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Abstract: Information geometric optimization (IGO) is a general framework for stochastic
optimization problems aiming at limiting the influence of arbitrary parametrization choices:
the initial problem is transformed into the optimization of a smooth function on a Riemannian
manifold, defining a parametrization-invariant first order differential equation and, thus,
yielding an approximately parametrization-invariant algorithm (up to second order in the
step size). We define the geodesic IGO update, a fully parametrization-invariant algorithm
using the Riemannian structure, and we compute it for the manifold of Gaussians, thanks
to Noether’s theorem. However, in similar algorithms, such as CMA-ES (Covariance
Matrix Adaptation - Evolution Strategy) and xNES (exponential Natural Evolution Strategy),
the time steps for the mean and the covariance are decoupled. We suggest two ways of doing
so: twisted geodesic IGO (GIGO) and blockwise GIGO. Finally, we show that while the
xNES algorithm is not GIGO, it is an instance of blockwise GIGO applied to the mean
and covariance matrix separately. Therefore, xNES has an almost parametrization-invariant
description.

Keywords: black-box; optimization; geodesics; Gaussian; information geometry; natural
gradient; Noether; learning rate; IGO; xNES
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1. Introduction

Consider an objective function f : X → R to be minimized. We suppose we have absolutely no
knowledge about f : the only thing we can do is ask for its value at any point x ∈ X (black-box
optimization) and that the evaluation of f is a costly operation. We are going to study algorithms that
can be described in the IGO framework (see [1]).

We consider the following optimization procedure:
We choose (Pθ)θ∈Θ a family of probability distributions (which will be given a Riemannian manifold

structure, following [2]) on X and an initial probability distribution Pθ0 . Now, we replace f by
F : Θ→ R (for example F (θ) = Ex∼Pθ [f(x)]), and we optimize F by gradient descent, corresponding
to the gradient flow:

dθt

dt
= −∇θEx∼Pθ [f(x)]. (1)

However, because of the gradient, this equation depends entirely on the parametrization we chose
for Θ, which is disturbing: we do not want to have two different updates, because we chose different
parameters to represent the objects with which we are working. Moreover, in the case of a function
with several local minima, changing the parametrization can change the attained optimum (see [3], for
example). That is why invariance is a design principle behind IGO. More precisely, we want invariance
with respect to monotone transformations of f and invariance under reparametrization of Θ.

The IGO framework uses the geometry of the family Θ, which is given by the Fisher metric to provide
a differential equation on θ with the desired properties, but because of the discretization of time needed
to obtain an explicit algorithm, we lose invariance under reparametrization of θ: two IGO algorithms
applied to the same function to be optimized, but with different parametrizations, coincide only at first
order in the step size. A possible solution to this problem is geodesic IGO (GIGO), introduced here (see
also IGO-Maximum Likelihoodin [1], for example.): the initial direction of the update at each step of the
algorithm remains the same as in IGO, but instead of moving straight for the chosen parametrization, we
use the Riemannian manifold structure of our family of probability distributions (see [2]) by following
its geodesics.

Finding the geodesics of a Riemannian manifold is not always easy, but Noether’s theorem will allow
us to obtain quantities that are preserved along the geodesics, thus allowing, in the case of Gaussian
distributions, one to obtain a first order differential equation satisfied by the geodesics, which makes
their computation easier.

Although the geodesic IGO algorithm is not, strictly speaking, parametrization-invariant when no
closed form for the geodesics is known, it is possible to compute them at arbitrary precision without
increasing the numbers of objective function calls.

The first two sections are preliminaries: in Section 2, we recall the IGO algorithm, introduced in [1],
and in Section 3, after a reminder about Riemannian geometry, we state Noether’s theorem, which will
be our main tool to compute the GIGO update for Gaussian distributions.

In Section 4, we consider Gaussian distributions with a covariance matrix proportional to the identity
matrix: this space is isometric to the hyperbolic space, and the geodesics of the latter are known.

In Section 5.1, we consider the general Gaussian case, and we use Noether’s theorem to obtain two
different sets of equations to compute the GIGO update. The equations are known (see [4–6]), but the
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connection with Noether’s theorem has not been mentioned. We then give the explicit solution for these
equations, from [5].

In Section 6, we recall quickly the xNES and CMA-ESupdates, and we introduce a slight modification
of the IGO algorithm to incorporate the direction-dependent learning rates used in CMA-ESand xNES.
We then compare these different algorithms and prove that xNES is not GIGO in general, and we finally
introduce a new family of algorithms extending GIGO and recovering xNES from abstract principles.

Finally, Section 7 presents numerical experiments, which suggest that when using GIGO with
Gaussian distributions, the step size must be chosen carefully.

2. Definitions: IGO, GIGO

In this section, we recall what the IGO framework is and we define the geodesic IGO update. Consider
again Equation (1):

dθt

dt
= −∇θEx∼Pθ [f(x)].

As we saw in the Introduction:

• The gradient depends on the parametrization of our space of probability distributions (see
Section 2.3 for an example).
• The equation is not invariant under monotone transformations of f . For example, the optimization

for 10f moves ten times faster than the optimization for f .

In this section, we recall how IGO deals with this (see [1] for a better presentation).

