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Abstract:

 Information geometric optimization (IGO) is a general framework for stochastic optimization problems aiming at limiting the influence of arbitrary parametrization choices: the initial problem is transformed into the optimization of a smooth function on a Riemannian manifold, defining a parametrization-invariant first order differential equation and, thus, yielding an approximately parametrization-invariant algorithm (up to second order in the step size). We define the geodesic IGO update, a fully parametrization-invariant algorithm using the Riemannian structure, and we compute it for the manifold of Gaussians, thanks to Noether’s theorem. However, in similar algorithms, such as CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) and xNES (exponential Natural Evolution Strategy), the time steps for the mean and the covariance are decoupled. We suggest two ways of doing so: twisted geodesic IGO (GIGO) and blockwise GIGO. Finally, we show that while the xNES algorithm is not GIGO, it is an instance of blockwise GIGO applied to the mean and covariance matrix separately. Therefore, xNES has an almost parametrization-invariant description.
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1. Introduction

Consider an objective function f: X → ℝ to be minimized. We suppose we have absolutely no knowledge about f: the only thing we can do is ask for its value at any point x ∈ X (black-box optimization) and that the evaluation of f is a costly operation. We are going to study algorithms that can be described in the IGO framework (see [1]).

We consider the following optimization procedure:

We choose (Pθ)θ∈Θ a family of probability distributions (which will be given a Riemannian manifold structure, following [2]) on X and an initial probability distribution [image: there is no content]. Now, we replace f by F: Θ → ℝ (for example [image: there is no content]), and we optimize F by gradient descent, corresponding to the gradient flow:



[image: there is no content]



(1)




However, because of the gradient, this equation depends entirely on the parametrization we chose for Θ, which is disturbing: we do not want to have two different updates, because we chose different parameters to represent the objects with which we are working. Moreover, in the case of a function with several local minima, changing the parametrization can change the attained optimum (see [3], for example). That is why invariance is a design principle behind IGO. More precisely, we want invariance with respect to monotone transformations of f and invariance under reparametrization of Θ.

The IGO framework uses the geometry of the family Θ, which is given by the Fisher metric to provide a differential equation on θ with the desired properties, but because of the discretization of time needed to obtain an explicit algorithm, we lose invariance under reparametrization of θ: two IGO algorithms applied to the same function to be optimized, but with different parametrizations, coincide only at first order in the step size. A possible solution to this problem is geodesic IGO (GIGO), introduced here (see also IGO-Maximum Likelihoodin [1], for example.): the initial direction of the update at each step of the algorithm remains the same as in IGO, but instead of moving straight for the chosen parametrization, we use the Riemannian manifold structure of our family of probability distributions (see [2]) by following its geodesics.

Finding the geodesics of a Riemannian manifold is not always easy, but Noether’s theorem will allow us to obtain quantities that are preserved along the geodesics, thus allowing, in the case of Gaussian distributions, one to obtain a first order differential equation satisfied by the geodesics, which makes their computation easier.

Although the geodesic IGO algorithm is not, strictly speaking, parametrization-invariant when no closed form for the geodesics is known, it is possible to compute them at arbitrary precision without increasing the numbers of objective function calls.

The first two sections are preliminaries: in Section 2, we recall the IGO algorithm, introduced in [1], and in Section 3, after a reminder about Riemannian geometry, we state Noether’s theorem, which will be our main tool to compute the GIGO update for Gaussian distributions.

In Section 4, we consider Gaussian distributions with a covariance matrix proportional to the identity matrix: this space is isometric to the hyperbolic space, and the geodesics of the latter are known.

In Section 5.1, we consider the general Gaussian case, and we use Noether’s theorem to obtain two different sets of equations to compute the GIGO update. The equations are known (see [4–6]), but the connection with Noether’s theorem has not been mentioned. We then give the explicit solution for these equations, from [5].

In Section 6, we recall quickly the xNES and CMA-ESupdates, and we introduce a slight modification of the IGO algorithm to incorporate the direction-dependent learning rates used in CMA-ESand xNES. We then compare these different algorithms and prove that xNES is not GIGO in general, and we finally introduce a new family of algorithms extending GIGO and recovering xNES from abstract principles.

Finally, Section 7 presents numerical experiments, which suggest that when using GIGO with Gaussian distributions, the step size must be chosen carefully.



2. Definitions: IGO, GIGO

In this section, we recall what the IGO framework is and we define the geodesic IGO update. Consider again Equation (1):



[image: there is no content]








As we saw in the Introduction:


	The gradient depends on the parametrization of our space of probability distributions (see Section 2.3 for an example).


	The equation is not invariant under monotone transformations of f. For example, the optimization for 10f moves ten times faster than the optimization for f.




In this section, we recall how IGO deals with this (see [1] for a better presentation).


2.1. Invariance under Reparametrization of θ: Fisher Metric

In order to achieve invariance under reparametrization of θ, it is possible to turn our family of probability distributions into a Riemannian manifold (this is the main topic of information geometry; see [2]), which allows us to use a canonical, parametrization-invariant gradient (called the natural gradient).

Definition 1. Let P, Q be two probability distributions on X. The Kullback–Leibler divergence of Q from P is defined by:



[image: there is no content]



(2)




By definition, it does not depend on the parametrization. It is not symmetrical, but if for all x, the application θ ⟼ Pθ(x) is C2, then a second-order expansion yields:



[image: there is no content]



(3)




where:


[image: there is no content]



(4)




This is enough to endow the family (Pθ)θ∈Θ with a Riemannian manifold structure: a Riemannian manifold M is a differentiable manifold, which can be seen as pieces of ℝn glued together, with a metric. The metric at x is a symmetric positive-definite quadratic form on the tangent space of M at x: it indicates how expensive it is to move in a given direction on the manifold. We will think of the updates of the algorithms that we will be studying as paths on M.

The matrix I(θ) is called the “Fisher information matrix”, and the metric it defines is called the “Fisher metric”.

Given a metric, it is possible to define a gradient attached to this metric; the key property of the gradient is that for any smooth function f:



[image: there is no content]



(5)




where [image: there is no content] is the dot product in metric I. Therefore, in order to keep the property of Equation (5), we must have [image: there is no content].
We have therefore the following gradient (called the “natural gradient”; see [2]):



[image: there is no content]



(6)




and since the Kullback–Leibler divergence does not depend on the parametrization, neither does the natural gradient.
Later in this paper, we will study families of Gaussian distributions. The following proposition gives the Fisher metric for these families.

Proposition 1. Let (Pθ)θ∈Θbe a family of normal probability distributions:[image: there is no content]If μ and Σ are C1, the Fisher metric is given by:



[image: there is no content]



(7)




Proof. This is a non-trivial calculation. See [7] or [8] for more details.

As we will often be working with Gaussian distributions, we introduce the following notation:

Notation 1. [image: there is no content]is the manifold of Gaussian distributions in dimension d, equipped with the Fisher metric.[image: there is no content]is the manifold of Gaussian distributions in dimension d, with the covariance matrix proportional to identity in the canonical basis of ℝd, equipped with the Fisher metric.



2.2. IGO Flow, IGO Algorithm

In IGO [1], invariance with respect to monotone transformations is achieved by replacing f by the following transform; we set:



[image: there is no content]



(8)




a non-increasing function w: [0; 1] → ℝ is chosen (the selection scheme), and finally, [image: there is no content] (this definition has to be slightly changed if the probability of a tie is not zero, see [1] for more details). By performing a gradient descent on [image: there is no content], we obtain the “IGO flow”:


[image: there is no content]



(9)




Notice that the function we are optimizing is [image: there is no content] and not [image: there is no content] (the second function is constant and always equal to [image: there is no content]). In particular, the function for which we are performing the gradient descent changes at each step, although their optimum (a Dirac at the minimum of f) does not: the IGO flow is not a gradient flow; it is simply a vector flow given by the gradient of interrelated functions.

For practical implementation, the integral in (9) has to be approximated. For the integral itself, the Monte-Carlo method is used; N values (x1, …, xN) are sampled from the distribution [image: there is no content], and the integral becomes:



[image: there is no content]



(10)




and we approximate [image: there is no content] by [image: there is no content], where rk(xi) = |{j, f(xj) < f(xi)}|: it can be proven (see [1]) that [image: there is no content] (here again, we are assuming that there are no ties).
We now have an algorithm that can be used in practice if the Fisher information matrix is known.

Definition 1. The IGO update associated with parametrization θ, sample size N, step size δt and selection scheme w is given by the following update rule:



[image: there is no content]



(11)




We call IGO speed the vector[image: there is no content]

Notice that one could start directly with the [image: there is no content] rather than w, as we will do later.

Replacing f by its expected value under a probability distribution Pθ and optimizing over θ using the natural gradient have already been discussed. For example, in the case of a function f defined on {0, 1}n, IGO with the Bernoulli distributions yields the algorithm, PBIL[9]. Another similar approach (stochastic relaxation) is given in [10]. For a continuous function, as we will see later, the IGO framework recovers several known ranked-based natural gradient algorithms, such as pure rank-μ CMA-ES [11], xNES or SNES (Separable Natural Evolution Strategies) [12]. See [13] or [14] for other, not necessarily gradient-based, optimization algorithms on manifolds.



