ..., UN), and uNi = (ui, ..., uN) is a specific vector value in UNi . Let PV (v) denote the probability
mass function Pr{V = v}. Throughout the paper, the logarithmic function is to base two.

The organization of this paper is as follows. In Section 2, the secrecy capacity region of the degraded
discrete memoryless MAC-WT is given by Theorem 1. In Section 3, the secrecy capacity region of
the degraded Gaussian MAC-WT is given by Theorem 2. The power control for a special Gaussian
MAC-WT is investigated in Section 4. Final conclusions are provided in Section 5.

2. Degraded Discrete Memoryless Multiple-Access Wiretap Channel

In this section, a description of the model of Figure 1 is given by Definition 1 to Definition 3. The
secrecy capacity region RD composed of all achievable secrecy pairs (R1, R2) in the model of Figure 1
is characterized in Theorem 1, where the achievable secrecy pair (R1, R2) is defined in Definition 4.

Definition 1. (Channel encoder) The confidential messages W1 and W2 take values in W1, W2,
respectively. W1 and W2 are independent and uniformly distributed over their ranges. The input of
Encoder 1 (Encoder 2) is W1 (W2), while the output of Encoder 1 (Encoder 2) is XN

1 (XN
2 ). We assume

that the encoders are stochastic encoders, i.e., the encoder gNi (i = 1, 2) is a matrix of conditional
probabilities gNi (xNi |wi), where xNi ∈ XN

i , wi ∈ Wi, and gNi (xNi |wi) is the probability that the message
wi is encoded as the channel input xNi . Note that XN

1 is independent of XN
2 . The transmission rates of

the confidential messages are log ‖W1‖
N

and log ‖W2‖
N

.

Definition 2. (Channels) The MAC is a discrete memoryless channel (DMC) with a finite input alphabet
X1 ×X2, a finite output alphabet Y and transition probability PY |X1,X2(y|x1, x2). Note that
PY N |XN

1 ,X
N
2

(yN |xN1 , xN2 ) =
∏N

n=1 PYn|X1,n,X2,n(yn|x1,n, x2,n). The inputs of the MAC are XN
1 and XN

2 ,
while the output is Y N .

The wiretap channel is a DMC with finite input alphabet Y , finite output alphabet Z and transition
probability PZ|Y (z|y). The wiretapper’s equivocation to the confidential messages W1 and W2 is
defined as:

∆ =
1

N
H(W1,W2|ZN). (1)

Definition 3. (Decoder) The decoder for the legitimate receiver is a mapping fD : YN → W1 ×W2,
with input Y N and outputs W̆1, W̆2. Let Pe be the error probability of the receiver, and it is defined as
Pr{(W1,W2) 6= (W̆1, W̆2)}.

Definition 4. (Achievable secrecy pair (R1, R2) in the model of Figure 1) A secrecy pair (R1, R2)

(where R1, R2 > 0) is called achievable if, for any ε > 0 (where ε is an arbitrary small positive real
number and ε→ 0), there exists a channel encoder-decoder (N,∆, Pe), such that:

lim
N→∞

log ‖ W1 ‖
N

= R1, lim
N→∞

log ‖ W2 ‖
N

= R2,

lim
N→∞

∆ ≥ R1 +R2, Pe ≤ ε. (2)
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Theorem 1 gives a single-letter characterization of the secrecy capacity regionRD, which is composed
of all achievable secrecy pairs (R1, R2) in the model of Figure 1.

Theorem 1. A single-letter characterization of the secrecy capacity regionRD is as follows,

RD = {(R1, R2) :

R1 ≤ I(X1;Y |X2, U)− I(X1;Z|U)

R2 ≤ I(X2;Y |X1, U)− I(X2;Z|U)

R1 +R2 ≤ I(X1, X2;Y |U)− I(X1, X2;Z|U)}

for some distribution:

PZ,Y,X1,X2,U(z, y, x1, x2, u) = PZ|Y (z|y)PY |X1,X2(y|x1, x2)PUX1X2(u, x1, x2).

Proof. The converse proof of Theorem 1 is given in Section 7, and it is from the standard technique
used in [1,2]. Now, we focus on the direct (achievability) proof of Theorem 1, and it is considered into
two cases.

• Case 1: the pair (R1 = I(X1;Y |U) − I(X1;Z|U,X2), R2 = I(X2;Y |X1, U) − I(X2;Z|U))

is achievable.
• Case 2: the pair (R1 = I(X1;Y |X2, U) − I(X1;Z|U), R2 = I(X2;Y |U) − I(X2;Z|U,X1))

is achievable.

The encoding schemes for Case 1 and Case 2 are roughly illustrated in Figures 2 and 3, respectively.
The proposed achievable encoding schemes combine the random binning, superposition coding and
artificial noise techniques.

