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Abstract: The present work focuses on entropy solutions for the fractional Cauchy
problem of nonsymmetric systems. We impose sufficient conditions on the parameters
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1. Introduction

Fractional order differential equations have been positively engaged in modeling of various
different procedures and schemes in engineering, physics, chemistry, biology, medicine, and food
processing [1–4]. In these requests, reflecting boundary value problems such as the existence and
uniqueness of solutions for space-time fractional diffusion equations on bounded domains is a significant
procedure. The existence and uniqueness of solutions for linear and nonlinear fractional differential
equations has fascinated many investigators [5–13].
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Fractional calculus created from the Riemann–Liouville description of fractional integral of order ℘ is
in the form

aI
℘
t f(t) =

∫ t

a

(t− τ)℘−1

Γ(℘)
φ(τ)dτ.

The fractional order differential of the function φ of order ℘ > 0 is given by

aD
℘
t φ(t) =

d

dt

∫ t

a

(t− τ)−℘

Γ(1− ℘)
φ(τ)dτ.

When a = 0, we shall denote 0D
℘
t φ(t) := D℘

t f(t) and 0I
℘
t φ(t) := I℘t φ(t) in the follow-up. From above,

for a = 0, we accomplish that

D℘
t t
` =

Γ(`+ 1)

Γ(`− ℘+ 1)
t`−℘, ` > −1; 0 < ℘ < 1

and
I℘t t

` =
Γ(`+ 1)

Γ(`+ ℘+ 1)
t`+℘, ` > −1; ℘ > 0.

The Leibniz rule for arbitrary differentiations of smooth functions (with continuous derivatives for all
orders) φ(t) and ψ(t), t ∈ [a, b] is formulated as (see p. 96 in [14]):

aD
℘
t [φ(t)ψ(t)] =

k∑
n=0

(
℘

n

)
aD

℘−n
t φ(t) aD

n
t ψ(t)−R℘

k

=
k∑

n=0

(
℘

n

)
aD

℘−n
t ψ(t) aD

n
t φ(t)−R℘

k ,

where ℘ ≤ k − 1, (
℘

n

)
=

Γ(℘+ 1)

Γ(n+ 1)Γ(℘+ 1− n)

and R℘
k is the remainder of the series, which can be defined as follows:

R℘
k =

( 1

k!Γ(−℘)

∫ t

a

(t− τ)−℘−1φ(τ)dτ
)(∫ t

τ
aD

k+1
t ψ(θ) (τ − θ)kdθ

)
.

Additionally, the fractional differential operator achieves linearity (see p. 90 in [14])

aD
℘
t [ρφ(t) + σψ(t)] = ρ aD

℘
t [φ(t)] + σ aD

℘
t [ψ(t)].

Recently, Alsaedi et al. [15] presented an inequality for fractional derivatives related to the Leibniz
rule, as follows:

Lemma 1. Let one of the following conditions be satisfied

• µ ∈ C([0, T ]) and ν ∈ Cβ([0, T ]), ℘ < β ≤ 1

• ν ∈ C([0, T ]) and µ ∈ Cβ([0, T ]), ℘ < β ≤ 1

• µ ∈ Cβ([0, T ]) and ν ∈ Cδ([0, T ]), ℘ < β ≤ β + δ, β, δ ∈ (0, 1),
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where

Cγ([0, T ]) = {µ : [0, T ]→ R/|µ(t)− µ(t− h)| = O(hγ) uniformly for 0 < t− h < t ≤ T}.

Then we have

D℘
t (µν)(t) = µ(t)D℘

t ν(t) + ν(t)D℘
t µ(t)− ℘

Γ(1− ℘)

∫ t

0

(µ(s)− µ(t))(ν(s)− ν(t))

(t− s)℘+1
ds− µ(t)ν(t)

Γ(1− ℘)t−℘

point-wise.

If µ and ν have the same sign and are both increasing or both decreasing, then

D℘
t (µν)(t) ≤ µ(t)D℘

t ν(t) + ν(t)D℘
t µ(t)

and for µ = ν,

D℘
t (µ2)(t) ≤ 2µ(t)D℘

t µ(t). (1)

Lemma 1 aims to confirm a conjecture by J. I. Diaz et al. [16]. They conjectured that for ℘ ∈ (0, 1),

inequality (1) that includes the Riemann–Liouville fractional derivative holds true.
We focus on entropy solutions for the fractional Cauchy problem of nonsymmetric systems. We

execute sufficient conditions on the parameters to obtain a bounded solutions of L∞. The solution is
unique and exclusive. Performance is established by applying Lemma 1. The fractional differential
operator is inspected according to the interpretation of the Riemann–Liouville differential operator.
Various studies have discussed the fractional Cauchy problem [17,18] and entropy analysis [19–21].