2.1. Invariance under Reparametrization of θ: Fisher Metric

In order to achieve invariance under reparametrization of θ, it is possible to turn our family of
probability distributions into a Riemannian manifold (this is the main topic of information geometry;
see [2]), which allows us to use a canonical, parametrization-invariant gradient (called the natural
gradient).

Definition 1. Let P,Q be two probability distributions on X . The Kullback–Leibler divergence of Q
from P is defined by:

KL(Q‖P ) =

∫
X

ln(
Q(x)

P (x)
)dQ(x). (2)

By definition, it does not depend on the parametrization. It is not symmetrical, but if for all x, the
application θ 7→ Pθ(x) is C2, then a second-order expansion yields:

KL(Pθ+dθ‖Pθ) =
1

2

∑
i,j

Iij(θ)dθidθj + o(dθ2), (3)

where:
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Iij(θ) =

∫
X

∂ lnPθ(x)

∂θi

∂ lnPθ(x)

∂θj
dPθ(x) = −

∫
X

∂2 lnPθ(x)

∂θi∂θj
dPθ(x). (4)

This is enough to endow the family (Pθ)θ∈Θ with a Riemannian manifold structure: a Riemannian
manifold M is a differentiable manifold, which can be seen as pieces of Rn glued together, with a
metric. The metric at x is a symmetric positive-definite quadratic form on the tangent space of M at x: it
indicates how expensive it is to move in a given direction on the manifold. We will think of the updates
of the algorithms that we will be studying as paths on M .

The matrix I(θ) is called the “Fisher information matrix”, and the metric it defines is called the
“Fisher metric”.

Given a metric, it is possible to define a gradient attached to this metric; the key property of the
gradient is that for any smooth function f :

f(x+ h) = f(x) +
∑
i

hi
∂f

∂xi
+ o(‖h‖) = f(x) + 〈h,∇f(x)〉+ o(‖h‖), (5)

where 〈x, y〉 = xT Iy is the dot product in metric I . Therefore, in order to keep the property of
Equation (5), we must have∇f = I−1 ∂f

∂x
.

We have therefore the following gradient (called the “natural gradient”; see [2]):

∇̃θ = I−1(θ)
∂

∂θ
, (6)

and since the Kullback–Leibler divergence does not depend on the parametrization, neither does the
natural gradient.

Later in this paper, we will study families of Gaussian distributions. The following proposition gives
the Fisher metric for these families.

Proposition 1. Let (Pθ)θ∈Θ be a family of normal probability distributions: Pθ = N (µ(θ),Σ(θ)).
If µ and Σ are C1, the Fisher metric is given by:

Ii,j(θ) =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
. (7)

Proof. This is a non-trivial calculation. See [7] or [8] for more details.

As we will often be working with Gaussian distributions, we introduce the following notation:

Notation 1. Gd is the manifold of Gaussian distributions in dimension d, equipped with the
Fisher metric. G̃d is the manifold of Gaussian distributions in dimension d, with the covariance matrix
proportional to identity in the canonical basis of Rd, equipped with the Fisher metric.

2.2. IGO Flow, IGO Algorithm

In IGO [1], invariance with respect to monotone transformations is achieved by replacing f by the
following transform; we set:

q(x) = Px′∼Pθ(f(x′) 6 f(x)), (8)
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a non-increasing function w : [0; 1] → R is chosen (the selection scheme), and finally, W f
θ (x) =

w(q(x)) (this definition has to be slightly changed if the probability of a tie is not zero, see [1] for
more details). By performing a gradient descent on Ex∼Pθ [W

f
θt(x)], we obtain the “IGO flow”:

dθt

dt
= ∇̃θ

∫
X

W f
θt(x)Pθ(dx) =

∫
X

W f
θt(x)∇̃θ lnPθ(x)Pθt(dx). (9)

Notice that the function we are optimizing is Ex∼Pθ [W
f
θt(x)] and not Ex∼Pθ [W

f
θ (x)] (the second

function is constant and always equal to
∫ 1

0
w). In particular, the function for which we are performing

the gradient descent changes at each step, although their optimum (a Dirac at the minimum of f ) does not:
the IGO flow is not a gradient flow; it is simply a vector flow given by the gradient of interrelated
functions.

For practical implementation, the integral in (9) has to be approximated. For the integral itself, the
Monte-Carlo method is used;N values (x1, ..., xN) are sampled from the distribution Pθt , and the integral
becomes:

1

N

N∑
i=1

W f
θt(xi)∇̃θ lnPθ(xi) (10)

and we approximate 1
N
W f
θ (xi) = 1

N
w(q(xi)) by ŵi = 1

N
w( rk(xi)+1/2

N
), where rk(xi) = |{j, f(xj) <

f(xi)}|: it can be proven (see [1]) that limN→∞Nŵi = W θt

f (xi) (here again, we are assuming that there
are no ties).

We now have an algorithm that can be used in practice if the Fisher information matrix is known.

Definition 1. The IGO update associated with parametrization θ, sample size N , step size δt and
selection scheme w is given by the following update rule:

θt+δt = θt + δtI−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
. (11)

We call IGO speed the vector I−1(θt)
∑N

i=1 ŵi
∂ lnPθ(xi)

∂θ
.