In Figure 2, the dummy message w∗ is encoded as uN , and the channel input xN1 represents the
superposition code in which the confidential message w1 is superimposed on w∗. In addition, the channel
input xN2 represents the random binning codeword encoded by the confidential message w2.

Analogously, in Figure 3, the dummy message w∗ is encoded as uN , and the channel input xN2
represents the superposition code in which the confidential message w2 is superimposed on w∗. In
addition, the channel input xN1 represents the random binning codeword encoded by the confidential
message w1.

The details of the complete proof will be provided in Section 6.

Remark 1. There are some notes on Theorem 1; see the following.

• The MAC-WT was first investigated by Tekin and Yener [19,21]. In [21], an achievable secrecy
rate region (inner bound on the secrecy capacity region) is given by:

RDi = {(R1, R2) :

R1 ≤ I(X1;Y |X2)− I(X1;Z)

R2 ≤ I(X2;Y |X1)− I(X2;Z)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)}
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Letting U be a constant, it is easy to see that the region RD of Theorem 1 reduces to RDi, i.e.,
RDi ⊆ RD.
• Note that the above RDi is constructed according to the random binning technique. In this paper,

we combine the artificial noise technique (the dummy message w∗ can be also viewed as an
artificial noise) with the classical random binning technique to construct the encoding scheme of
the model of Figure 1. To be more specific, first, we randomly choose a dummy message (artificial
noise) w∗. Second, the transmitted codeword is constructed by using the double binning technique,
where the index of the bin is related to w∗ and the index of the sub-bin is related to the transmitted
message w1 or w2. Finally, we randomly choose a codeword in sub-bin w1 or w2 to transmit.
By using this double binning technique, we prove that RD is achievable. Here, note that the
double binning technique (combination of artificial noise and binning) is also used in [22,23].
By using the Markov chain (X1, X2) → Y → Z and letting Re = R1, V = const, V1 = X1,
V2 = X2 and C12 = 0, it is easy to see that the third inequality of (Theorem 2 in [22]) reduces to
R1 ≤ I(X1;Y |X2, U)− I(X1;Z|U), and it is coincident with the first inequality ofRD.
• The region RD is convex. The proof is directly obtained by introducing a time sharing random

variable into Theorem 1, and thus, it is omitted here.

Figure 2. The encoding scheme for Case 1.
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Figure 3. The encoding scheme for Case 2.
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3. Degraded Gaussian Multiple-Access Wiretap Channel

3.1. Secrecy Capacity Region of the Degraded Gaussian Multiple-Access Wiretap Channel

In this subsection, we investigate the Gaussian case of the model of Figure 1, where the channel
input-output relationships at each time instant i (1 ≤ i ≤ N ) are given by:
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Yi = X1,i +X2,i + η1,i, (1)

and:
Zi = X1,i +X2,i + η1,i + η2,i, (2)

where η1,i ∼ N (0, N1) and η2,i ∼ N (0, N2). The random vectors ηN1 and ηN2 are independent with i.i.d.
components. The channel inputs XN

1 and XN
2 are subject to the average power constraints P1 and P2,

respectively, i.e.,
1

N

N∑
i=1

E[X2
1,i] = p1 ≤ P1,

1

N

N∑
i=1

E[X2
2,i] = p2 ≤ P2. (3)

Note that XN
1 is independent of XN

2 .

Theorem 2. The secrecy capacity regionRG of the Gaussian model of Figure 1 is given by:

RG = A
⋃
B,

where:

A =
⋃

0 ≤ α ≤ 1

0 ≤ p1 ≤ P1

0 ≤ p2 ≤ P2


(R1, R2) :

R1 ≤ 1
2

log(1 + (1−α)p1
N1

)− 1
2

log(1 + (1−α)p1
N1+N2+p2

)

R2 ≤ 1
2

log(1 + p2
N1

)− 1
2

log(1 + p2
N1+N2+(1−α)p1 )

R1 +R2 ≤ 1
2

log(1 + (1−α)p1+p2
N1

)− 1
2

log(1 + (1−α)p1+p2
N1+N2

)

 ,

and:

B =
⋃

0 ≤ α ≤ 1

0 ≤ p1 ≤ P1

0 ≤ p2 ≤ P2


(R1, R2) :

R1 ≤ 1
2

log(1 + p1
N1

)− 1
2

log(1 + p1
N1+N2+(1−α)p2 )

R2 ≤ 1
2

log(1 + (1−α)p2
N1

)− 1
2

log(1 + (1−α)p2
N1+N2+p1

)

R1 +R2 ≤ 1
2

log(1 + (1−α)p2+p1
N1

)− 1
2

log(1 + (1−α)p2+p1
N1+N2

)

 .