2. Proposed Fractional System

We introduce the proposed nonsymmetric fractional system. The Cauchy problem for nonsymmetric
system of Keyfitz–Kranzer type is given by the formula [22]

µt +
(
µ θ(µ, ω1, ..., ωn)

)
χ

= 0(
µωj (t, χ)

)
t
+
(
µωj θ(µ, ω1, ..., ωn)

)
χ

= 0, j = 1, ..., n.

The generalization of the system can be written by virtue of the Riemann–Liouville fractional calculus:

D℘
t µ(t, χ) +

(
µ θ(µ, ω1, ..., ωn)

)
χ

= 0

D℘
t

(
µωj (t, χ)

)
+
(
µωj θ(µ, ω1, ..., ωn)

)
χ

= 0, j = 1, ..., n
(2)

with bounded measurable initial condition(
µ(0, χ), ωj(0, χ)

)
=
(
µ0(χ), ωj0(χ)

)
, µ0(χ) ≥ 0, j = 1, ..., n, (3)

and
θ(µ, ω) := Θ(ω)− Λ(µ) (4)
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is a nonlinear function, µ, ω are the density and the velocity of vehicles, while the function Λ is smooth
and strictly increasing. The symmetric fractional system of (2) can be viewed as

D℘
t ωj(t, χ) +

(
ωj θ(µ, ω1, ..., ωn)

)
χ

= 0, j = 1, ..., n,

where

θ(ω) =
n∑
j=1

ωkj , k > 1.

When n = 1 and Θ(ω) = ω in (4), System (2) reduces to the non symmetric form

D℘
t µ(t, χ) +

(
µ (ω − Λ(µ))

)
χ

= 0

D℘
t (µω)(t, χ) +

(
µω(ω − Λ(µ))

)
χ

= 0.
(5)

If we let ν := µω, then we obtain the system

D℘
t µ(t, χ) +

(
ν − µΛ(µ)

)
χ

= 0

D℘
t ν(t, χ) +

(ν2

µ
− νΛ(µ)

)
χ

= 0,
(6)

with the bounded initial condition(
µ(0, χ), ν(0, χ)

)
=
(
µ0(χ), ν0(χ)

)
, µ0(χ) ≥ 0.

For Λ(µ) = µ, system (6) can be viewed as

D℘
t µ(t, χ) +

(
ν − µ2

)
χ

= 0

D℘
t ν(t, χ) +

(ν2

µ
− νµ

)
χ

= 0.
(7)

System (2), for an integer case, was addressed by Keyfitz and Krranzer [22] as a model for an
elastic string. System (5) was imposed by Aw and Rascle [23] as a macroscopic model for traffic flow,
where µ, ω are the density and velocity of vehicles on the road, respectively. Systems (6) and (7) are
pressure-less gas dynamic system models [24].

3. Solutions and Entropy Solutions

We study the following fractional system based on the above mentioned construction fractional
dynamic systems:

D℘
t µ(t, χ) +∇

(
ν − µΛ(µ)

)
= 0

D℘
t ν(t, χ) +∇

(ν2

µ
− νΛ(µ)

)
= 0,

(8)

with the bounded initial condition(
µ(0, χ), ν(0, χ)

)
=
(
µ0(χ), ν0(χ)

)
, µ0(χ) ≥ 0,
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where t ∈ J := (0, T ], T <∞,Ω ∈ R2 is a bounded domain, and the couple (µ, ν) ∈
(
C[J,Ω], C[J,Ω]

)
denotes the solution of system (8). Moreover, it achieves

∂µ

∂ζ
=
∂ν

∂ζ
= 0, ζ ∈ ∂Ω,

when µ, ν are smooth in J.

Theorem 1. Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. Assume that

(µ0, ν0) ∈ H1(Ω)×H1(Ω), µ0 > 0, ν0 ≥ 0, in Ω

where H1(Ω) = {u ∈ L2(Ω) : |∇u| ∈ L2(Ω)}. If ν2 ≤ µ2 and CT℘

Γ(℘+1)
< 1, C > 0, then there exists a

unique bounded solution (µ, ν) for system (8).