2.3. Geodesic IGO

Although the IGO flow associated with a family of probability distributions is intrinsic (it only depends on the family itself, not the parametrization we choose for it), the IGO update is not. However, the difference between two steps of IGO that differ only by the parametrization is only O(δt2), whereas the different between two vanilla gradient descents with different parametrizations is O(δt).

Intuitively, the reason for this difference is that two IGO algorithms start at the same point and follow “straight lines” with the same initial speed, but the definition of “straight lines” changes with the parametrization.

For instance, in the case of Gaussian distributions, let us consider two different IGO updates with Gaussian distributions in dimension one, the first one with parametrization (μ, σ) and the second one with parametrization (μ, c := σ2). We suppose that the IGO speed for the first algorithm is [image: there is no content]. The corresponding IGO speed in the second parametrization is given by the identity [image: there is no content]. Therefore, the first algorithm gives the standard deviation [image: there is no content] and the variance [image: there is no content].

The geodesics of a Riemannian manifold are the generalization of the notion of a straight line: they are curves that locally minimize length. In particular, given two points a and b on the Riemannian manifold M, the shortest path from a to b is always a geodesic (the converse is not true, though). The notion will be explained precisely in Section 3, but let us define the geodesic IGO algorithm, which follows the geodesics of the manifold instead of following the straight lines for an arbitrary parametrization.

Definition 2 (GIGO). The geodesic IGO update (GIGO) associated with sample size N, step size δt and selection scheme w is given by the following update rule:



[image: there is no content]



(12)




where:


[image: there is no content]



(13)




is the IGO speed and[image: there is no content]is the exponential of the Riemannian manifold Θ. Namely, [image: there is no content]is the endpoint of the geodesic of Θ starting at θt, with initial speed Y, after a time δt. By definition, this update does not depend on the parametrization θ.
Notice that while the GIGO update is compatible with the IGO flow (in the sense that when δt → 0 and N → ∞, a parameter θt updated according to the GIGO algorithm is a solution of Equation (9), the equation defining the IGO flow), it not necessarily an IGO update. More precisely, the GIGO update is an IGO update if and only if the geodesics of Θ are straight lines for some parametrization (by Beltrami’s theorem, this is equivalent to Θ having constant curvature).

This is a particular case of a retraction [14]: a map from the tangent bundle of a manifold to the manifold itself satisfying a rigidity condition. Arguably, the Riemannian exponential is the most natural retraction, since it depends only on the Riemannian manifold itself and not on any decomposition. However, in general, the geodesics are difficult to compute.

In the next section, we will state Noether’s theorem, which will be our main tool to compute the GIGO update for Gaussian distributions.




3. Riemannian Geometry, Noether’s Theorem


3.1. Riemannian Geometry

The goal of this section is to state Noether’s theorem. See [15] for the proofs and [16] or [17] for a more detailed presentation. Noether’s theorem states that if a system has symmetries, then there are invariants attached to these symmetries. Firstly, we need some definitions.

Definition 3 (Motion in a Lagrangian system). Let M be a differentiable manifold, TM the set of tangent vectors on M (a tangent vector is identified by the point at which it is tangent and a vector in the tangent space) and[image: there is no content]differentiable function called the Lagrangian function (in general, it could depend on t). A “motion in the Lagrangian system (M, [image: there is no content]) from x to y” is map γ : [t0, t1] → M, such that:


	γ(t0) = x


	γ(t1) = y


	γ is a local extremum of the functional:



Φ(γ)=∫t0t1[image: there is no content](γ(t),γ˙(t))dt,



(14)




among all curves c: [t0, t1] → M, such that c(t0) = x, and c(t1) = y.




For example, when (M, g) is a Riemannian manifold, the length of a curve γ between γ(t0) and γ(t1) is:



[image: there is no content]



(15)




The curves that follow the shortest path between two points x, y ∈ M are therefore the minima γ of the functional (15), such that γ(t0) = x and γ(t1) = y, and the corresponding Lagrangian function is [image: there is no content]. However, any curve following the shortest trajectory will have minimum length. For example, if γ1: [a, b] → M is a curve of the shortest path, so is γ2: t ↦ γ1(t2): these two curves define the same trajectory in M, but they do not travel along this trajectory at the same speed. This leads us to the following definition:

Definition 4 (Geodesics). Let I be an interval of ℝ and (M, g) be a Riemannian manifold. A curve γ: I → M is called a geodesic if for all[image: there is no content]is a motion in the Lagrangian system (M, [image: there is no content]) from γ(t0) to γ(t1), where:



[image: there is no content](γ)=∫t0t1g(γ˙(t),γ˙(t))dt



(16)




It can be shown (see [16]) that geodesics are curves that locally minimize length, with constant velocity, in the sense that [image: there is no content]. In particular, given a starting point and a starting speed, the geodesic is unique. This motivates the definition of the exponential of a Riemannian manifold.

Definition 5. Let (M, g) be a Riemannian manifold. We call the exponential of M the application:



[image: there is no content]








such that for any x ∈ M, if γ is the geodesic of M satisfying γ(0) = x and γ′(0) = v, then expx(v) = γ(1).
In order to find an extremal of a functional, the most commonly-used result is called the “Euler–Lagrange equations” (see [15], for example); a motion γ in the Lagrangian system (M, [image: there is no content]) must satisfy:



∂[image: there is no content]∂x(γ(t))−ddt(∂[image: there is no content]∂x˙(γ˙(t)))=0.



(17)




By applying this equation with the Lagrangian given by (16), it is possible to show that the geodesics of a Riemannian manifold follow the “geodesic equations”:



[image: there is no content]



(18)




where the


[image: there is no content]



(19)




are called “Christoffel symbols” of the metric g. However, these coefficients are tedious (and sometimes difficult) to compute, and (18) is a second order differential equation. Noether’s theorem will give us a first order equation to compute the geodesics.


3.2. Noether’s Theorem

Definition 6. Let h: M → M, a diffeomorphism. We say that the Lagrangian system (M, [image: there is no content]) admits the symmetry h if for any (q, v) ∈ TM,



[image: there is no content](h(q),dh(v))=[image: there is no content](q,v),



(20)




where dh is the differential of h.
If M is clear in the context, we will sometimes say that [image: there is no content]is invariant under h.

An example will be given in the proof of Theorem 3.

We can now state Noether’s theorem (see, for example, [15]).

Theorem 1 (Noether’s Theorem). If the Lagrangian system (M, [image: there is no content]) admits the one-parameter group of symmetries hs: M → M, s ∈ ℝ, then the following quantity remains constant during motions in the system (M, [image: there is no content]). Namely,



I(γ(t),γ˙(t))=∂[image: there is no content]∂v(dhs(γ(t))ds|s=0)



(21)




does not depend on t if γ is a motion in (M, [image: there is no content]).
Now, we are going to apply this theorem to our problem: computing the geodesics of Riemannian manifolds of Gaussian distributions.




4. GIGO in [image: there is no content]

If we force the covariance matrix to be either diagonal or proportional to the identity matrix, the geodesics have a simple expression that we give below. In the former case, the manifold we are considering is [image: there is no content], and in the latter case, it is [image: there is no content].

The geodesics of [image: there is no content] are given by:

Proposition 2. Let M be a Riemannian manifold; let d ∈ ℕ; let Φ be the Riemannian exponential of Md; and let φ be the Riemannian exponential of M. We have:



[image: there is no content]



(22)




In particular, knowing the geodesics of[image: there is no content]is enough to compute the geodesics of[image: there is no content].

This is true, because a block of the product metric does not depend on variables of the other blocks. Consequently, a GIGO update with a diagonal covariance matrix with the sample (xi) is equivalent to d separate one-dimensional GIGO updates using the same samples. Moreover, [image: there is no content], the geodesics of which are given below.

We will show that [image: there is no content] and the “hyperbolic space”, of which the geodesics are known, are isometric.


4.1. Preliminaries: Poincaré Half-Plane, Hyperbolic Space

In dimension two, the hyperbolic space is called the “hyperbolic plane” or the Poincaré half-plane. We recall its definition:

Definition 7 (Poincaré half-plane). We call the “Poincaré half-plane” the Riemannian manifold:



[image: there is no content]








with the metric[image: there is no content].
We also recall the expression of its geodesics (see, for example, [18]):

Proposition 3 (Geodesics of the Poincaré half-plane). The geodesics of the Poincaré half-plane are exactly the:



[image: there is no content]








where:


[image: there is no content]



(23)




with ad − bc = 1 and v > 0.
The geodesics are half-circles perpendicular to the line y = 0 and vertical lines, as shown in Figure 1 below.

Figure 1. Geodesics of the Poincaré half-plane.