Proof. The proof of Theorem 2 is considered in the following two parts:

• (Proof of A): The direct proof follows by computing the mutual information terms in Theorem 1
with the following distributions: X1 = U + V , U ∼ N (0, αp1), V ∼ N (0, (1 − α)p1) and
X2 ∼ N (0, p2). U , V and X2 are independent. The details are omitted here. The converse proof
follows from Section 7, and it is omitted here, too. Thus, the proof of A is completed.
• (Proof of B): The direct proof follows by computing the mutual information terms in Theorem 1

with the following distributions: X2 = U + V , U ∼ N (0, αp2), V ∼ N (0, (1 − α)p2) and
X1 ∼ N (0, p1). U , V and X1 are independent. The details are omitted here. The converse proof
follows from Section 7, and it is omitted here, too. Thus, the proof of B is completed.

The proof of Theorem 2 is completed.
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3.2. Discussions

First, note that an achievable secrecy rate region of the degraded Gaussian MAC-WT is provided
in [21], and it is given by:

RGi =
⋃

0 ≤ p1 ≤ P1

0 ≤ p2 ≤ P2


(R1, R2) :

R1 ≤ 1
2

log(1 + p1
N1

)− 1
2

log(1 + p1
N1+N2+p2

)

R2 ≤ 1
2

log(1 + p2
N1

)− 1
2

log(1 + p2
N1+N2+p1

)

R1 +R2 ≤ 1
2

log(1 + p1+p2
N1

)− 1
2

log(1 + p1+p2
N1+N2

)

 .

The secrecy capacity region RG is achieved when α = 0, and it coincides with Tekin–Yener’s inner
bound RGi, i.e., Tekin–Yener’s inner bound RGi is, in fact, the secrecy capacity region of the degraded
Gaussian MAC-WT. The rigorous proof is as follows.

Proof. Observing that the region A of Theorem 2 can be rewritten as:

A =
⋃

0 ≤ α ≤ 1

0 ≤ p1 ≤ P1

0 ≤ p2 ≤ P2


(R1, R2) :

R1 ≤ 1
2

log(p2+N1+N2

N1
(1− p2+N2

p2+N2+N1+(1−α)p1 ))

R2 ≤ 1
2

log(p2+N1

N1
(1− p2

p2+N2+N1+(1−α)p1 ))

R1 +R2 ≤ 1
2

log(N1+N2

N1
(1− N2

p2+N2+N1+(1−α)p1 ))

 .

It is easy to see that the region A achieves its maximum when α = 0. Analogously, the region B
achieves its maximum when α = 0. Note that the regions A and B are exactly the same as the region
RGi if α = 0. Thus, the proof is completed.

4. Power Control for Two Kinds of Optimal Points on the Secrecy Rate Region of a Special
Gaussian Multiple-Access Wiretap Channel

In this section, we investigate a special Gaussian MAC-WT; see Figure 4. The model of Figure 4 is
characterized by:

Y N = XN
1 +XN

2 +NM , Z
N = αXN

1 + (1− α)XN
2 +NW , (1)

where NM , NW ∼ N (0, 1) and 0 < α ≤ 1
2
.

Figure 4. A special Gaussian multiple-access wiretap channel.
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An achievable secrecy rate region R of the model of Figure 4 is given by (2), where p1 and p2 are
transmission powers for the codewords xN1 and xN2 , respectively, and 0 ≤ p1, p2 ≤ P . Note that the
regionR is directly from [21].

R =
⋃

0 ≤ p1 ≤ P1

0 ≤ p2 ≤ P2


(R1, R2) :

R1 ≤ 1
2

log(1 + p1)− 1
2

log(1 + αp1
1+(1−α)p2 )

R2 ≤ 1
2

log(1 + p2)− 1
2

log(1 + (1−α)p2
1+αp1

)

R1 +R2 ≤ 1
2

log(1 + p1 + p2)− 1
2

log(1 + αp1 + (1− α)p2)

 . (2)

In addition, the optimum power control for the maximization of the total secrecy sum rate is given by:

(p∗1, p
∗
2) =

{
(P, P ), if 0 ≤ P ≤ α

1−2α ,

(P, 0), P > α
1−2α .

(3)

and the corresponding maximum secrecy sum rate R∗sum is given by:

R∗sum = max(R1 +R2) =

{
1
2

log 1+2P
1+P

, if 0 ≤ P ≤ α
1−2α ,

1
2

log 1+P
1+αP

, P > α
1−2α .

(4)

In the remainder of this section, the power control for two kinds of optimum points (max-min point
and single user point) on the secrecy rate region of Figure 4 is provided in Sections 4.1 and 4.2.
Numerical examples and discussions are in Section 4.3.