Notice that one could start directly with the ŵi rather than w, as we will do later.
Replacing f by its expected value under a probability distribution Pθ and optimizing over θ using

the natural gradient have already been discussed. For example, in the case of a function f defined on
{0, 1}n, IGO with the Bernoulli distributions yields the algorithm, PBIL[9]. Another similar approach
(stochastic relaxation) is given in [10]. For a continuous function, as we will see later, the IGO framework
recovers several known ranked-based natural gradient algorithms, such as pure rank-µ CMA-ES [11],
xNES or SNES (Separable Natural Evolution Strategies) [12]. See [13] or [14] for other, not necessarily
gradient-based, optimization algorithms on manifolds.

2.3. Geodesic IGO

Although the IGO flow associated with a family of probability distributions is intrinsic (it only
depends on the family itself, not the parametrization we choose for it), the IGO update is not. However,
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the difference between two steps of IGO that differ only by the parametrization is only O(δt2), whereas
the different between two vanilla gradient descents with different parametrizations is O(δt).

Intuitively, the reason for this difference is that two IGO algorithms start at the same point and
follow “straight lines” with the same initial speed, but the definition of “straight lines” changes with
the parametrization.

For instance, in the case of Gaussian distributions, let us consider two different IGO updates with
Gaussian distributions in dimension one, the first one with parametrization (µ, σ) and the second one
with parametrization (µ, c := σ2). We suppose that the IGO speed for the first algorithm is (µ̇, σ̇). The
corresponding IGO speed in the second parametrization is given by the identity ċ = 2σσ̇. Therefore, the
first algorithm gives the standard deviation σnew,1 = σold + δtσ̇ and the variance cnew,1 = (σnew,1)2 =

cold + 2δtσoldσ̇ + δt2σ̇2 = cnew,2 + δt2σ̇2.
The geodesics of a Riemannian manifold are the generalization of the notion of a straight line: they are

curves that locally minimize length. In particular, given two points a and b on the Riemannian manifold
M , the shortest path from a to b is always a geodesic (the converse is not true, though). The notion
will be explained precisely in Section 3, but let us define the geodesic IGO algorithm, which follows the
geodesics of the manifold instead of following the straight lines for an arbitrary parametrization.

Definition 2 (GIGO). The geodesic IGO update (GIGO) associated with sample size N , step size δt and
selection scheme w is given by the following update rule:

θt+δt = expθt(Y δt) (12)

where:

Y = I−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
, (13)

is the IGO speed and expθt is the exponential of the Riemannian manifold Θ. Namely, expθt(Y δt) is
the endpoint of the geodesic of Θ starting at θt, with initial speed Y , after a time δt. By definition, this
update does not depend on the parametrization θ.

Notice that while the GIGO update is compatible with the IGO flow (in the sense that when δt → 0

and N →∞, a parameter θt updated according to the GIGO algorithm is a solution of Equation (9), the
equation defining the IGO flow), it not necessarily an IGO update. More precisely, the GIGO update is
an IGO update if and only if the geodesics of Θ are straight lines for some parametrization (by Beltrami’s
theorem, this is equivalent to Θ having constant curvature).

This is a particular case of a retraction [14]: a map from the tangent bundle of a manifold to the
manifold itself satisfying a rigidity condition. Arguably, the Riemannian exponential is the most natural
retraction, since it depends only on the Riemannian manifold itself and not on any decomposition.
However, in general, the geodesics are difficult to compute.

In the next section, we will state Noether’s theorem, which will be our main tool to compute the GIGO
update for Gaussian distributions.
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3. Riemannian Geometry, Noether’s Theorem

3.1. Riemannian Geometry

The goal of this section is to state Noether’s theorem. See [15] for the proofs and [16] or [17] for
a more detailed presentation. Noether’s theorem states that if a system has symmetries, then there are
invariants attached to these symmetries. Firstly, we need some definitions.

Definition 3 (Motion in a Lagrangian system). LetM be a differentiable manifold, TM the set of tangent
vectors on M (a tangent vector is identified by the point at which it is tangent and a vector in the

tangent space) and
L : TM → R

(q, v) 7→ L(q, v)
a differentiable function called the Lagrangian function

(in general, it could depend on t). A “motion in the Lagrangian system (M,L) from x to y” is map
γ : [t0, t1]→M , such that:

• γ(t0) = x

• γ(t1) = y

• γ is a local extremum of the functional:

Φ(γ) =

∫ t1

t0

L(γ(t), γ̇(t))dt, (14)

among all curves c : [t0, t1]→M , such that c(t0) = x, and c(t1) = y.

For example, when (M, g) is a Riemannian manifold, the length of a curve γ between γ(t0) and
γ(t1) is: ∫ t1

t0

√
g(γ̇(t), γ̇(t))dt. (15)

The curves that follow the shortest path between two points x, y ∈ M are therefore the minima γ of
the functional (15), such that γ(t0) = x and γ(t1) = y, and the corresponding Lagrangian function is
(q, v) 7→

√
g(v, v). However, any curve following the shortest trajectory will have minimum length. For

example, if γ1 : [a, b]→M is a curve of the shortest path, so is γ2 : t 7→ γ1(t2): these two curves define
the same trajectory in M , but they do not travel along this trajectory at the same speed. This leads us to
the following definition:

Definition 4 (Geodesics). Let I be an interval of R and (M, g) be a Riemannian manifold. A curve
γ : I →M is called a geodesic if for all t0, t1 ∈ I , γ|[t0,t1] is a motion in the Lagrangian system (M,L)

from γ(t0) to γ(t1), where:

L(γ) =

∫ t1

t0

g(γ̇(t), γ̇(t))dt. (16)

It can be shown (see [16]) that geodesics are curves that locally minimize length, with constant
velocity, in the sense that dg(γ̇(t),(γ̇(t))

dt
= 0. In particular, given a starting point and a starting speed,

the geodesic is unique. This motivates the definition of the exponential of a Riemannian manifold.