[image: Entropy 17 00304f1 1024]





The generalization to the higher dimension is the following:

Definition 8 (Hyperbolic space). We call the “hyperbolic space of dimension n” the Riemannian manifold:



[image: there is no content]








with the metric[image: there is no content](or equivalently, the metric given by the matrix[image: there is no content]).
The Lagrangian for the geodesics is invariant under all translations along the xi, so by Noether’s theorem, its geodesics stay in a plane containing the direction y and the initial speed. The induced metric on this plane is the metric of the Poincaré half-plane. The geodesics are therefore given by the following proposition:

Proposition 4 (Geodesics of the hyperbolic space). If γ : t ⟼ (x1(t), …, xn−1(t), y(t)) = (x(t), y(t)) is a geodesic of [image: there is no content]n, then there exists a, b, c, d ∈ ℝ, such that ad − bc = 1, and v > 0, such that[image: there is no content], with[image: there is no content]and:



[image: there is no content]



(24)






4.2. Computing the GIGO Update in [image: there is no content]

If we want to implement the GIGO algorithm in [image: there is no content], we need to compute the natural gradient in [image: there is no content] and to be able to compute the Riemannian exponential of [image: there is no content].

Using Proposition 1, we can compute the metric of [image: there is no content] in the parametrization (μ, σ) ⟼ N(μ, σ2I). We find:



[image: there is no content]



(25)




Since this matrix is diagonal, it is easy to invert, and we immediately have the natural gradient and, consequently, the IGO speed.

Proposition 5. In[image: there is no content], the IGO speed Y is given by:



[image: there is no content]



(26)






[image: there is no content]



(27)




Proof. We recall the IGO speed is defined by [image: there is no content]. Since [image: there is no content], we have:



[image: there is no content]








The result follows. □

The metric defined by Equation (25) is not exactly the metric of the hyperbolic space, but with the substitution [image: there is no content], the metric becomes [image: there is no content], which is proportional to the metric of the hyperbolic space and, therefore, defines the same geodesics.

Theorem 2 (Geodesics of [image: there is no content]). If[image: there is no content]is a geodesic of[image: there is no content], then there exists a, b, c, d ∈ ℝ, such that ad − bc = 1, and v > 0, such that:[image: there is no content], with[image: there is no content]and



[image: there is no content]



(28)




Now, in order to implement the corresponding GIGO algorithm, we only need to be able to find the coefficients a, b, c, d, v corresponding to an initial position (μ0, σ0) and an initial speed [image: there is no content]. This is a tedious but easy computation, the result of which is given in Proposition 17.

The pseudocode of GIGO in [image: there is no content] is also given in the Appendix: it is obtained by concatenating Algorithms 1 and 7 (Proposition 17 and the pseudocode in the Appendix allow the metric to be slightly modified; see Section 6.2).

Algorithm 1. For all algorithms.


	[image: Entropy 17 00304f12]











5. GIGO in [image: there is no content]


5.1. Obtaining a First Order Differential Equation for the Geodesics of [image: there is no content]

In the case where both the covariance matrix and the mean can vary freely, the equations of the geodesics have been computed in [4] and [5]. However, these articles start with the equations of the geodesics obtained with the Christoffel symbols, then partially integrate them. These equations are in fact a consequence of Noether’s theorem and can be found directly.

Theorem 3. Let[image: there is no content]be a geodesic of[image: there is no content]. Then, the following quantities do not depend on t:



[image: there is no content]



(29)






[image: there is no content]



(30)




Proof. This is a direct application of Noether’s theorem, with suitable groups of diffeomorphisms. By Proposition 1, the Lagrangian associated with the geodesics of [image: there is no content] is:



[image: there is no content]



(31)




Its derivative is:



∂[image: there is no content]∂θ˙=[(h,H)↦2μ˙T∑−1h+tr(H∑−1∑˙∑−1)]



(32)




Let us show that this Lagrangian is invariant under affine changes of basis (thus illustrating Definition 6).

The general form of an affine change of basis is ϕμ0,A : (μ, Σ) ⟼ (Aμ + μ0, AΣAT ), with μ0∈ ℝd and A ∈ GLd(ℝ).

We have:



[image: there is no content]



(33)




and since [image: there is no content] and, [image: there is no content] we find easily that:


[image: there is no content](ϕμ0,A(μ,Σ),dϕμ0,A(μ˙,[image: there is no content]))=[image: there is no content](μ,Σ,μ˙,[image: there is no content]),



(34)




or in other words: [image: there is no content] is invariant under ϕμ0,A for any μ0∈ ℝd, A ∈ GLd(ℝ).
In order to use Noether’s theorem, we also need one-parameter groups of transformations. We choose the following:


	Translations of the mean vector. For any i ∈ [1, d], lethis:(μ,Σ)↦(μ+sei,Σ), where ei is the i-th basis vector. We have [image: there is no content], so by Noether’s theorem,



∂[image: there is no content]∂θ˙(ei,0)=2μ˙TΣ−1ei=2eiTΣ−1μ˙








remains constant for all i. The fact that Jμ is an invariant immediately follows.


	Linear base changes. For any i, j ∈ [1, d], lethi,js:(μ,Σ)↦(exp(sEij)μ,exp(sEij)Σexp(sEij)),, where Eij is the matrix with a one at position (i, j) and zeros elsewhere. We have:



[image: there is no content]











Therefore, by Noether’s theorem, we then obtain the following invariants:



Jij:=∂[image: there is no content]∂θ˙(Eijμ,EijΣ+EΣij)



(35)






[image: there is no content]



(36)






[image: there is no content]



(37)






[image: there is no content]



(38)




and the coefficients of JΣ in (30) are the (Jij/2).
This leads us to first order equations satisfied by the geodesics mentioned in [4–6].

Theorem 4 (GIGO-Σ). t7↦[image: there is no content](μt,Σt)is a geodesic of[image: there is no content]if and only if μ : t 7↦μt and Σ : t ↦Σt satisfy the equations:



[image: there is no content]



(39)






[image: there is no content]



(40)




where:


Jμ=∑0−1μ˙0,








and:


[image: there is no content]








Proof. This is an immediate consequence of Proposition 3.

These equations can be solved analytically (see [5]); however, usually, that is not the case, and they have to be solved numerically, for example with the Euler method (the corresponding algorithm, which we call GIGO-Σ, is described in the Appendix). The goal of the remainder of the subsection is to show that having to use the Euler method is fine.

To avoid confusion, we will call the step size of the GIGO algorithm (δt in Proposition 2) “GIGO step size” and the step size of the Euler method (inside a step of the GIGO algorithm) “Euler step size”.

Having to solve our equations numerically brings two problems:

The first one is a theoretical problem: the main reason to study GIGO is its invariance under reparametrization of θ, and we lose this invariance property when we use the Euler method. However, GIGO can get arbitrarily close to invariance by decreasing the Euler step size. In other words, the difference between two different IGO algorithms is O(δt2), and the difference between two different implementations of the GIGO algorithm is O(h2), where h is the Euler step size; it is easier to reduce the latter. Still, without a closed form for the geodesics of [image: there is no content], the GIGO update is rather expensive to compute, but it can be argued that most of the computation time will still be the computation of the objective function f.

The second problem is purely numerical: we cannot guarantee that the covariance matrix remains positive-definite along the Euler method. Here, apart from finding a closed form for the geodesics, we have two solutions.

We can enforce this a posteriori: if the covariance matrix we find is not positive-definite after a GIGO step, we repeat the failed GIGO step with a reduced Euler step size (in our implementation, we divided it by four; see Algorithm 2 in the Appendix.).

Algorithm 2. GIGO Update, one step, updating the covariance matrix.
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The other solution is to obtain differential equations on a square root of the covariance matrix (any matrix A, such that Σ = AAT ).

Theorem 5 (GIGO-A). If μ : t ↦μt and A : t ↦At satisfy the equations:



[image: there is no content]



(41)






[image: there is no content]



(42)




where:


[image: there is no content]








and:


[image: there is no content]








then[image: there is no content]is a geodesic of[image: there is no content].
Proof. This is a simple rewriting of Theorem 4: if we write Σ := AAT, we find that Jμ and JΣ are the same as in Theorem 4, and we have:



[image: there is no content]








and:


[image: there is no content]








By Theorem 4, Σ(JΣ− JμμT) is symmetric (since [image: there is no content] has to be symmetric). Therefore, we have [image: there is no content](JΣ−JμμT), and the result follows. □

Notice that Theorem 5 gives an equivalence, whereas Theorem 4 does not. The reason is that the square root of a symmetric positive-definite matrix is not unique. Still, it is canonical; see the discussion in Section 6.1.2.

As for Theorem 4, we can solve Equations (41) and (42) numerically, and we obtain another algorithm (Algorithm 3 in the Appendix; we will call it GIGO-A), with a behavior similar to the previous one (with Equations (39) and (40)). For both of them, numerical problems can arise when the covariance matrix is almost singular.

Algorithm 3. GIGO Update, one step, updating a square root of the covariance matrix.
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We have not managed to find any example where one of these two algorithms converged to the minimum of the objective function, whereas the other did not, and their behavior is almost the same.