4.1. Max-Min Point

We first define an optimal point in the following sense:

R∗min , max min
p1,p2
{R1, R2}. (5)

Theorem 3. For the model of Figure 4, the optimum point R∗min satisfies:

R∗min =

 1
2

log(1 + αP ), if 0 ≤ P ≤
√

(α−2)2+4−(α+2)

2α
,

1
2

log 1+2P
1+P

, P >

√
(α−2)2+4−(α+2)

2α
.

R∗min is achieved if (p∗1, p
∗
2) = (P, P ).

Proof. First, for convenience, define:

a =
1

2
log

(1 + p1)(1 + (1− α)p2)

1 + (1− α)p2 + αp1
, (6)

b =
1

2
log

(1 + p2)(1 + αp1)

1 + (1− α)p2 + αp1
, (7)

c =
1

2
log

1 + p1 + p2
1 + (1− α)p2 + αp1

. (8)
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Then, (2) can be rewritten as:

R =
⋃

0 ≤ p1 ≤ P1

0 ≤ p2 ≤ P2


(R1, R2) :

R1 ≤ a

R2 ≤ b

R1 +R2 ≤ c

 . (9)

The calculation of R∗min depends on the following three cases; see Figure 5. The regions A and
B of these three figures imply that R1 ≤ R2 and R1 ≥ R2, respectively. In region A, R∗min =

max min{R1, R2} = maxR1, and in region B, R∗min = max min{R1, R2} = maxR2.
Therefore, from Figure 5a, it is easy to see that:

R∗min = max
p1,p2

b, s.t. b ≤ 1

2
c ≤ a. (10)

Similarly, from Figure 5b, we see that:

R∗min = max
p1,p2

1

2
c, s.t.

1

2
c ≤ min{a, b}. (11)

From Figure 5c, we see that:

R∗min = max
p1,p2

a, s.t. a ≤ 1

2
c ≤ b. (12)

By using the well-known method of Lagrange multipliers on (10), (11) and (12), Theorem 3
is proven.

Figure 5. All cases for the calculation of R∗min.

4.2. Single User Point

We now investigate another point, called the single user point, on which the legitimate receiver tries
to maximize the secrecy rate R1 (or R2) with the help of the senders, i.e., R∗su,i = maxRi (i = 1, 2).

Theorem 4. For the model of Figure 4, the optimum point R∗su,1 satisfies:

R∗su,1 =


1
2

log(1 + (1− α)P ), if 0 ≤ P ≤ α
1−α ,

1
2

log 1+2P
1+P

, if α
1−α ≤ P ≤ α

1−2α ,
1
2

log 1+P
1+αP

, P > α
1−2α .
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The optimum power control achieving R∗su,1 is given by:

(p∗1, p
∗
2) =


(P, P ), if 0 ≤ P ≤ α

1−α ,

(P, P ), if α
1−α ≤ P ≤ α

1−2α ,

(P, 0), P > α
1−2α .

The optimum point R∗su,2 satisfies:

• If 0 ≤ α ≤ 3−
√
5

2
,

R∗su,2 =


1
2

log(1 + αP ), if 0 ≤ P ≤ α
1−2α ,

1
2

log(1 + αP ), if α
1−2α ≤ P ≤ 1−2α

α2 ,
1
2

log 1+P
1+αP

, P > 1−2α
α2 .

The optimum power control achieving R∗su,2 is given by:

(p∗1, p
∗
2) =


(P, P ), if 0 ≤ P ≤ α

1−2α ,

(P, 0), if α
1−2α ≤ P ≤ 1−2α

α2 ,

(P, 0), P > 1−2α
α2 .

• If 3−
√
5

2
≤ α ≤ 1

2
,

R∗su,2 =


1
2

log(1 + αP ), if 0 ≤ P ≤ 1−α
α
,

1
2

log 1+2P
1+P

, if 1−α
α
≤ P ≤ α

1−2α ,
1
2

log 1+P
1+αP

, P > α
1−2α .

The optimum power control achieving R∗su,2 is given by:

(p∗1, p
∗
2) =


(P, P ), if 0 ≤ P ≤ 1−α

α
,

(P, P ), if 1−α
α
≤ P ≤ α

1−2α ,

(P, 0), P > α
1−2α .

Proof. By using (2), R∗su,1 and R∗su,2 can be rewritten as R∗su,1 = maxR1 = max{a, c} and R∗su,2 =

maxR2 = max{b, c}, respectively. Here, a, b and c are defined in (6), (7) and (8), respectively.
By using the method of Lagrange multipliers, Theorem 4 is proven.