Proof. The first three steps of the proof describe priori estimates whereas Step 4 addresses uniqueness.

Step 1. First estimate. We aim to prove that (µ, ν) ∈
(
L2(Ω), L2(Ω)

)
. By expanding the first equation

in (8) by µ, utilizing (1) and integrating over Ω, we obtain

1

2
D℘
t

∫
Ω

µ2(t, χ) =
1

2

∫
Ω

D℘
t µ

2(t, χ)

≤
∫

Ω

µ(t, χ)D℘
t µ(t, χ)

= −
∫

Ω

µ∇
(
ν − µΛ(µ)

)
.

By applying the Cauchy-Schwartz and Young inequalities, we derive

1

2
D℘
t ‖µ‖2

L2 ≤ ‖µ‖L2 ‖ν − µΛ(µ)‖L2

≤ 1

2
‖µ‖L2 +

1

2
‖ν − µΛ(µ)‖L2

Thus by using the triangle inequality, we obtain

D℘
t ‖µ‖2

L2 ≤ ‖µ‖L2 + ‖ν − µΛ(µ)‖L2

≤ 3

2
‖µ‖L2 + ‖ν‖L2 +

1

2
‖Λ(µ)‖L2 .

(9)

Similarly, the product of second equation in (8) by ν yields

1

2
D℘
t

∫
Ω

ν2(t, χ) = −
∫

Ω

ν∇
(ν2

µ
− νΛ(µ)

)
.

The above equation implies

D℘
t ‖ν‖2

L2 ≤ ‖ν‖L2 + ‖ν
2

µ
− νΛ(µ)‖L2

≤ 3

2
‖ν‖L2 + ‖ν

2

µ
‖L2 +

1

2
‖Λ(µ)‖L2

≤ 3

2
‖ν‖L2 + ‖µ‖L2 +

1

2
‖Λ(µ)‖L2

(10)
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Combining (9) and (10) indicates

D℘
t

(
‖µ‖2

L2 + ‖ν‖2
L2

)
≤ 5

2

(
‖µ‖L2 + ‖ν‖L2

)
+ ‖Λ(µ)‖L2 . (11)

By employing

‖θ(., t)‖L2 ≤
‖θ(., t)‖2

L2 + 1

2
,

inequality (11) becomes

D℘
t

(
‖µ‖2

L2 + ‖ν‖2
L2

)
≤ 5

4

(
‖µ‖2

L2 + ‖ν‖2
L2

)
+

1

2
‖Λ(µ)‖2

L2 +
7

4
. (12)

By applying the generalized Gronwall lemma, we achieve

sup
t∈J

(
‖µ‖2

L2 + ‖ν‖2
L2

)
≤ κ1E℘(κ2T

℘) + κ3,

where κ1, κ2 and κ3 are sufficient large positive constants and E℘ is the Mittag-Leffler function. Hence
solution (µ, ν) is bounded in L2(Ω).

Step 2. Second estimate. We intend to prove that (µ, ν) ∈
(
L∞(Ω), L∞(Ω)

)
.

Accumulating the first equation in (8) by4µ (Laplace operator) and integrating over Ω, by considering
that µ vanishes on the boundary of Ω Lemma 1, leads to∫

Ω

D℘
t (µ.4µ) = D℘

t

∫
Ω

(µ.4µ) ≤
∫

Ω

4µ.D℘
t µ

= −
∫

Ω

4µ.∇
(
ν − µΛ(µ)

)
≤ K1

∫
Ω

4µ+K2

∫
Ω

µ4µ+K3

∫
Ω

4µ.∇µ.

Using this equation, along with the Sobolev embedding, for ∇ν ∈ L2(Ω) and ∇Λ ∈ L2(Ω) implies
that there are two positive constants, namely, K1 and K2 such that ‖∇ν‖L2 ≤ K1 and ‖∇Λ‖L2 ≤ K2.