More interestingly, the performances of these two algorithms are also the same as the performances of the exact GIGO algorithm, using the equations of Section 5.2.

Notice that even though GIGO-A directly maintains a square root of the covariance matrix, which makes sampling new points easier (to sample a point from [image: there is no content], a square root of Σ is needed), both GIGO-Σ and GIGO-A still have to invert the covariance matrix (or its square root) at each step, which is as costly as the decomposition, so one of these algorithms is roughly as expensive to compute as the other.



5.2. Explicit Form of the Geodesics of [image: there is no content] (from [5])

We now give the exact geodesics of [image: there is no content]: the following results are a rewriting of Theorem 3.1 and its first corollary in [5].

Theorem 6. Let(μ˙0,[image: there is no content]0)∈T[image: there is no content](0,I)Gd. The geodesic of[image: there is no content]starting from[image: there is no content]with initial speed(μ˙0,[image: there is no content]0)is given by:



exp[image: there is no content](sμ˙0,s[image: there is no content]0)=[image: there is no content](2R(s)sh(sG2)G−μ˙0,R(s)R(s)T),



(43)




where exp is the Riemannian exponential of[image: there is no content], G is any matrix satisfying:


G2=[image: there is no content]02+2μ˙0μ˙0T,



(44)






R(s)=((ch(sG2)−[image: there is no content]0G−sh(sG2))−1)T



(45)




and G− is a pseudo-inverse of G
In [5], the existence of G (as a square root of [image: there is no content]02+2μ˙0μ˙0T) is proven. Notice that, anyway, in the expansions of (43) and (45), only even powers of G appear.

Additionally, since, for all A ∈ GLd(ℝ), for all μ0 ∈ ℝd, the application:



ϕ:Gd→Gd[image: there is no content](μ,Σ)↦[image: there is no content](Aμ+μ0,AΣAT)



(46)




preserves the geodesics, we find the general expression for the geodesics of [image: there is no content].
Corollary 1. Let μ0 ∈ ℝd, A ∈ GLd(ℝ) and(μ˙0,[image: there is no content]0)∈T[image: there is no content](μ0.,A0A0T)Gd. The geodesic of[image: there is no content]starting from[image: there is no content]with initial speed(μ˙0,[image: there is no content]0)is given by:



exp[image: there is no content](μ0,A0A0T)(sμ˙0,s[image: there is no content]0)=[image: there is no content](μ1,A1A1T),



(47)






[image: there is no content]



(48)






[image: there is no content]



(49)




where exp is the Riemannian exponential of[image: there is no content], G is any matrix satisfying:


G2=A0−1([image: there is no content]0Σ0−1[image: there is no content]0+2μ˙0μ˙0T)(A0−1)T,



(50)






R(s)=((ch(sG2)−A0−1[image: there is no content]0(A0−1)TG−sh(sG2))−1)T,



(51)




and G− is a pseudo-inverse of G.
It should be noted that the final values for mean and covariance do not depend on the choice of G as a square root of:



A0−1([image: there is no content]0Σ0−1[image: there is no content]0+2μ˙0μ˙0T)(A0−1)T.








The reason for this is that ch(G) is a Taylor series in G2, and so are sh(G)G− and G−sh(G).

For our practical implementation, we actually used these Taylor series instead of the expression of the corollary




6. Comparing GIGO, xNES and Pure Rank-μ CMA-ES


6.1. Definitions

In this section, we recall the xNES and pure rank-μ CMA-ES, and we describe them in the IGO framework, thus allowing a reasonable comparison with the GIGO algorithms.


6.1.1. xNES

We recall a restriction of the xNES algorithm, introduced in [19] (this restriction is sufficient to describe the numerical experiments in [19]).

Definition 9 (xNES algorithm). The xNES algorithm with sample size N, weights wi and learning rates ημ and ηΣupdates the parameters μ ∈ ℝd, A ∈ Md(ℝ) with the following rule: At each step, N points x1, …, xN are sampled from the distribution.[image: there is no content]. Without loss of generality, we assume f(x1) < … < f(xN). The parameter is updated according to:



[image: there is no content]








where, setting zi = A−1(xi − μ):


[image: there is no content]








The more general version decomposes the matrix A as σB, where det B = 1, and uses two different learning rates for σ and for B. We gave the version where these two learning rates are equal (in particular, for the default parameters in [19], these two learning rates are equal). This restriction of the xNES algorithm can be described in the IGO framework, provided all of the learning rates are equal (most of the elements of the proof can be found in [19] (the proposition below essentially states that xNES is a natural gradient update) or in [1]):

Proposition 6 (xNES as IGO). The xNES algorithm with sample size N, weights wi and learning rates ημ = ηΣ = δt coincides with the IGO algorithm with sample size N, weights wi, step size δt and in which, given the current position (μt, At), the set of Gaussians is parametrized by:



[image: there is no content]








with δ ∈ ℝm and M ∈ Sym(ℝm).
The parameters maintained by the algorithm are (μ, A), and the xi are sampled from[image: there is no content].

Proof. Let us compute the IGO update in the parametrization [image: there is no content]: we have δt = 0, Mt = 0, and by using Proposition 1, we can see that for this parametrization, the Fisher information matrix at (0, 0) is the identity matrix. The IGO update is therefore,



[image: there is no content]








where:
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and:


[image: there is no content]








Since tr(M) = log(det(exp(M))), we have:



lnPδ,M(x)=−d2ln(2π)−ln(detA)−12trM−12‖exp(−12M)A−1(x−μ−Aδ)||2,








and a straightforward computation yields:
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and:
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Therefore, the IGO update is:



[image: there is no content]








or, in terms of mean and covariance matrix:


[image: there is no content]








or:


[image: there is no content]








This is the xNES update. □



6.1.2. Using a Square Root of the Covariance Matrix

Firstly, we recall that the IGO framework (on [image: there is no content], for example) emphasizes the Riemannian manifold structure on [image: there is no content]. All of the algorithms studied here (including GIGO, which is not strictly speaking an IGO algorithm) define a trajectory in [image: there is no content] (a new point for each step), and to go from a point θ to the next one (θ′), we follow some curve [image: there is no content], with γ(0) = θ, γ(δt) = θ′ and [image: there is no content] given by the natural gradient [image: there is no content].

To be compatible with this point of view, an algorithm giving an update rule for a square root (any matrix A such that Σ = AAT: since we do not force A to be symmetric, the decomposition is not unique) of the covariance matrix A has to satisfy the following condition: for a given initial speed, the covariance matrix Σt+δt after one step must depend only on Σt and not on the square root At chosen for Σt.

The xNES algorithm does satisfy this condition: consider two xNES algorithms, with the same learning rates, respectively, at [image: there is no content] and [image: there is no content], with [image: there is no content] (i.e., they define the same Σt), using the same samples xi to compute the natural gradient update, then we will have ∑1t+δt=∑2t+δt. Using the definitions of Section 6.3, we have just shown that what we will call the “xNES trajectory” is well defined.

It is also important to notice that, in order to be well defined, a natural gradient algorithm updating a square root of the covariance matrix has to specify more conditions than simply following the natural gradient.

The reason for this is that the natural gradient is a vector tangent to [image: there is no content]: it lives in a space of dimension d(d + 3)/2 (the dimension of [image: there is no content]), whereas the vector (μ, A) lives in a space of dimension d(d + 1) (the dimension of ℝn × GLn(ℝ)), which is too large: there exists infinitely many applications t ↦At, such that a given curve [image: there is no content] can be written [image: there is no content]. This is why Theorem 5 is simply an implication, whereas Theorem 4 is an equivalence.

More precisely, let us consider A in GLd(ℝ) and vA, [image: there is no content] two infinitesimal updates of A. Since Σ = AAT, the infinitesimal update of Σ corresponding to [image: there is no content] (resp. [image: there is no content]) is [image: there is no content] (resp. [image: there is no content]

It is now easy to see that vA and vA′ define the same direction for Σ (i.e., vΣ=vΣ′) if and only if AMT + MAT = 0, where M=vA−vA′. This is equivalent to A−1M antisymmetric.

For any A ∈ Md(ℝ), let us denote by TA the space of the matrices M, such that A−1M is antisymmetric or, in other words, TA := {u ∈ Md(ℝ), AuT + uAT = 0}. Having a subspace SA in direct sum with TA for all A is sufficient (but not necessary) to have a well-defined update rule. Namely, consider the (linear) application:



[image: there is no content]








sending an infinitesimal update of A to the corresponding update of Σ. It is not bijective, but as we have seen before, Ker ϕA = TA, and therefore, if we have, for some UA,


[image: there is no content]



(52)




then φA|UA is an isomorphism. Let vΣ be an infinitesimal update of Σ. We choose the following update of A corresponding to vΣ:


[image: there is no content]



(53)




Any UA, such that UA ⊕ TA = Md(ℝ), is a reasonable choice to pick vA for a given vΣ. The choice SA = {u ∈ Md(ℝ), AuT − uAT = 0} has an interesting additional property; it is the orthogonal of TA for the norm:



[image: there is no content]



(54)




and consequently, it can be defined without referring to the parametrization, which makes it a canonical choice. To prove this, remark that TA = {M ∈ Md(ℝ), A−1M antisymmetric} and SA = {M ∈ Md(ℝ), A−1M symmetric} and that if M is symmetric and N is antisymmetric, then


[image: there is no content]



(55)




Let us now show that this is the choice made by xNES and GIGO-A (which are well-defined algorithms updating a square root of the covariance matrix).