4.3. Numerical Examples and Discussions

Figure 6 shows the max-min point R∗min and the maximum secrecy sum rate R∗sum for α = 0.2 and
α = 0.4. It is easy to see that R∗sum increases while α decreases and that R∗min increases while α
increases. Furthermore, R∗min tends to be a constant (0.5) while P tends to infinity. R∗sum tends to be
1
2

log 1
α

while P tends to infinity.
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Figure 7 shows the single user points R∗su,1 and R∗su,2 for α = 0.2 and α = 0.4. It is easy to see
that the curve for R∗su,1 is always better than that for R∗su,2. Furthermore, R∗su,1 and R∗su,2 tend to be the
same constant 1

2
log 1

α
, while P tends to infinity. In addition, for a fixed α, when P tends to infinity,

R∗sum, R∗su,1 and R∗su,2 are the same.
The above results show that the secrecy rate region of Gaussian MAC-WT behaves significantly

different from the classical capacity of Gaussian MAC. When classical capacity is concerned, the
max-min point is always attained when the sum rate R1 + R2 is also maximized. However, for secrecy
capacity, the point max(R1 +R2) does not necessarily coincide with R∗min all the time.

Figure 6. The R∗min and R∗sum for α = 0.2 and α = 0.4.

5. Conclusions

In this paper, first, we study the degraded multiple-access wiretap channel (MAC-WT). The secrecy
capacity region is determined for both the discrete memoryless and Gaussian cases. Furthermore, for
the Gaussian case, we find that the secrecy capacity region provided in this paper is exactly the same
as the achievable secrecy rate region provided by Tekin and Yener. Then, we study the power control
for two kinds of optimal points (max-min point and single user point) on the secrecy rate region of a
special Gaussian MAC-WT and find that these optimum points tend to be constants when the power
tends to infinity.
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Figure 7. The R∗su,1 and R∗su,2 for α = 0.2 and α = 0.4.

6. Direct Proof of Theorem 1

We consider the achievability proof of Theorem 1 for the case that the pair (R1 = I(X1;Y |X2, U)−
I(X1;Z|U), R2 = I(X2;Y |U)− I(X2;Z|U,X1)) is achievable, and the achievability proof for the pair
(R1 = I(X1;Y |U)− I(X1;Z|U,X2), R2 = I(X2;Y |X1, U)− I(X2;Z|U)) follows by symmetry.

The coding scheme combines the random binning, superposition coding and artificial noise
techniques; see Figure 3. Define the messages W1, W2 and W ∗ (dummy message) taking values in
the alphabetsW1,W2 andW∗, respectively, where:

W1 = {1, 2, ..., 2NR1}, W2 = {1, 2, ..., 2NR2}, W∗ = {1, 2, ..., 2NR∗}.

Fix the joint probability mass function PZ,Y,X1,X2,U(z, y, x1, x2, u). For arbitrary ε > 0, define:

R1 = I(X1;Y |X2, U)− I(X1;Z|U), (1)

R2 = I(X2;Y |U)− I(X2;Z|U,X1), (2)

R∗ = min{I(U ;Y ), I(U ;Z)} − ε1
(a)
= I(U ;Z)− ε1, (3)

R∗∗ = I(X2;Z|U,X1)− ε1, (4)

where (a) is from the Markov chain U → Y → Z and ε1 → 0 as N →∞.
Here, note that:

R2 +R∗+R∗∗ = I(X2;Y |U) + I(U ;Z)− 2ε1 ≤ I(X2;Y |U) + I(U ;Y )− 2ε1
(b)
= I(X2;Y )− 2ε1, (5)

where (b) is from the Markov chain U → X2 → Y .
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Now, the remainder of this section is organized as follows. The code construction is introduced in
Section 6.1. For any ε > 0, the proofs of limN→∞

log‖W1‖
N

= R1, limN→∞
log‖W2‖

N
= R2, limN→∞∆ ≥

R1 +R2 and Pe ≤ ε are given in Section 6.2.

6.1. Coding Construction

Construction of XN
1 : Generate 2N(I(X1;Y |X2,U)−ε2) i.i.d. codewords xN1 (ε2 → 0 as N → ∞)

according to
∏N

i=1 PX1(x1,i), and divide them into 2NR1 bins. Each bin contains 2N(I(X1;Y |X2,U)−ε2−R1)

codewords. Here, note that:
I(X1;Y |X2, U)− ε2 −R1

(c)
= I(X1;Z|U)− ε2, (6)

where (c) is from (1). For a given confidential message w1, randomly choose a codeword in bin w1

to transmit.
Construction of UN (dummy message): Generate 2NR

∗ i.i.d. codewords uN according to∏N
i=1 PU(ui). Randomly choose a uN(w∗) to transmit. Note that here, UN is independent of XN

1 .
Construction of XN

2 : Generate 2N(R2+R∗+R∗∗) i.i.d. codewords xN2 according to
∏N

i=1 PX2|U(x2,i|ui),
and divide them into 2NR

∗ bins. Each bin contains 2N(R2+R∗∗) codewords. Divide the codewords in each
bin into 2NR2 sub-bins, and each sub-bin contains 2NR

∗∗ codewords.
For a transmitted dummy message w∗ and a given message w2, first choose the index of the bin

according to w∗, and then, choose the index of the sub-bin in bin w∗ according to w2. Finally, randomly
choose a codeword in sub-bin w2 to transmit.