Entropy 2015, 17 311

Definition 5. Let (M, g) be a Riemannian manifold. We call the exponential of M the application:

exp : TM → M

(x, v) 7→ expx(v),

such that for any x ∈ M , if γ is the geodesic of M satisfying γ(0) = x and γ′(0) = v, then expx(v) =

γ(1).

In order to find an extremal of a functional, the most commonly-used result is called the
“Euler–Lagrange equations” (see [15], for example); a motion γ in the Lagrangian system (M,L)

must satisfy:
∂L
∂x

(γ(t))− d

dt

(
∂L
∂ẋ

(γ̇(t))

)
= 0. (17)

By applying this equation with the Lagrangian given by (16), it is possible to show that the geodesics of
a Riemannian manifold follow the “geodesic equations”:

ẍk + Γkijẋ
iẋj = 0, (18)

where the

Γkij =
1

2
glk
(
∂gjl
∂qi

+
∂gli
∂qj
− ∂gij

∂ql

)
(19)

are called “Christoffel symbols” of the metric g. However, these coefficients are tedious (and sometimes
difficult) to compute, and (18) is a second order differential equation. Noether’s theorem will give us a
first order equation to compute the geodesics.

3.2. Noether’s Theorem

Definition 6. Let h : M →M , a diffeomorphism. We say that the Lagrangian system (M,L) admits the
symmetry h if for any (q, v) ∈ TM ,

L (h(q), dh(v)) = L(q, v), (20)

where dh is the differential of h.
If M is clear in the context, we will sometimes say that L is invariant under h.

An example will be given in the proof of Theorem 3.
We can now state Noether’s theorem (see, for example, [15]).

Theorem 1 (Noether’s Theorem). If the Lagrangian system (M,L) admits the one-parameter group of
symmetries hs : M → M , s ∈ R, then the following quantity remains constant during motions in the
system (M,L). Namely,

I(γ(t), γ̇(t)) =
∂L
∂v

(
dhs(γ(t))

ds
|s=0

)
(21)

does not depend on t if γ is a motion in (M,L).

Now, we are going to apply this theorem to our problem: computing the geodesics of Riemannian
manifolds of Gaussian distributions.
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4. GIGO in G̃d

If we force the covariance matrix to be either diagonal or proportional to the identity matrix, the
geodesics have a simple expression that we give below. In the former case, the manifold we are
considering is (G1)d, and in the latter case, it is G̃d.

The geodesics of (G1)d are given by:

Proposition 2. Let M be a Riemannian manifold; let d ∈ N; let Φ be the Riemannian exponential of
Md; and let φ be the Riemannian exponential of M . We have:

Φ(x1,...,xn)((v1, ..., vn)) = (φx1(v1), ..., φxn(vn)) (22)

In particular, knowing the geodesics of G1 is enough to compute the geodesics of (G1)d.

This is true, because a block of the product metric does not depend on variables of the other blocks.
Consequently, a GIGO update with a diagonal covariance matrix with the sample (xi) is equivalent to

d separate one-dimensional GIGO updates using the same samples. Moreover, G1
∼= G̃1, the geodesics

of which are given below.
We will show that G̃d and the “hyperbolic space”, of which the geodesics are known, are isometric.

4.1. Preliminaries: Poincaré Half-Plane, Hyperbolic Space

In dimension two, the hyperbolic space is called the “hyperbolic plane” or the Poincaré half-plane.
We recall its definition:

Definition 7 (Poincaré half-plane). We call the “Poincaré half-plane” the Riemannian manifold:

H = {(x, y) ∈ R2, y > 0},

with the metric ds2 = dx2+dy2

y2 .

We also recall the expression of its geodesics (see, for example, [18]):

Proposition 3 (Geodesics of the Poincaré half-plane). The geodesics of the Poincaré half-plane are
exactly the:

t 7→ (Re(z(t)), Im(z(t))) ,

where:

z(t) =
aievt + b

cievt + d
, (23)

with ad− bc = 1 and v > 0.

The geodesics are half-circles perpendicular to the line y = 0 and vertical lines, as shown in
Figure 1 below.
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µ

σ
γ1

γ2

Figure 1. Geodesics of the Poincaré half-plane.

The generalization to the higher dimension is the following:

Definition 8 (Hyperbolic space). We call the “hyperbolic space of dimension n” the Riemannian
manifold:

Hn = {(x1, ..., xn−1, y) ∈ Rn, y > 0},

with the metric ds2 =
dx2

1+...+dx2
n−1+dy2

y2 (or equivalently, the metric given by the matrix Diag( 1
y2 ) ).