Proposition 7. Let A ∈ Mn(ℝ). The vA given by the xNES and GIGO-A algorithms lies in SA = {u ∈ Md(ℝ), AuT − uAT = 0} = SA.

Proof. For xNES, let us write [image: there is no content] and [image: there is no content]. We have [image: there is no content], and therefore, forcing M (and GM) to be symmetric in xNES is equivalent to A−1υA = (A−1υA)T, which can be rewritten as [image: there is no content]. For GIGO-A, Equation (40) shows that [image: there is no content] is symmetric, and with this fact in mind, Equation (42) shows that we have AυAT=υAAT(υAisA˙t). □



6.1.3. Pure Rank-μ CMA-ES

We now recall the pure rank-μ CMA-ES algorithm. The general CMA-ES algorithm is described in [21].

Definition 10 (Pure rank-μ CMA-ES algorithm). The pure rank-μ CMA-ES algorithm with sample size N, weights wi and learning rates ημ and ηΣis defined by the following update rule: At each step, N points x1, …, xN are sampled from the distribution[image: there is no content]. Without loss of generality, we assume f)x1) < … < f(xN). The parameter is updated according to:



[image: there is no content]










[image: there is no content]








The pure rank-μ CMA-ES can also be described in the IGO framework; see, for example, [20].

Proposition 8 (Pure rank-μ CMA-ES as IGO). The pure rank-μ CMA-ES algorithm with sample size N, weights wi and learning rates ημ = ηΣ = δt coincides with the IGO algorithm with sample size N, weights wi, step size δt and the parametrization (μ, Σ).




6.2. Twisting the Metric

As we can see, the IGO framework does not allow one to recover the learning rates for xNES and pure rank-μ CMA-ES, which is a problem, since usually, the covariance learning rate is set much smaller than the mean learning rate (see either [19] or [21]).

A way to recover these learning rates is to incorporate them directly into the metric (see also blockwise GIGO, in Section 6.4). More precisely:

Definition 11 (Twisted Fisher metric). Let ημ, ηΣ ∈ ℝ, and let (Pθ)θ∈Θbe a family of normal probability distributions: Pθ = N (μ(θ), Σ(θ)), with μ and Σ C1. We call the “(ημ, ηΣ)-twisted Fisher metric” the metric defined by:



[image: there is no content]



(56)




All of the remainder of this section is simply a rewriting of the work in Section 2 with the twisted Fisher metric instead of the regular Fisher metric. We will use the term “twisted geodesic” instead of “geodesic for the twisted metric”.

This approach seems to be somewhat arbitrary: arguably, the mean and the covariance play a “different role” in the definition of a Gaussian (only the covariance can affect diversity, for example), but we lack a reasonable intrinsic characterization that would make this choice of twisting more natural. This construction can be slightly generalized (see the Appendix).

The IGO flow and the IGO algorithms can be modified to take into account the twisting of the metric; the (ημ, ηΣ)-twisted IGO flow reads:



[image: there is no content]



(57)




The only difference with (9) is that I−1(θ) has been replaced by I(ημ, ηΣ)−1(θ).

This leads us to the twisted IGO algorithms.

Definition 12. The (ημ, ηΣ)-twisted IGO algorithm associated with parametrization θ, sample size N, step size δt and selection scheme w is given by the following update rule:



θt+δt=θt+δtI(ημ,ηΣ)−1(θt)∑i=1N[image: there is no content]∂lnPθ(xi)∂θ.








Definition 13. The (ημ, ηΣ)-twisted geodesic IGO algorithm associated with sample size N, step size δt and selection scheme w is given by the following update rule:



[image: there is no content]



(58)




where:


[image: there is no content]



(59)




By definition, the twisted geodesic IGO algorithm does not depend on the parametrization (but it does depend on ημ and ηΣ).

There is some redundancy between δt, ημ and ηΣ: the only values actually appearing in the equations are δtημ and δtηΣ. More formally:

Proposition 9. Let k, d, N ∈ N, ημ, ηΣ, δt, λ1, λ2 ∈ ℝ and w : [0; 1] → ℝ.

The (ημ, ηΣ)-twisted IGO algorithm with sample size N, step size δt and selection scheme w coincides with the (λ1ημ, λ1ηΣ)-twisted IGO algorithm with sample size N, step size λ2δt and selection scheme[image: there is no content]. The same is true for geodesic IGO.

In order to obtain the twisted algorithms, the Fisher metric in IGO has to be replaced by the metric from Definition 11. In practice, the equations found by twisting the metric are exactly the equations without twisting, except that we have “forced” the learning rates ημ, ηΣ to appear by multiplying the increments of μ and Σ by ημ and ηΣ.

We can now describe pure rank-μ CMA-ES and xNES with separate learning rates as twisted IGO algorithms:

Proposition 10 (xNES as IGO). The xNES algorithm with sample size N, weights wi and learning rates ημ, ησ = ηB = ηΣcoincides with the[image: there is no content], [image: there is no content]-twisted IGO algorithm with sample size N, weights wi, step size δt and in which, given the current position (μt, At), the set of Gaussians is parametrized by:



[image: there is no content]








with δ ∈ ℝm and M ∈ Sym(ℝm).
The parameters maintained by the algorithm are (μ, A), and the xi are sampled from N (μ, AAT).

Proposition 11 (Pure rank-μ CMA-ES as IGO). The pure rank-μ CMA-ES algorithm with sample size N, weights wi and learning rates ημ and ηΣcoincides with the[image: there is no content]-twisted IGO algorithm with sample size N, weights wi, step size δt and the parametrization (μ, Σ).

The proofs of these two statements are an easy rewriting of their non-twisted counterparts: one can return to the non-twisted metric (up to a ηΣ factor) by changing μ to [image: there is no content].

We give the equations of the twisted geodesics of [image: there is no content] in the Appendix.



6.3. Trajectories of Different IGO Steps

As we have seen, two different IGO algorithms (or an IGO algorithm and the GIGO algorithm) coincide at first order in δt when δt → 0. In this section, we study the differences between pure rank-μ CMA-ES, xNES and GIGO by looking at the second order in δt, and in particular, we show that xNES and GIGO do not coincide in the general case.

We view the updates done by one step of the algorithms as paths on the manifold [image: there is no content], from (μ(t), Σ(t)) to (μ(t + δt), Σ(t + δt)), where δt is the time step of our algorithms, seen as IGO algorithms. More formally:

Definition 14. (1) We call the GIGO update trajectory the application:



[image: there is no content]








(exp is the exponential of the Riemannian manifold[image: there is no content])

(2) We call the xNES update trajectory the application:



[image: there is no content]








with AAT = Σ. The application above does not depend on the choice of a square root A.
(3) We call the CMA-ES update trajectory the application:



[image: there is no content]








These applications map the set of tangent vectors to[image: there is no content]([image: there is no content]to the curves in[image: there is no content].

We will also use the following notation: μGIGO := ϕμ○TGIGO, μxNES := ϕμ○TxNES, μCMA := ϕμ○TCMA, ΣGIGO := ϕΣ ○ TGIGO, ΣxNES := ϕΣ ○ TxNES and ΣCMA := ϕΣ ○ TCMA, where ϕμ (resp. ϕΣ) extracts the μ-component (resp. the Σ-component) of a curve.

In particular, Im(ϕμ) ⊂ ℝd and Im(ϕΣ) ⊂ Pd, where Pd (the set of real symmetric positive-definitematrices of dimension d) is seen as a subset of ℝd2.

For instance, TGIGO(μ, Σ, vμ, vΣ)(δt) gives the position (mean and covariance matrix) of the GIGO algorithm after a step of size δt, while μGIGO and ΣGIGO give, respectively, the mean component and the covariance component of this position.

This formulation ensures that the trajectories we are comparing had the same initial position and the same initial speed, which is the case provided the sampled points (the values directly sampled from [image: there is no content], not from [image: there is no content] and transformed) are the same.

Different IGO algorithms coincide at first order in δt. The following proposition gives the second order expansion of the trajectories of the algorithms.

Proposition 12 (Second derivatives of the trajectories). We have:



[image: there is no content]








Proof. We can immediately see that the second derivatives of μxNES, μCMA and ΣCMA are zero. Next, we have:



ΣxNES(μ,Σ,vμ,vΣ)(t)=Aexp[tA−1ηΣvΣ(A−1)T]AT=AAT+tηΣvΣ+t22ηΣ2vΣ(A−1)TA−1vΣ+o(t2)=Σ+tηΣvΣ+t22ηΣ2vΣΣ−1vΣ+o(t2).








The expression of ΣxNES(μ, Σ, vμ, vΣ)″(0) follows.