Decoding scheme for the legitimate receiver: for a given yN , try to find a sequence uN(ŵ∗),
such that (uN(ŵ∗), yN) are jointly typical. If there exists a unique sequence with the index
ŵ∗, put out the corresponding ŵ∗, else declare a decoding error. Based on the AEPand (3),
the probability Pr{ŵ∗ = w∗} goes to one.

After decoding ŵ∗, the legitimate receiver tries to find a sequence xN2 (ŵ2, ŵ
∗), such that

(uN(ŵ∗), xN2 (ŵ2, ŵ
∗), yN) are jointly typical. If there exists a unique sequence with the index ŵ2, put

out the corresponding ŵ2; else declare a decoding error. Based on the AEP, (2), (3), (4), (5) and the
construction of xN2 , the probability Pr{ŵ2 = w2} goes to one.

Finally, after decoding ŵ2 and ŵ∗, the legitimate receiver tries to find a sequence xN1 (ŵ1), such that
(uN(ŵ∗), xN1 (ŵ1), x

N
2 (ŵ2, ŵ

∗), yN) are jointly typical. There exists a unique sequence with the index ŵ1;
put out the corresponding ŵ1; else declare a decoding error. Based on the AEP, (1) and the construction
of xN1 , the probability Pr{ŵ1 = w1} goes to one.

6.2. Proof of the Achievability

By using the above definitions, it is easy to verify that limN→∞
log‖W1‖

N
= R1 and limN→∞

log‖W2‖
N

=

R2. Then, by using the above encoding-decoding scheme, Pe ≤ ε is easy to be checked. It remains to be
shown that limN→∞∆ ≥ R1 +R2; see the following.

lim
N→∞

∆ = lim
N→∞

1

N
H(W1,W2|ZN)

= lim
N→∞

1

N
(H(W1|ZN) +H(W2|W1, Z

N)). (7)



Entropy 2014, 16 4707

The first term in (7) is bounded as follows.

lim
N→∞

1

N
H(W1|ZN) ≥ lim

N→∞

1

N
H(W1|ZN , UN)

= lim
N→∞

1

N
(H(W1, Z

N , UN)−H(ZN , UN))

= lim
N→∞

1

N
(H(W1, Z

N , UN , XN
1 )−H(XN

1 |W1, Z
N , UN)−H(ZN , UN))

(a)
= lim

N→∞

1

N
(H(ZN |UN , XN

1 ) +H(UN) +H(XN
1 )−H(XN

1 |W1, Z
N , UN)

−H(ZN , UN))

= lim
N→∞

1

N
(H(XN

1 )− I(XN
1 ;ZN |UN)−H(XN

1 |W1, Z
N , UN)), (8)

where (a) is from H(W1|XN
1 ) = 0 and UN is independent of XN

1 .
Consider the first term in (8); the codeword generation and [18, Lemma 3] ensure that:

lim
N→∞

1

N
H(XN

1 ) ≥ I(X1;Y |X2, U). (9)

For the second term in (8), using the same approach as that in [2, Lemma 3], we get:

lim
N→∞

1

N
I(XN

1 ;ZN |UN) ≥ I(X1;Z|U). (10)

Now, we consider the last term of (8). From (6), given UN , ZN and W1, the total number of possible
codewords of XN

1 is 2N(I(X1;Z|U)−ε2). By using Fano’s inequality and the fact that ε2 → 0 as N → ∞,
we have:

lim
N→∞

1

N
H(XN

1 |W1, Z
N , UN) = 0. (11)

Substituting (9), (10) and (11) into (8), we have:

lim
N→∞

1

N
H(W1|ZN) ≥ I(X1;Y |X2, U)− I(X1;Z|U) = R1. (12)

The second term in (7) is bounded as follows.

lim
N→∞

1

N
H(W2|W1, Z

N) ≥ lim
N→∞

1

N
H(W2|W1, Z

N , UN)

≥ lim
N→∞

1

N
H(W2|W1, Z

N , UN , XN
1 )

(1)
= lim

N→∞

1

N
H(W2|ZN , UN , XN

1 )

= lim
N→∞

1

N
(H(W2, Z

N , UN , XN
1 )−H(ZN , UN , XN

1 ))