The Lagrangian for the geodesics is invariant under all translations along the xi, so by Noether’s
theorem, its geodesics stay in a plane containing the direction y and the initial speed . The induced
metric on this plane is the metric of the Poincaré half-plane. The geodesics are therefore given by the
following proposition:

Proposition 4 (Geodesics of the hyperbolic space). If γ : t 7→ (x1(t), ..., xn−1(t), y(t)) = (x(t), y(t)) is
a geodesic ofHn, then there exists a, b, c, d ∈ R, such that ad− bc = 1, and v > 0, such that

x(t) = x(0) + ẋ0

‖ẋ0‖ x̃(t), y(t) = Im(γC(t)), with x̃(t) = Re(γC(t)) and:

γC(t) :=
aievt + b

cievt + d
. (24)

4.2. Computing the GIGO Update in G̃d

If we want to implement the GIGO algorithm in G̃d, we need to compute the natural gradient in G̃d

and to be able to compute the Riemannian exponential of G̃d.
Using Proposition 1, we can compute the metric of G̃d in the parametrization (µ, σ) 7→ N (µ, σ2I).

We find: 
1
σ2 0 . . . 0

0
. . . . . . ...

... . . . 1
σ2 0

0 . . . 0 2d
σ2

 . (25)

Since this matrix is diagonal, it is easy to invert, and we immediately have the natural gradient and,
consequently, the IGO speed.
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Proposition 5. In G̃d, the IGO speed Y is given by:

Yµ =
∑
i

ŵi(xi − µ), (26)

Yσ =
∑
i

ŵi

(
(xi − µ)T (xi − µ)

2dσ
− σ

2

)
. (27)

Proof. We recall the IGO speed is defined by Y = I−1(θt)
∑N

i=1 ŵi
∂ lnPθ(xi)

∂θ
. Since Pµ,σ(x) =

(2πσ2)−d/2 exp(− (x−µ)T (x−µ)
2σ2 ), we have:

∂ lnPµ,σ(x)

∂µ
= x− µ,

∂ lnPµ,σ(x)

∂σ
= −d

σ
+

(x− µ)T (x− µ)

σ3
.

The result follows.

The metric defined by Equation (25) is not exactly the metric of the hyperbolic space, but with the
substitution µ ← µ√

2d
, the metric becomes 2d

σ2 I , which is proportional to the metric of the hyperbolic
space and, therefore, defines the same geodesics.

Theorem 2 (Geodesics of G̃d). If γ : t 7→ N (µ(t), σ(t)2I) is a geodesic of G̃d, then there exists
a, b, c, d ∈ R, such that ad− bc = 1, and v > 0, such that:
µ(t) = µ(0) +

√
2d µ̇0

‖µ̇0‖ r̃(t), σ(t) = Im(γC(t)), with r̃(t) = Re(γC(t)) and

γC(t) :=
aievt + b

cievt + d
. (28)

Now, in order to implement the corresponding GIGO algorithm, we only need to be able to find the
coefficients a, b, c, d, v corresponding to an initial position (µ0, σ0) and an initial speed (µ̇0, σ̇0). This is
a tedious but easy computation, the result of which is given in Proposition 17.

The pseudocode of GIGO in G̃d is also given in the Appendix: it is obtained by concatenating
Algorithms 1 and 7 (Proposition 17 and the pseudocode in the Appendix allow the metric to be slightly
modified; see Section 6.2).

5. GIGO in Gd

5.1. Obtaining a First Order Differential Equation for the Geodesics of Gd

In the case where both the covariance matrix and the mean can vary freely, the equations of the
geodesics have been computed in [4] and [5]. However, these articles start with the equations of the
geodesics obtained with the Christoffel symbols, then partially integrate them . These equations are in
fact a consequence of Noether’s theorem and can be found directly.

Theorem 3. Let γ : t 7→ N (µt,Σt) be a geodesic of Gd. Then, the following quantities do not depend
on t:

Jµ = Σ−1
t µ̇t, (29)
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JΣ = Σ−1
t (µ̇tµ

T
t + Σ̇t). (30)

Proof. This is a direct application of Noether’s theorem, with suitable groups of diffeomorphisms. By
Proposition 1, the Lagrangian associated with the geodesics of Gd is:

L(µ,Σ, µ̇, Σ̇) = µ̇TΣ−1µ̇+
1

2
tr(Σ̇Σ−1Σ̇Σ−1). (31)

Its derivative is:
∂L
∂θ̇

=
[
(h,H) 7→ 2µ̇TΣ−1h+ tr(HΣ−1Σ̇Σ−1)

]
. (32)

Let us show that this Lagrangian is invariant under affine changes of basis (thus illustrating
Definition 6).

The general form of an affine change of basis is φµ0,A : (µ,Σ) 7→ (Aµ + µ0, AΣAT ), with µ0 ∈ Rd

and A ∈ GLd(R).
We have:
L(φµ0,A(µ,Σ), dφµ0,A(µ̇, Σ̇)) = Ȧµ

T

(AΣAT )−1Ȧµ+
1

2
tr
(

˙
AΣAT (AΣAT )−1 ˙

AΣAT (AΣAT )−1
)
,

(33)
and since Ȧµ = Aµ̇ and ˙

AΣAT = AΣ̇AT , we find easily that:

L(φµ0,A(µ,Σ), dφµ0,A(µ̇, Σ̇)) = L(µ,Σ, µ̇, Σ̇), (34)

or in other words: L is invariant under φµ0,A for any µ0 ∈ Rd, A ∈ GLd(R).
In order to use Noether’s theorem, we also need one-parameter groups of transformations. We choose

the following:
(1) Translations of the mean vector. For any i ∈ [1, d], let hsi : (µ,Σ) 7→ (µ + sei,Σ), where ei is the

i-th basis vector. We have dhsi
ds
|s=0 = (ei, 0), so by Noether’s theorem,

∂L
∂θ̇

(ei, 0) = 2µ̇TΣ−1ei = 2eTi Σ−1µ̇

remains constant for all i. The fact that Jµ is an invariant immediately follows.