Consequently, we let ‖Λ‖L2 ≤ K3, K3 > 0. Integration by part for the left hand side of the above
inequality, which is based on the Cauchy- Schwartz inequality results in

D℘
t ‖∇µ(., t)‖2

L2 ≤ C1

(
‖4µ(., t)‖2

L2 + 2‖∇µ(., t)‖2
L2 + ‖µ(., t)‖2

L2 +
1

2

)
, (13)

where C1 := max{Ki, i = 1, 2, 3} is a positive constant. Similarly, by multiplying the second equation
in (8) by4ν, and kipping in mind that ν vaporizes on the boundary of Ω, Lemma 1 implies that∫

Ω

D℘
t (ν.4ν) = D℘

t

∫
Ω

(ν.4ν) ≤
∫

Ω

4ν.D℘
t ν

= −
∫

Ω

4ν.∇
(ν2

µ
− νΛ(µ)

)
≤ ε1

∫
Ω

4ν +K2

∫
Ω

ν4ν +K3

∫
Ω

4ν.∇ν,

which, together with the Sobolev embedding, yields positive value of constant ε1 satisfying
‖∇µ‖L2 ≤ ε1. Thus, we have

D℘
t ‖∇ν(., t)‖2

L2 ≤ C2

(
‖4ν(., t)‖2

L2 + 2‖∇ν(., t)‖2
L2 + ‖ν(., t)‖2

L2 +
1

2

)
, (14)
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where C2 := max{ε1, K2, K3} is a positive constant. Combining (13) and (14) implies that

D℘
t

(
‖∇µ(., t)‖2

L2 + ‖∇ν(., t)‖2
L2

)
≤ C

(
‖4µ(., t)‖2

L2 + 2‖∇µ(., t)‖2
L2 + ‖µ(., t)‖2

L2

+ ‖4ν(., t)‖2
L2 + 2‖∇ν(., t)‖2

L2 + ‖ν(., t)‖2
L2 + 1

)
,

(15)

where C := max{C1, C2} is a positive constant. By exploiting the generalized Gronwall lemma and the
condition (u0, µ0) ∈ H1(Ω)×H1(Ω), we obtain (µ, ν) ∈

(
L∞(Ω), L∞(Ω)

)
.

Step 3. Upper bound. We aim to determine the upper bound of the fractional derivative. Let

g(t) := ‖4µ(., t)‖2
L2 + ‖4ν(., t)‖2

L2 ,

f(t) := 2
(
‖∇µ(., t)‖2

L2 + ‖∇ν(., t)‖2
L2

)
and

λ(t) := ‖µ(., t)‖2
L2 + ‖ν(., t)‖2

L2 .

Given that µ and ν vanish at the boundary of Ω, we conclude that

0 =

∫
Ω

µ ≤
∫

Ω

µ0, 0 =

∫
Ω

ν ≤
∫

Ω

ν0,

thus from [15], Remark 2, we have

‖µ(., t)‖2
L2 ≤ ‖µ0‖2

L2 , ‖ν(., t)‖2
L2 ≤ ‖ν0‖2

L2 .

Operating (15) by Iα, we derive

f(t) ≤ f0 + C
(∫ t

0

(t− τ)℘−1

Γ(℘)
f (τ)dτ +

∫ t

0

(t− τ)℘−1

Γ(℘)
g (τ)dτ

+

∫ t

0

(t− τ)℘−1

Γ(℘)
λ(τ)dτ +

∫ t

0

(t− τ)℘−1

Γ(℘)
dτ
)

≤ f0 +
C T ℘

Γ(℘+ 1)
sup
t∈(0,T ]

f(t) + C

∫ t

0

(t− τ)℘−1

Γ(℘)

(
g (τ) + λ(τ) + 1

)
dτ

:= f0 +
C T ℘

Γ(℘+ 1)
sup
t∈(0,T ]

f(t) + C

∫ t

0

(t− τ)℘−1

Γ(℘)
Ψ(τ)dτ,

(16)

where Ψ := g(τ) + λ(τ) + 1. Simple calculation implies

sup
t∈(0,T ]

f(t) ≤ f0

1− CT℘

Γ(℘+1)

+
C

1− CT℘

Γ(℘+1)

∫ t

0

(t− τ)℘−1

Γ(℘)
Ψ(τ)dτ

:= α0 + α1 sup
t∈(0,T ]

∫ t

0

(t− τ)℘−1

Γ(℘)
Ψ(τ)dτ.

(17)

Hence, for all t ∈ J, we realize that
supt∈(0,T ] f (t) ≤ α, (18)
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where α is a positive constant depending on ℘,C,f0 and supt∈J ‖Ψ‖.