Now, for GIGO, let us consider the geodesic starting at (μ0, Σ0) with initial speed (ημvμ, ηΣvΣ). By writing Jμ(0) = Jμ(t), we find [image: there is no content]. We then easily have μ¨(0)=[image: there is no content]0Σ0−1μ˙0 In other words:



[image: there is no content]








Finally, by using Theorem 4 and differentiating, we find:



Σ¨=ηΣ[image: there is no content](JΣ−JμμT)−ηΣΣJμμ˙T,Σ¨0=ηΣ[image: there is no content]01ηΣΣ0−1[image: there is no content]0−ηΣημμ˙0μ˙0T=ηΣ2vΣΣ0−1vΣ−ηΣημvμvμT.








In order to interpret these results, we will look at what happens in dimension one. In higher dimensions, we can suppose that the algorithms exhibit a similar behavior, but an exact interpretation is more difficult for GIGO in [image: there is no content].


	In [19], it has been noted that xNES converges to quadratic minima slower than CMA-ES and that it is less subject to premature convergence. That fact can be explained by observing that the mean update is exactly the same for CMA-ES and xNES, whereas xNES tends to have a higher variance (Proposition 12 shows this at order two, and it is easy to see that in dimension one, for any μ, Σ, vμ, vΣ, we have ΣxNES(μ, Σ, vμ, vΣ) > ΣCMA(μ, Σ, vμ, vΣ)).


	At order two, GIGO moves the mean faster than xNES and CMA-ES if the standard deviation is increasing and more slowly if it is decreasing. This seems to be a reasonable behavior (if the covariance is decreasing, then the algorithm is presumably close to a minimum, and it should not leave the area too quickly). This remark holds only for isolated steps, because we do not take into account the evolution of the variance.


	The geodesics of [image: there is no content] are half-circles (see Figure 2 below; we recall that [image: there is no content] is the Poincaré half-plane). Consequently, if the mean is supposed to move (which always happens), then σ → 0 when δt → ∞. For example, a step whose initial speed has no component on the standard deviation will always decrease it. See also Proposition 15, about the optimization of a linear function.

Figure 2. One step of the geodesic IGO (GIGO) update.
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	For the same reason, for a given initial speed, the update of μ always stays bounded as a function of δt: it is not possible to make one step of the GIGO algorithm go further than a fixed point by increasing δt. Still, the geodesic followed by GIGO changes at each step, so the mean of the overall algorithm is not bounded.




We now show that xNES follows the geodesics of [image: there is no content] if the mean is fixed, but that xNES and GIGO do not coincide otherwise.

Proposition 13 (xNES is not GIGO in the general case). Let μ, vμ ∈ ℝd, A ∈ GLd, vΣ ∈ Md.

Then, the GIGO and xNES updates starting at[image: there is no content]with initial speeds vμ and vΣfollow the same trajectory if and only if the mean remains constant. In other words:



TGIGO(μ,Σ,vμ,vΣ)=TxNES(μ,Σ,vμ,vΣ)ifandonlyifvμ=0.








Proof. If vμ = 0, then we can compute the GIGO update by using Theorem 4: since Jμ = 0, [image: there is no content], and μ remains constant. Now, we have JΣ=Σ−1[image: there is no content]; this is enough information to compute the update. Since this quantity is also preserved by the xNES algorithm (see, for example, the proof of Proposition 14), the two updates coincide.

Figure 2. One step of the geodesic IGO (GIGO) update.

If vμ ≠ 0, then [image: there is no content] and, in particular, TGIGO(μ, Σ, vμ, vΣ) ≠ TxNES(μ, Σ, vμ, vΣ).



6.4. Blockwise GIGO

Although xNES is not GIGO, it is possible to define a family of algorithms extending GIGO and including xNES, by decomposing our family of probability distributions as a product and by following the restricted geodesics simultaneously.

Definition 15 (Splitting). Let Θ be a Riemannian manifold. A splitting of Θ is n manifolds Θ1, …, Θn and a diffeomorphism Θ ≅ Θ1× … × Θn. If for all x ∈ Θ, for all 1 ≤ i < j ≤ n, we also have Ti,xM ⊥ Tj,xM as subspaces of TxM (see Notation 2), then the splitting is said to be compatible with the Riemannian structure. If the Riemannian manifold is not ambiguous, we will simply write a “compatible splitting”.

We now give some notation, and we define the blockwise GIGO update:

Notation 2. Let Θ be a Riemannian manifold, Θ1, …, Θn a splitting of Θ, θ = (θ1, …, θn) ∈ Θ, Y ∈ TθΘ and 1 ≤ i ≤ n.


	We denote by Θθ,i the Riemannian manifold



[image: there is no content]








with the metric induced from Θ. There is a canonical isomorphism of vector spaces[image: there is no content]. Moreover, if the splitting is compatible, it is an isomorphism of Euclidean spaces.


	We denote by Φθ,i the exponential at θ of the manifold Θθ,i.




Definition 16 (Blockwise GIGO update). Let Θ1, …, Θn be a compatible splitting. The blockwise GIGO algorithm in Θ with splitting Θ1, …, Θn associated with sample size N, step sizes δt1, …, δtn and selection scheme w is given by the following update rule:



[image: there is no content]



(60)




where:


[image: there is no content]
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[image: there is no content]



(62)




with Yk the TΘθ,k-component of Y. This update only depends on the splitting (and not on the parametrization inside each Θk).
The compatibility condition ensures that the natural gradient of [image: there is no content] (defined in Section 2.2) in the whole manifold Θ really is the sum of the gradients of this same function in the submanifolds Θk. A practical consequence is that the Yk in Equation (62) can be computed simply by taking the natural gradient in Θk:



[image: there is no content]



(63)




where Ik is the metric of Θk.
Since blockwise GIGO only depends on the splitting (and the tunable parameters: sample size, step sizes and selection scheme), it can be thought of as almost parametrization-invariant.

Notice that blockwise GIGO updates and twisted GIGO updates are two different things: firstly, blockwise GIGO can be defined on any manifold with a compatible splitting, whereas twisted GIGO (and twisted IGO) are only defined for Gaussians. However, even in [image: there is no content], with the splitting (μ, Σ), these two algorithms are different: for instance, if ημ = ηΣ and δt = 1, then the twisted GIGO is the regular GIGO algorithm, whereas blockwise GIGO is not (actually, we will prove that it is the xNES algorithm). The only thing blockwise GIGO and twisted GIGO have in common is that they are compatible with the (ημ, ηΣ)-twisted IGO flow Equation (57): a parameter θt following these updates with δt → 0 and N → ∞ is a solution of Equation (57).

We now have a new description of the xNES algorithm:

Proposition 14 (xNES is a Blockwise GIGO algorithm). The Blockwise GIGO algorithm in[image: there is no content]with splitting[image: there is no content], sample size N, step sizes δtμ, δtΣand selection scheme w coincides with the xNES algorithm with sample size N, weights wi and learning rates ημ = δtμ, ησ = ηB = δtΣ.

Proof. Firstly, notice that the splitting (μ, Σ) is compatible, by Proposition 1.

Now, let us compute the Blockwise GIGO update: we have [image: there is no content], where Pd is the space of real positive-definite matrices of dimension d. We have [image: there is no content]. The induced metric on Θθt,1 is the Euclidean metric, so we have:



μ←μt+δt1Yμ.








Since we have already shown (using the notation in Definition 9) that Yμ = AGμ (in the proof of Proposition 6), we find:



[image: there is no content]








On Θθt,2, we have the following Lagrangian for the geodesics:



[image: there is no content](∑,∑˙)=12tr(∑˙∑−1∑˙∑−1).








By applying Noether’s theorem, we find that



JΣ=Σ−1[image: there is no content]








is invariant along the geodesics of [image: there is no content], so they are defined by the equation [image: there is no content]=ΣJΣ=ΣΣ0−1[image: there is no content]0 (and therefore, any update preserving the invariant JΣ will satisfy this first-order differential equation and follow the geodesics of [image: there is no content]. The xNES update for the covariance matrix is given by A(t) = A0 exp(tGM/2). Therefore, we have [image: there is no content][image: there is no content], [image: there is no content] and, finally, Σ−1(t)[image: there is no content](t)=(A0−1)TGMA0T=∑0−1∑˙0. Therefore, xNES preserves JΣ, and therefore, xNES follows the geodesics of [image: there is no content] (notice that we had already proven this in Proposition 13, since we are looking at the geodesics of [image: there is no content] with a fixed mean).
Although blockwise GIGO is somewhat “less natural” than GIGO, it can be easier to compute for some splittings (as we have just seen), and in the case of the Gaussian distributions, the mean-covariance splitting seems reasonable.




7. Numerical Experiments

We conclude this article with some numerical experiments to compare the behavior of GIGO, xNES and pure rank-μ CMA-ES (we give the pseudocodes for these algorithms in the Appendix). We made two series of tests. The first one is a performance test, using classical benchmark functions and the settings from [19]. The goal of the second series of tests is to illustrate the computations in Section 6.3 by plotting the trajectories (standard deviation versus mean) of these three algorithms in dimension one.