(2) Linear base changes. For any i, j ∈ [1, d], let hsi,j : (µ,Σ) 7→ (exp(sEij)µ, exp(sEij)Σ exp(sEji)),
where Eij is the matrix with a one at position (i, j) and zeros elsewhere. We have:

dhsEij
ds
|s=0 = (Eijµ,EijΣ + ΣEji).

Therefore, by Noether’s theorem, we then obtain the following invariants:

Jij :=
∂L
∂θ̇

(Eijµ,EijΣ + ΣEji) (35)

=2 µ̇TΣ−1Eijµ+ tr((EijΣ + ΣEji)Σ
−1Σ̇Σ−1) (36)

=2 (Σ−1µ̇)TEijµ+ tr(EijΣ̇Σ−1) + tr(EjiΣ
−1Σ̇) (37)

=2(Jµµ
T )ij + 2(Σ−1Σ̇)ij, (38)

and the coefficients of JΣ in (30) are the (Jij/2).
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This leads us to first order equations satisfied by the geodesics mentioned in [4–6].

Theorem 4 (GIGO-Σ). t 7→ N (µt,Σt) is a geodesic of Gd if and only if µ : t 7→ µt and Σ : t 7→ Σt

satisfy the equations:
µ̇t = ΣtJµ (39)

Σ̇t = Σt(JΣ − JµµTt ) = ΣtJΣ − µ̇tµTt , (40)

where:
Jµ = Σ−1

0 µ̇0,

and:
JΣ = Σ−1

0

(
µ̇0µ

T
0 + Σ̇0

)
.

Proof. This is an immediate consequence of Proposition 3.

These equations can be solved analytically (see [5]); however, usually, that is not the case, and they
have to be solved numerically, for example with the Euler method (the corresponding algorithm, which
we call GIGO-Σ, is described in the Appendix). The goal of the remainder of the subsection is to show
that having to use the Euler method is fine.

To avoid confusion, we will call the step size of the GIGO algorithm (δt in Proposition 2) “GIGO step
size” and the step size of the Euler method (inside a step of the GIGO algorithm) “Euler step size”.

Having to solve our equations numerically brings two problems:
The first one is a theoretical problem: the main reason to study GIGO is its invariance under

reparametrization of θ, and we lose this invariance property when we use the Euler method. However,
GIGO can get arbitrarily close to invariance by decreasing the Euler step size. In other words, the
difference between two different IGO algorithms is O(δt2), and the difference between two different
implementations of the GIGO algorithm is O(h2), where h is the Euler step size; it is easier to reduce
the latter. Still, without a closed form for the geodesics of Gd, the GIGO update is rather expensive
to compute, but it can be argued that most of the computation time will still be the computation of the
objective function f .

The second problem is purely numerical: we cannot guarantee that the covariance matrix remains
positive-definite along the Euler method. Here, apart from finding a closed form for the geodesics, we
have two solutions.

We can enforce this a posteriori: if the covariance matrix we find is not positive-definite after a GIGO
step, we repeat the failed GIGO step with a reduced Euler step size (in our implementation, we divided
it by four; see Algorithm 2 in the Appendix.).

The other solution is to obtain differential equations on a square root of the covariance matrix (any
matrix A, such that Σ = AAT ).

Theorem 5 (GIGO-A). If µ : t 7→ µt and A : t 7→ At satisfy the equations:

µ̇t = AtA
T
t Jµ, (41)

Ȧt =
1

2
(JΣ − JµµTt )TAt, (42)
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where:
Jµ = (A−1

0 )TA−1
0 µ0

and:
JΣ = (A−1

0 )TA−1
0 (µ̇0µ

T
0 + Ȧ0A

T
0 + A0Ȧ

T
0 ),

then t 7→ N (µt, AtA
T
t ) is a geodesic of Gd.

Proof. This is a simple rewriting of Theorem 4: if we write Σ := AAT , we find that Jµ and JΣ are the
same as in Theorem 4, and we have:

µ̇ = ΣJµ,

and:
Σ̇ = (ȦAT + AȦT ) =

1

2
(JΣ − JµµT )TAAT +

1

2
AAT (JΣ − JµµT )

=
1

2
(JΣ − JµµT )TΣ +

1

2
Σ(JΣ − JµµT ) =

1

2
Σ(JΣ − JµµT ) +

1

2
[Σ(JΣ − JµµT )]T .

By Theorem 4, Σ(JΣ − Jµµ
T ) is symmetric (since Σ̇ has to be symmetric). Therefore, we have

Σ̇ = Σ(JΣ − JµµT ), and the result follows.

Notice that Theorem 5 gives an equivalence, whereas Theorem 4 does not. The reason is that the
square root of a symmetric positive-definite matrix is not unique. Still, it is canonical; see the discussion
in Section 6.1.2.

As for Theorem 4, we can solve Equations (41) and (42) numerically, and we obtain another algorithm
(Algorithm 3 in the Appendix; we will call it GIGO-A), with a behavior similar to the previous one (with
Equations (39) and (40)). For both of them, numerical problems can arise when the covariance matrix is
almost singular.