Step 4. Uniqueness. Let (υ1, υ2) and (ν1, ν2) be two solutions for system (8) under the identical initial
condition (υ0

1, υ
0
2) ∈ H1(Ω). Set µ = υ1 − ν1 and ν = υ2 − ν2 to arrive at

D℘
t µ(t, χ) +∇

(
ν − µΛ(µ)

)
= 0

D℘
t ν(t, χ) +∇

(ν2

µ
− νΛ(µ)

)
= 0,

(19)

Multiply the first equation in (19) by µ and the second equation in (19) by ν and integrate over Ω to
obtain relation (12). By employing the generalized Gronwall lemma, we conclude that

supt∈(0,T ]

(
‖µ(t, .)‖2

L2 + ‖ν(t, .)‖2
L2

)
≤ σ,

where σ is an arbitrary constant depending on T, ℘ and the initial condition. System (8) admits a
unique bounded global solution (µ, ν) of arbitrary initial value, satisfying µ2 ≥ ν2. This completes
the proof.

Subsequently, we discuss the solutions for system (8) when µ2 ≤ ν2. In this case, we only obtain
entropy solutions.

Theorem 2. Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. Assume that

(µ0, ν0) ∈ H1(Ω)×H1(Ω), µ0 ≥ 0, ν0 > 0, inΩ

If ν2 ≥ µ2, then system (8) satisfies the entropy fractional inequality

D℘
t

∫
Ω

(µ lnµ+ ν ln ν) +

∫
Ω

(
lnµ.∇ν + ln ν.∇µ

)
≤ 4K3

(
‖µ‖L2 + ‖ν‖L2

)
, (20)

where ‖Λ‖L2 ≤ K3, K3 > 0.

Proof. Multiplying the first equation in (8) by lnµ, integrating over Ω and exploiting Lemma 1, we
arrive at

D℘
t

∫
Ω

µ lnµ ≤
∫

Ω

µD℘
t lnµ+

∫
Ω

lnµD℘
t µ.

By utilizing the Cauchy- Schwartz inequality and yielding that µ vanishes on Ω, we take out

D℘
t

∫
Ω

µ lnµ ≤
∫

Ω

lnµDα
t µ = −

∫
Ω

lnµ.∇
(
ν − µΛ(µ)

)
.

A calculation implies

D℘
t

∫
Ω

µ lnµ ≤ −
∫

Ω

lnµ.∇ν +

∫
Ω

lnµ.µ∇Λ(µ) +

∫
Ω

lnµ.Λ(µ)∇µ

= −
∫

Ω

lnµ.∇ν +

∫
Ω

lnµ.Λ(µ)∇µ.

Thus, by using (see [25]) ∫
Ω

lnµ.∇µ ≤ 4‖µ‖L2 ,
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we obtain

D℘
t

∫
Ω

µ lnµ+

∫
Ω

lnµ.∇ν ≤
∫

Ω

lnµ.∇µ.Λ(µ) ≤ 4K3‖µ‖L2 . (21)

Based on our assumption (ν2 ≥ µ2), we conclude that

D℘
t

∫
Ω

ν ln ν +

∫
Ω

ln ν.∇µ ≤
∫

Ω

ln ν.∇ν.Λ(µ) ≤ 4K3‖ν‖L2 . (22)

We arrive at the desired assertion by combining (21) and (22). This step completes the proof.

Theorem 3. Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. Assume that

(µ0, ν0) ∈ H1(Ω)×H1(Ω), µ0 ≥ 0, ν0 > 0, inΩ

If ν2 ≥ µ2 then system (8) admits a bounded entropy solution.

Proof. Consider the fractional Cauchy problem

D℘
t µ(t, χ) +∇

(
ν − µΛ(µ)

)
= −`4µ

D℘
t ν(t, χ) +∇

(ν2

µ
− νΛ(µ)

)
= −`4ν,

(23)

where ` > 0, subjected to the initial condition(
µ`(0, χ) = µ0(χ) + `, ν`(0, χ) = ν0(χ) + `

)
.