= lim
N→∞

1

N
(H(W2, Z

N , UN , XN
1 , X

N
2 )−H(XN

2 |W2, Z
N , UN , XN

1 )

−H(ZN , UN , XN
1 ))

(2)
= lim

N→∞

1

N
(H(ZN |UN , XN

1 , X
N
2 ) +H(XN

1 ) +H(UN , XN
2 )

−H(XN
2 |W2, Z

N , UN , XN
1 )−H(ZN |UN , XN

1 )−H(UN)−H(XN
1 ))

= lim
N→∞

1

N
(H(XN

2 |UN)− I(XN
2 ;ZN |UN , XN

1 )−H(XN
2 |W2, Z

N , UN , XN
1 )), (13)
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where (1) is from H(W1|XN
1 ) = 0 and (2) is from XN

1 independent of UN and XN
2 .

Consider the first term in (13); the codeword generation and ([18] Lemma 3) LP1 ensure that:

lim
N→∞

1

N
H(XN

2 |UN) ≥ I(X2;Y |U). (14)

For the second term in (13), using the same approach as that in ([2] Lemma 3), we get:

lim
N→∞

1

N
I(XN

2 ;ZN |UN , XN
1 ) ≥ I(X2;Z|U,X1). (15)

Now, we consider the last term of (13). Given UN , ZN , XN
1 and W2, the total number of possible

codewords of XN
1 is 2NR

∗∗ . By using Fano’s inequality and (4), we have:

lim
N→∞

1

N
H(XN

2 |W2, Z
N , UN , XN

1 ) = 0. (16)

Substituting (14), (15) and (16) into (13), we have:

lim
N→∞

1

N
H(W2|W1, Z

N) ≥ I(X2;Y |U)− I(X2;Z|U,X1) = R2. (17)

Substituting (12) and (17) into (7), limN→∞∆ ≥ R1 +R2 is proven.
The achievability proof of Theorem 1 is completed.

7. Converse Proof of Theorem 1

In this section, we prove the converse part of Theorem 1: all the achievable secrecy pairs (R1, R2) are
contained in the setRD. We will prove the inequalities of Theorem 1 in the remainder of this section.

(Proof of R1 ≤ I(X1;Y |X2, U)− I(X1;Z|U)):

1

N
H(W1)

(1)
=

1

N
H(W1|ZN)

=
1

N
(H(W1|ZN)−H(W1|ZN ,W2, Y

N) +H(W1|ZN ,W2, Y
N))

(2)

≤ 1

N
(I(W1;W2, Y

N |ZN) + δ(Pe))

≤ 1

N
(H(W1|ZN)−H(W1|ZN ,W2, Y

N , XN
2 ) + δ(Pe))

(3)
=

1

N
(H(W1|ZN)−H(W1|ZN , Y N , XN

2 ) + δ(Pe))

=
1

N
(I(W1;Y

N , XN
2 |ZN) + δ(Pe))

≤ 1

N
(H(Y N , XN

2 |ZN)−H(Y N , XN
2 |ZN ,W1, X

N
1 ) + δ(Pe))

(4)
=

1

N
(H(Y N , XN

2 |ZN)−H(Y N , XN
2 |ZN , XN

1 ) + δ(Pe))

=
1

N
(I(Y N , XN

2 ;XN
1 |ZN) + δ(Pe))

(5)
=

1

N
(H(XN

1 |ZN)−H(XN
1 |ZN , Y N , XN

2 )−H(XN
1 ) +H(XN

1 |XN
2 ) + δ(Pe))

=
1

N
(I(XN

1 ;Y N |XN
2 )− I(XN

1 ;ZN) + δ(Pe))
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=
1

N

N∑
i=1

(H(Yi|Y i−1, XN
2 )−H(Yi|X1,i, X2,i)−H(Zi|Zi−1) +H(Zi|Zi−1, XN

1 )) +
δ(Pe)

N

(6)
=

1

N

N∑
i=1

(H(Yi|Y i−1, XN
2 , Z

i−1)−H(Yi|X1,i, X2,i, Z
i−1)−H(Zi|Zi−1) +H(Zi|Zi−1, XN

1 )) +
δ(Pe)

N

≤ 1

N

N∑
i=1

(H(Yi|X2,i, Z
i−1)−H(Yi|X1,i, X2,i, Z

i−1)−H(Zi|Zi−1) +H(Zi|Zi−1, X1,i)) +
δ(Pe)

N

(7)
=

1

N

N∑
i=1

(H(Yi|X2,i, Z
i−1, J = i)−H(Yi|X1,i, X2,i, Z

i−1, J = i)−H(Zi|Zi−1, J = i)

+H(Zi|Zi−1, X1,i, J = i)) +
δ(Pe)