The source code is available at [22].


7.1. Benchmarking

For the first series of experiments, presented in Figure 3, we used the following parameters, taken from [19] (we recall that xNES and pure rank-μ CMA-ES are seen as IGO algorithms):

Figure 3. Median number of function calls to reach 10−8 fitness on 24 runs for: sphere function, cigar-tablet function and Rosenbrock function. Initial position θ0 = N (x0, I), with x0 uniformly distributed on the circle of center zero and radius 10. We recall that the “CMA-ES” algorithm here is using the so-called pure rank-μ CMA-ES update.
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	Varying dimension.


	Sample size: [image: there is no content]


	Weights: [image: there is no content].


	IGO step size and learning rates: δt = 1, ημ = 1, [image: there is no content]..


	Initial position: [image: there is no content], where x0 is a random point of the circle with center zero, and radius 10.


	Euler method for GIGO: Number of steps: 100. We used the GIGO-A variant of the algorithm. No significant difference was noticed with GIGO-Σ or with the exact GIGO algorithm. The only advantage of having an explicit solution of the geodesic equations is that the update is quicker to compute.


	We chose not to use the exact expression of the geodesics for this benchmarking to show that having to use the Euler method is fine. However, we did run the tests, and the results are basically the same as GIGO-A.




We plot the median number of runs to achieve target fitness (10−8). Each algorithm has been tested in dimension 2, 4, 8, 16, 32 and 64: a missing point means that all runs converged prematurely.


7.1.1. Failed Runs

In Figure 3, a point is plotted even if only one run was successful. Below is the list of the settings for which at least one run converged prematurely.


	Only one run reached the optimum for the cigar-tablet function with CMA-ES in dimension eight.


	Seven runs (out of 24) reached the optimum for the Rosenbrock function with CMA-ES in dimension 16.


	About half of the runs reached the optimum for the sphere function with CMA-ES in dimension four.




For the following settings, all runs converged prematurely.


	GIGO did not find the optimum of the Rosenbrock function in any dimension.


	CMA-ES did not find the optimum of the Rosenbrock function in dimension 2, 4, 32 and 64.


	All of the runs converged prematurely for the cigar-tablet function in dimension two with CMA-ES, for the sphere function in dimension two for all algorithms and for the Rosenbrock function in dimension two and four for all algorithms.






7.1.2. Discussion

As the last item in Section 7.1.1 shows, all of the algorithms converge prematurely in a low dimension, probably because the covariance learning rate has been set too high (or because the sample size is too small). This is different from the results in [19].

This remark aside, as noted in [19], the xNES algorithm shows more robustness than CMA-ES and GIGO: it is the only algorithm able to find the minimum of the Rosenbrock function in high dimensions. However, its convergence is consistently slower.

In terms of performance, when both of them work, pure rank-μ CMA-ES (or equivalently, IGO in the parametrization (μ, Σ)) and GIGO are extremely close (GIGO is usually a bit better). An advantage of GIGO is that it is theoretically defined for any δt, ηΣ, whereas the covariance matrix maintained by CMA-ES (not only pure rank-μ CMA-ES) can stop being positive definite if ηΣδt > 1. However, in that case, the GIGO algorithm is prone to premature convergence (remember Figure 2 and see Proposition 15 below), and in practice, the learning rates are much smaller.




7.2. Plotting Trajectories in [image: there is no content]

We want the second series of experiments to illustrate the remarks about the trajectories of the algorithms in Section 6.3, so we decided to take a large sample size to limit randomness, and we chose a fixed starting point for the same reason. We use the weights below because of the property of quantile improvement proven in [23]: the 1/4-quantile will improve at each step. The parameters we used were the following:


	Sample size: λ = 5, 000


	Dimension one only.


	Weights: w = 41q⩽1/4 (wi = 4.1i⩽1,250)


	IGO step size and learning rates: ημ = 1, η∑=353+log(d)dd=1.8, varying δt.


	Initial position: [image: there is no content]


	Dots are placed at t = 0, 1, 2 … (except for the graph δt = 1.5, for which there is a dot for each step).




Figures 4–8 show the optimization of x ↦ x2, and Figures 9–11 show the optimization of x ↦ −x.

Figure 4. Trajectories of GIGO, CMA and xNES optimizing x ↦ x2 in dimension one with δt = 0.01, sample size 5000, weights wi = 4.1i⩽1250 and learning rates ημ = 1, ηΣ = 1.8. One dot every 100 steps. All algorithms exhibit a similar behavior
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Figure 8. Trajectories of GIGO, CMA and xNES optimizing x ⟼ x2 in dimension one with δt = 1.5, sample size 5000, weights wi = 4.1i≤1250 and learning rates ημ = 1, ηΣ = 1.8. One dot per step. Same as δt = 1 for CMA. GIGO converges prematurely.
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Figure 9. Trajectories of GIGO, CMA and xNES optimizing x ⟼ −x in dimension one with δt = 0.01, sample size 5000, weights wi = 4.1i≤1250 and learning rates ημ = 1, ηΣ = 1.8. One dot every 100 steps. Almost the same for all algorithms.
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Figure 11. Trajectories of GIGO, CMA and xNES optimizing x ⟼ −x in dimension one with δt = 1, sample size 5, 000, weights wi = 4.1i≤1,250 and learning rates ημ = 1, ηΣ = 1.8. One dot per step. GIGO converges, for the reasons discussed earlier.



[image: Entropy 17 00304f11 1024]





Figures 7, 8 and 11 show that when δt ≥ 1, GIGO reduces the covariance, even at the first step. More generally, when using the GIGO algorithm in [image: there is no content] for the optimization of a linear function, there exists a critical step size δtcr (depending on the learning rates ημ, ησ and on the weights wi), above which, GIGO will converge, and we can compute its value when the weights are of the form 1q≤q0 (for q0 ≥ 0.5, the discussion is not relevant, because in that case, even the IGO flow converges prematurely. Compare with the critical δt of the smoothed cross entropy method and IGO-ML in [1]).

Figure 7. Trajectories of GIGO, CMA and xNES optimizing x ⟼ x2 in dimension one with δt = 1, sample size 5000, weights wi = 4.1i≤1250 and learning rates ημ = 1, ηΣ = 1.8. One dot per step. The CMA-ES algorithm fails here, because at the fourth step, the covariance matrix is not positive definite anymore (it is easy to see that the CMA-ES update is always defined if δtηΣ < 1, but this is not the case here). Furthermore, notice (see also Proposition 15) that at the first step, GIGO decreases the variance, whereas the σ-component of the IGO speed is positive.
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Proposition 15. Let d ∈ ℕ, k, ημ, [image: there is no content]; let[image: there is no content]and let



[image: there is no content]








Let μn be the first coordinate of the mean, and let[image: there is no content]be the variance (at step n) maintained by the (ημ, ησ)-twisted geodesic IGO algorithm in[image: there is no content]associated with selection scheme w, sample size ∞ and step size δt, when optimizing g (“sample size ∞” meaning the limit of the update when the sample size tends to infinity, which is deterministic [1]).

There exists δtcr, such that:


	if δt > δtcr, (σn) converges to zero with exponential speed and (μn) converges.


	if δt = δtcr, (σn) remains constant and (μn) tends to ∞ with linear speed.


	if 0 < δt < δtcr, both (σn) and μn tend to ∞ with exponential speed.




The proof and the expression of δtcr can be found in the Appendix.

In the case corresponding to k = 4, n = 1, q0 = 1/4, ημ = 1, ησ = 1.8, we find:



[image: there is no content]



(64)







8. Conclusions

We introduced the geodesic IGO algorithm, and we showed that in the case of Gaussian distributions, Noether’s theorem directly gives a first order equation satisfied by the geodesics. In terms of performance, the GIGO algorithm is similar to pure rank-μ CMA-ES, which is rather encouraging: it would be interesting to test GIGO on real problems. Moreover, GIGO is a reasonable and totally parametrization-invariant algorithm (provided we can compute the solution of the equations of the geodesics), and as such, it should be studied for other families of probability distributions, like Bernoulli distributions (although in that case, the Riemannian exponential is not defined if the step size is too large, because the length of the geodesics is finite). Noether’s theorem could be a crucial tool for this.

We also showed that xNES and GIGO are not the same algorithm, and we defined blockwise GIGO, a simple extension of the GIGO algorithm, showing that xNES has a special status, as it admits a definition that is “almost” parametrization-invariant.






Conflicts of Interest

The author declares no conflict of interest.





Proof of Proposition 15

Let us first consider the case k = 1.

When optimizing a linear function, the non-twisted IGO flow in [image: there is no content] with the selection function [image: there is no content] is known [1], and in particular, we have:



[image: there is no content]



(65)






[image: there is no content]



(66)




where, if we denote by [image: there is no content] a random vector following a standard normal distribution and [image: there is no content] the cumulative distribution of a standard normal distribution,


α(q0,d)=12d(∫0q0[image: there is no content]−1(u)2du−q0),



(67)




and:


β(q0)=E([image: there is no content]1[image: there is no content]≤[image: there is no content]−1(q0)).