It suffices to show that the fractional operator D℘
t in (23) is bounded. Multiplying the first equation in

(23) by lnµ, integrating over Ω, exploiting Lemma 1, employing the Cauchy–Schwartz inequality and
defining that µ vanishes on Ω, we deduce

D℘
t

∫
Ω

µ lnµ+

∫
Ω

lnµ.∇ν ≤
∫

Ω

lnµ.∇µ.Λ(µ)− `
∫

Ω

lnµ.4µ. (24)

By considering the earlier observation [25]∫
Ω

lnµ4µ = −4

∫
Ω

|∇µ1/2|2,

and since
∫

Ω
µ ≤

∫
Ω
µ0, which leads to

‖µ‖2
L2 ≤ ‖µ0‖2

L2 ≤ ‖µ`‖2
L2 ,

then the inequality (24) reduces to

D℘
t

∫
Ω

µ lnµ+

∫
Ω

lnµ.∇ν ≤
∫

Ω

lnµ.∇µ.Λ(µ) + 4`

∫
Ω

|∇µ1/2|2

≤ 2K3

(
‖µ`‖2

L2 + 1
)

+ 4`

∫
Ω

|∇µ1/2|2.
(25)
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Similarly, we may infer

D℘
t

∫
Ω

ν ln ν +

∫
Ω

ln ν.∇µ ≤
∫

Ω

ln ν.∇ν.Λ(µ) + 4`

∫
Ω

|∇ν1/2|2

≤ 2K3

(
‖ν`‖2

L2 + 1
)

+ 4`

∫
Ω

|∇ν1/2|2.
(26)

Combining (25) and (26) and letting `→ 0, we arrive at

D℘
t

∫
Ω

(µ lnµ+ ν ln ν) +

∫
Ω

(
lnµ.∇ν + ln ν.∇µ

)
≤ 4K3.

Hence, the proof is completed.

Theorem 4. Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. Consider the system

D℘
t µ(t, χ) +∇

(
ν − µΛ(µ)

)
= −ε∇(µ∇ν)

D℘
t ν(t, χ) +∇

(ν2

µ
− νΛ(µ)

)
= −ε∇(ν∇µ),

(27)

where ε > 0, subjected to the initial condition(
µε(0, χ) = µ0(χ) + ε, νε(0, χ) = ν0(χ) + ε

)
,

where
(µ0, ν0) ∈ H1(Ω)×H1(Ω), µ0 ≥ 0, ν0 > 0, in Ω

If ν2 ≥ µ2 then system (27) admits a bounded entropy solution.

Proof. Again it be adequate to present that the fractional operator D℘
t in (27) is bounded. Similar to

the procedure in Theorem 3, we deduce that by multiplying the first equation in (27) by lnµ, integrating
over Ω, exploiting Lemma 1, applying the Cauchy–Schwartz inequality and determining that µ vanishes
on Ω, we conclude that

D℘
t

∫
Ω

µ lnµ+

∫
Ω

lnµ.∇ν ≤
∫

Ω

lnµ.∇µ.Λ(µ)− ε
∫

Ω

lnµ.∇(µ∇ν). (28)

Since (see [25]) ∫
Ω

lnµ∇(µ∇ν) = −
∫

Ω

∇µ.∇ν,

and
‖µ‖2

L2 ≤ ‖µ0‖2
L2 ≤ ‖µε‖2

L2 ,

then the inequality (28) reduces to

D℘
t

∫
Ω

µ lnµ+

∫
Ω

lnµ.∇ν ≤
∫

Ω

lnµ.∇µ.Λ(µ) + ε

∫
Ω

∇u.∇µ

≤ 2K3

(
‖µε‖2

L2 + 1
)

+ ε

∫
Ω

∇µ.∇ν.
(29)
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In the same manner, we may derive

D℘
t

∫
Ω

ν ln ν +

∫
Ω

ln ν.∇µ ≤
∫

Ω

ln ν.∇ν.Λ(µ) + 4`

∫
Ω

|∇ν1/2|2

≤ 2K3

(
‖νε‖2

L2 + 1
)

+ ε

∫
Ω

∇ν.∇µ.
(30)

Summing (29) and (30), we arrive at

D℘
t

∫
Ω

(µ lnµ+ ν ln ν) +

∫
Ω

(
lnµ.∇ν + ln ν.∇µ

)
≤ 2K3

(
‖µε‖2

L2 + ‖νε‖2
L2 + 2

)
+ 2ε

∫
Ω

∇µ.∇ν.

Hence, the proof is completed.

Corollary 1. Let the hypotheses of Theorem 4 hold. Then for ε → 0, system (8) has a bounded entropy
solution.
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