N
(8)
= H(YJ |X2,J , Z

J−1, J)−H(YJ |X1,J , X2,J , Z
J−1, J)−H(ZJ |ZJ−1, J) +H(ZJ |ZJ−1, X1,J , J) +

δ(Pe)

N
(9)
= I(X1;Y |X2, U)− I(X1;Z|U) +

δ(Pe)

N
, (1)

where (1) is from the definition of the perfect secrecy; (2) is from Fano’s inequality; (3) is from
H(W2|XN

2 ) = 0; (4) is from H(W1|XN
1 ) = 0; (5) is from the Markov chain XN

1 → (XN
2 , Y

N) → ZN

and the fact thatXN
1 is independent ofXN

2 ; (6) is from the Markov chains Yi → (Y i−1, XN
2 )→ Zi−1 and

Yi → (X1,i, X2,i)→ Zi−1; (7) is from J is a random variable (uniformly distributed over {1, 2, ..., N}),
and it is independent of XN

1 , XN
2 , Y N and ZN ; (8) is from J is uniformly distributed over {1, 2, ..., N};

and (9) is from the definitions that X1 , X1,J , X2 , X2,J , Y , YJ , Z , ZJ and U , (ZJ−1, J).
By using Pe ≤ ε, ε → 0 as N → ∞, limN→∞

H(W1)
N

= R1 and (1), it is easy to see that R1 ≤
I(X1;Y |X2, U)− I(X1;Z|U).

(Proof of R2 ≤ I(X2;Y |X1, U)− I(X2;Z|U)):
The proof is analogous to the proof of R1 ≤ I(X1;Y |X2, U)− I(X1;Z|U), and it is omitted here.
Proof of R1 +R2 ≤ I(X1, X2;Y |U)− I(X1, X2;Z|U):

lim
N→∞

∆ = lim
N→∞

1

N
H(W1,W2|ZN)

(1)

≤ lim
N→∞

1

N
(H(W1,W2|ZN) + δ(Pe)−H(W1,W2|Y N , ZN))

≤ lim
N→∞

1

N
(H(Y N |ZN)−H(Y N |ZN ,W1,W2, X

N
1 , X

N
2 ) + δ(Pe))

(2)
= lim

N→∞

1

N
(H(Y N |ZN)−H(Y N |ZN , XN

1 , X
N
2 ) + δ(Pe))

= lim
N→∞

1

N
(I(XN

1 , X
N
2 ;Y N)− I(XN

1 , X
N
2 ;ZN) + δ(Pe))

(3)
= lim

N→∞
(

1

N

N∑
i=1

(H(Yi|Y i−1)−H(Yi|X1,i, X2,i, Z
i−1)−H(Zi|Zi−1) +H(Zi|X1,i, X2,i, Z

i−1)) +
δ(Pe)

N
)

(4)

≤ lim
N→∞

(
1

N

N∑
i=1

(H(Yi|Zi−1)−H(Yi|X1,i, X2,i, Z
i−1)−H(Zi|Zi−1) +H(Zi|X1,i, X2,i, Z

i−1)) +
δ(Pe)

N
)
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(5)
= lim

N→∞
(

1

N

N∑
i=1

(H(Yi|Zi−1, J = i)−H(Yi|X1,i, X2,i, Z
i−1, J = i)

−H(Zi|Zi−1, J = i) +H(Zi|X1,i, X2,i, Z
i−1, J = i)) +

δ(Pe)

N
)

(6)
= lim

N→∞
(H(YJ |ZJ−1, J)−H(YJ |X1,J , X2,J , Z

J−1, J)

−H(ZJ |ZJ−1, J) +H(ZJ |X1,J , X2,J , Z
J−1, J) +

δ(Pe)

N
)

(7)
= I(X1, X2;Y |U)− I(X1, X2;Z|U), (2)

where (1) is from Fano’s inequality; (2) is from (W1,W2) → (XN
1 , X

N
2 , Z

N) → Y N ; (3) is from
Yi → (X1,i, X2,i) → Zi−1 and Zi → (X1,i, X2,i) → Zi−1; (4) is from Yi → Y i−1 → Zi−1; (5) is from
J is a random variable (uniformly distributed over {1, 2, ..., N}), and it is independent of XN

1 , XN
2 , Y N

and ZN ; (6) is from J is uniformly distributed over {1, 2, ..., N}; and (7) is from the definitions that
X1 , X1,J , X2 , X2,J , Y , YJ , Z , ZJ and U , (ZJ−1, J) and the fact that Pe → 0 as N →∞.

By using limN→∞∆ ≥ R1 + R2 and (2), it is easy to see that R1 + R2 ≤ I(X1, X2;Y |U) −
I(X1, X2;Z|U).

The converse proof of Theorem 1 is completed.
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