(68)




In particular, [image: there is no content] and [image: there is no content].

With a minor modification of the proof in [1], we find that the (ημ, ησ)-twisted IGO flow is given by:



[image: there is no content]



(69)






[image: there is no content]



(70)




Notice that Equation (69) shows that the assertions about the convergence of (σn) immediately imply the assertions about the convergence of (μn).

Let us now consider a step of the GIGO algorithm: The twisted IGO speed is Y = (ημβσ0, ησασ0), with ασ0 > 0 (i.e., the variance should be increased: this is where we need q0 < 0.5).

Proposition 17 shows that the covariance at the end of the step is (using the same notation):



[image: there is no content]



(71)




and it is easy to see that f only depends on δt (and on q0). In other words, f(δt) will be the same at each step of the algorithm. The existence of δtcr easily follows (furthermore, recall Figure 1 in Section 4.1), and δtcr is the positive solution of f(x) = 1.
After a quick computation, we find:



[image: there is no content]



(72)




where:


[image: there is no content]



(73)




and:


[image: there is no content]



(74)




Finally, for [image: there is no content], Proposition 9 shows that:



[image: there is no content]



(75)






A1. Generalization of the Twisted Fisher Metric

The following definition is a more general way to introduce the twisted Fisher metric.

Definition 17. Let (Θ, g) be a Riemannian manifold, [image: there is no content], a splitting (as defined in Section 6.4) of Θ compatible with the metric g.

We call (η1, …, ηn)-twisted metric on (Θ, g) for the splitting Θ1, …, Θn the metric g′ on Θ defined by[image: there is no content]for 1 ≤ i ≤ n, and Θi ⊥ Θj for i ≠ j.

Proposition 16. The (ημ, ηΣ)-twisted metric on[image: there is no content]with the Fisher metric for the splitting[image: there is no content](μ,∑)↦(μ,∑)coincides with the (ημ, ηΣ)-twisted Fisher metric from Definition 11.

Proof. It is easy to see that the (ημ, ηΣ)-twisted Fisher metric satisfies the condition in Definition 17.



A2. Twisted Geodesics

The following theorem can be used to compute the twisted geodesics from the non twisted geodesics. It is a simple calculation.

Theorem 7. Let ημ, ηΣ ∈ ℝ, μ0 ∈ ℝd, A0 ∈ GLd(ℝ), and(μ˙0,∑˙0)∈T[image: there is no content](μ0,A0A0T)GdLet



h:[image: there is no content]→[image: there is no content][image: there is no content]↦[image: there is no content](ημηΣμ,Σ)



(76)




We denote by ϕ (resp. ψ) the Riemannian exponential of[image: there is no content](resp.[image: there is no content]with the (ημ, ηΣ)-twisted Fisher metric) at[image: there is no content](ημηΣμ0,A0A0T)(resp.[image: there is no content](μ0,A0A0T)). We have:



ψ(μ˙0,[image: there is no content]0)=h∘ϕ(ηΣημμ˙0,[image: there is no content]0)



(77)




Proof. Let us denote by: [image: there is no content] the Fisher metric in the parametrization μ, Σ, and consider the 0 IΣ following parametrization of Gd:(μ˜,Σ)↦[image: there is no content](ηΣημμ˜,Σ).

The Riemannian exponential at [image: there is no content](μ0,A0A0T) in this parametrization is:



[image: there is no content]



(78)




However, in this parametrization, the Fisher metric reads:



[image: there is no content]



(79)




which is proportional to the (ημ, ηΣ)-twisted Fisher metric up to a factor [image: there is no content]. Consequently, the Christoffel symbols are the same as the Christoffel symbols of the (ημ, ηΣ)-twisted Fisher metric, and so are the geodesics. Therefore, we have:


[image: there is no content]



(80)




which is what we wanted.
For the remainder of this section, we fix ημ and ηΣ; [image: there is no content] is endowed with the (ημ, ηΣ)-twisted Fisher metric, and [image: there is no content] is endowed with the induced metric. The proofs of the propositions below are a simple rewriting of their non-twisted counterparts that can be found in Sections 4 and 5.1 and can be seen as corollaries of Theorem 7.

Theorem 8. If[image: there is no content]is a twisted geodesic of[image: there is no content], then there exists a, b, c, d ∈ ℝ, such that ad − bc = 1, and v > 0, such that[image: there is no content], σ(t) = Im(γℂ(t)), with[image: there is no content]and:



[image: there is no content]



(81)




Proposition 17. Let n ∈ ℕ, vμ ∈ ℝnr,vσ, ημ, ησ, σ0 ∈ ℝ, with σ0 > 0.

Let vr := ║vμ║ [image: there is no content], [image: there is no content]and[image: there is no content].

Let[image: there is no content]and[image: there is no content].

Let[image: there is no content].

Then



γ:t↦[image: there is no content](μ0+λvμ‖vμ‖Re(γℂ(t)),Im(γℂ(t)))



(82)




is the twisted geodesic of[image: there is no content]satisfying γ(0) = (μ0, σ0) and[image: there is no content]. The regular geodesics of[image: there is no content]are obtained with ημ = ησ = 1.
Theorem 9. Letγ:t↦[image: there is no content](μt,Σt)be a twisted geodesic of[image: there is no content]. Then, the following quantities are invariant:



[image: there is no content]



(83)






JΣ=∑t−1(1ημμ˙tμtT+1ηΣ[image: there is no content]t).



(84)




Theorem 10. If μ : t ⟼ μt and Σ : t ⟼ Σt satisfy the equations:



[image: there is no content]



(85)






[image: there is no content]t=ηΣΣt(JΣ−JμμtT)=ηΣΣtJΣ−ηΣημμ˙tμtT,



(86)




where:


[image: there is no content]








and:


JΣ=∑0−1(1ημμ˙0μ0T+1ηΣ[image: there is no content]0).








thent↦[image: there is no content](μt,Σt)is a twisted geodesic of[image: there is no content].
Theorem 11. If μ : t ⟼ μt and A : t ⟼ At satisfy the equations:



[image: there is no content]



(87)






[image: there is no content]



(88)




where:


[image: there is no content]








and:


[image: there is no content]








thent↦[image: there is no content](μt,AtAtT)is a twisted geodesic of[image: there is no content].


A3. Pseudocodes


A3.1. For All Algorithms

All studied algorithms have a common part, given here:

Variables: μ, Σ (or A such that Σ = AAT).

List of parameters: f : ℝd → ℝ, step size δt, learning rates ημ, ηΣ, sample size λ, weights (wi)i∈[1,λ], N number of steps for the Euler method, r Euler step size reduction factor (for GIGO-Σ only).



Notice that we always need a square root A of Σ to sample the xi, but the decomposition Σ = AAT is not unique. Two different decompositions will give two algorithms, such that one is a modification of the other as a stochastic process: same law (the xi are abstractly sampled from [image: there is no content], but different trajectories (for given zi, different choices for the square root will give different xi). For GIGO-Σ, since we have to invert the covariance matrix, we used the Cholesky decomposition (A lower triangular. The the other implementation directly maintains a square root of Σ). Usually, in CMA-ES, the square root of Σ (Σ = AAT, A symmetric) is used.




A3.2. Updates

When describing the different updates, μ, Σ, A, the xi and the zi are those defined in Algorithm 1. For Algorithm 2 (GIGO-Σ), when the covariance matrix after one step is not positive-definite, we compute the update again, with a step size divided by r for the Euler method (we have no reason to recommend any particular value of r, the only constraint is r > 1).










Algorithm 5. xNES update, one step.
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Algorithm 7. GIGO in [image: there is no content], one step.
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Figure 5. Trajectories of GIGO, CMA and xNES optimizing x 7→x2 in dimension one with δt = 0.5, sample size 5000, weights wi = 4.1i⩽1250 and learning rates ημ = 1, ηΣ = 1.8. One dot every two steps. Stronger differences. Notice that after one step, the lowest mean is still GIGO (∼ 8.5, whereas xNES is around 8.75), but from the second step, GIGO has the highest mean, because of the lower variance. 
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Figure 6. Trajectories of GIGO, CMA and xNES optimizing x ⟼ x2 in dimension one with δt = 0.1, sample size 5000, weights wi = 4.1i≤1250 and learning rates ημ = 1, ηΣ = 1.8. One dot every 10 steps. All algorithms exhibit a similar behavior, and differences start to appear. It cannot be seen on the graph, but the algorithm closest to zero after 400 steps is CMA (∼ 1.10−16, followed by xNES (∼ 6.10−16) and GIGO (∼ 2.10−15). 
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Figure 10. Trajectories of GIGO, CMA and xNES optimizing x ⟼ −x in dimension one with δt = 0.1, sample size 5000, weights wi = 4.1i≤1250 and learning rates ημ = 1, ηΣ = 1.8. One dot every 10 steps. It is not obvious on the graph, but xNES is faster than CMA, which is faster than GIGO. 
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