We have not managed to find any example where one of these two algorithms converged to the
minimum of the objective function, whereas the other did not, and their behavior is almost the same.

More interestingly, the performances of these two algorithms are also the same as the performances
of the exact GIGO algorithm, using the equations of Section 5.2.

Notice that even though GIGO-A directly maintains a square root of the covariance matrix, which
makes sampling new points easier (to sample a point from N (µ,Σ), a square root of Σ is needed), both
GIGO-Σ and GIGO-A still have to invert the covariance matrix (or its square root) at each step, which
is as costly as the decomposition, so one of these algorithms is roughly as expensive to compute as
the other.

5.2. Explicit Form of the Geodesics of Gd (from [5])

We now give the exact geodesics of Gd: the following results are a rewriting of Theorem 3.1 and its
first corollary in [5].

Theorem 6. Let (µ̇0, Σ̇0) ∈ TN (0,I)Gd. The geodesic of Gd starting from N (0, 1) with initial speed
(µ̇0, Σ̇0) is given by:

expN (0,I)(sµ̇0, sΣ̇0) = N
(

2R(s)sh(
sG

2
)G−µ̇0, R(s)R(s)T

)
, (43)
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where exp is the Riemannian exponential of Gd, G is any matrix satisfying:

G2 = Σ̇2
0 + 2µ̇0µ̇

T
0 , (44)

R(s) =

((
ch(

sG

2
)− Σ̇0G

−sh(
sG

2
)

)−1
)T

(45)

and G− is a pseudo-inverse of G

In [5], the existence of G (as a square root of Σ̇2
0 + 2µ̇0µ̇

T
0 ) is proven. Notice that, anyway, in the

expansions of (43) and (45), only even powers of G appear.
Additionally, since, for all A ∈ GLd(R), for all µ0 ∈ Rd, the application:

φ : Gd → Gd

N (µ,Σ) 7→ N (Aµ+ µ0, AΣAT )
(46)

preserves the geodesics, we find the general expression for the geodesics of Gd.

Corollary 1. Let µ0 ∈ Rd, A ∈ GLd(R) and (µ̇0, Σ̇0) ∈ TN (µ0,A0AT0 )Gd. The geodesic of Gd starting
from N (µ,Σ) with initial speed (µ̇0, Σ̇0) is given by:

expN (µ0,A0AT0 )(sµ̇0, sΣ̇0) = N (µ1, A1A
T
1 ), (47)

with:
µ1 = 2A0R(s)sh(

sG

2
)G−A−1

0 µ̇0 + µ0, (48)

A1 = A0R(s), (49)

where exp is the Riemannian exponential of Gd, G is any matrix satisfying:

G2 = A−1
0 (Σ̇0Σ−1

0 Σ̇0 + 2µ̇0µ̇
T
0 )(A−1

0 )T , (50)

R(s) =

((
ch(

sG

2
)− A−1

0 Σ̇0(A−1
0 )TG−sh(

sG

2
)

)−1
)T

, (51)

and G− is a pseudo-inverse of G.

It should be noted that the final values for mean and covariance do not depend on the choice of G as
a square root of:

A−1
0 (Σ̇0Σ−1

0 Σ̇0 + 2µ̇0µ̇
T
0 )(A−1

0 )T .

The reason for this is that ch(G) is a Taylor series in G2, and so are sh(G)G− and G−sh(G).
For our practical implementation, we actually used these Taylor series instead of the expression of the

corollary.
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6. Comparing GIGO, xNES and Pure Rank-µ CMA-ES

6.1. Definitions

In this section, we recall the xNES and pure rank-µ CMA-ES, and we describe them in the IGO
framework, thus allowing a reasonable comparison with the GIGO algorithms.

6.1.1. xNES

We recall a restriction of the xNES algorithm, introduced in [19] (this restriction is sufficient to
describe the numerical experiments in [19]).

Definition 9 (xNES algorithm). The xNES algorithm with sample size N , weights wi and learning rates
ηµ and ηΣ updates the parameters µ ∈ Rd, A ∈ Md(R) with the following rule: At each step, N points
x1, ..., xN are sampled from the distributionN (µ,AAT ). Without loss of generality, we assume f(x1) <

... < f(xN). The parameter is updated according to:

µ← µ+ ηµAGµ,

A← A exp(ηΣGM/2),

where, setting zi = A−1(xi − µ):

Gµ =
N∑
i=1

wizi,

GM =
N∑
i=1

wi(ziz
T
i − I).

The more general version decomposes the matrix A as σB, where detB = 1, and uses two different
learning rates for σ and forB. We gave the version where these two learning rates are equal (in particular,
for the default parameters in [19], these two learning rates are equal). This restriction of the xNES
algorithm can be described in the IGO framework, provided all of the learning rates are equal (most of
the elements of the proof can be found in [19] (the proposition below essentially states that xNES is a
natural gradient update) or in [1]):

Proposition 6 (xNES as IGO). The xNES algorithm with sample size N , weights wi and learning rates
ηµ = ηΣ = δt coincides with the IGO algorithm with sample size N , weights wi, step size δt and in
which, given the current position (µt, At), the set of Gaussians is parametrized by:

φµt,At : (δ,M) 7→ N

(
µt + Atδ,

(
At exp(

1

2
M)

)(
At exp(

1

2
M)

)T)
,

with δ ∈ Rm and M ∈ Sym(Rm).
The parameters maintained by the algorithm are (µ,A), and the xi are sampled from N (µ,AAT ).
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Proof. Let us compute the IGO update in the parametrization φµt,At: we have δt = 0, M t = 0, and by
using Proposition 1, we can see that for this parametrization, the Fisher information matrix at (0, 0) is
the identity matrix. The IGO update is therefore,

(δ,M)t+δt = (δ,M)t + δtYδ(δ,M) + δtYM(δ,M) = δtYδ(δ,M) + δtYM(δ,M),

where:

Yδ(δ,M) =
N∑
i=1

wi∇δ ln(p(xi|(δ,M))

and:

YM(δ,M) =
N∑
i=1

wi∇M ln(p(xi|(δ,M)).

Since tr(M) = log(det(exp(M))), we have:

lnPδ,M(x) = −d
2

ln(2π)− ln(detA)− 1

2
trM − 1

2
‖ exp(−1

2
M)A−1(x− µ− Aδ)‖2,

and a straightforward computation yields:

Yδ(δ,M) =
N∑
i=1

wizi = Gµ,

and:

YM(δ,M) =
1

2

N∑
i=1

wi(ziz
T
i − I) = GM .

Therefore, the IGO update is:
δ(t+ δt) = δ(t) + δtGµ,

M(t+ δt) = M(t) + δtGM ,

or, in terms of mean and covariance matrix:

µ(t+ δt) = µ(t) + δtA(t)Gµ

A(t+ δt) = A(t) exp(δtGM/2),

or:
Σ(t+ δt) = A(t) exp(δtGM)A(t)T .

This is the xNES update.

6.1.2. Using a Square Root of the Covariance Matrix

Firstly, we recall that the IGO framework (on Gd, for example) emphasizes the Riemannian manifold
structure on Gd. All of the algorithms studied here (including GIGO, which is not strictly speaking an
IGO algorithm) define a trajectory in Gd (a new point for each step), and to go from a point θ to the next
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one (θ′), we follow some curve γ : [0, δt]→ Gd, with γ(0) = θ, γ(δt) = θ′ and γ̇(0) given by the natural
gradient (γ̇(0) =

∑N
i=1 ŵi∇̃θPθ(xi) ∈ TθGd).

To be compatible with this point of view, an algorithm giving an update rule for a square root (any
matrixA such that Σ = AAT : since we do not forceA to be symmetric, the decomposition is not unique)
of the covariance matrixA has to satisfy the following condition: for a given initial speed, the covariance
matrix Σt+δt after one step must depend only on Σt and not on the square root At chosen for Σt.

The xNES algorithm does satisfy this condition: consider two xNES algorithms, with the same
learning rates, respectively, at (µ,At1) and (µ,At2), with At1(At1)T = At2(At2)T (i.e., they define the same
Σt), using the same samples xi to compute the natural gradient update , then we will have Σt+δt

1 = Σt+δt
2 .

Using the definitions of Section 6.3, we have just shown that what we will call the “xNES trajectory” is
well defined.

It is also important to notice that, in order to be well defined, a natural gradient algorithm updating
a square root of the covariance matrix has to specify more conditions than simply following the natural
gradient.

The reason for this is that the natural gradient is a vector tangent to Gd: it lives in a space of dimension
d(d + 3)/2 (the dimension of Gd), whereas the vector (µ,A) lives in a space of dimension d(d + 1)

(the dimension of Rn × GLn(R)), which is too large: there exists infinitely many applications t 7→ At,
such that a given curve γ : t 7→ N (µt,Σt) can be written γ(t) = N (µt, AtA

T
t ). This is why Theorem 5

is simply an implication, whereas Theorem 4 is an equivalence.
More precisely, let us consider A in GLd(R) and vA, v′A two infinitesimal updates of A. Since Σ =

AAT , the infinitesimal update of Σ corresponding to vA (resp. v′A) is vΣ = AvTA + vAA
T (resp. v′Σ =

Av′TA + v′AA
T ).

It is now easy to see that vA and v′A define the same direction for Σ (i.e., vΣ = v′Σ) if and only if
AMT +MAT = 0, where M = vA − v′A. This is equivalent to A−1M antisymmetric.

For any A ∈ Md(R), let us denote by TA the space of the matrices M , such that A−1M is
antisymmetric or, in other words, TA := {u ∈ Md(R), AuT + uAT = 0}. Having a subspace SA in
direct sum with TA for all A is sufficient (but not necessary) to have a well-defined update rule. Namely,
consider the (linear) application:

φA : Md(R) → Sd(R)

vA 7→ AvTA + vAA
T
,

sending an infinitesimal update of A to the corresponding update of Σ. It is not bijective, but as we have
seen before, KerφA = TA, and therefore, if we have, for some UA,

Md(R) = UA ⊕ TA, (52)

then φA|UA is an isomorphism. Let vΣ be an infinitesimal update of Σ. We choose the following update
of A corresponding to vΣ:

vA := (φA|UA)−1(vΣ). (53)

Any UA, such that UA ⊕ TA = Md(R), is a reasonable choice to pick vA for a given vΣ. The choice
SA = {u ∈ Md(R), AuT − uAT = 0} has an interesting additional property; it is the orthogonal of TA
for the norm:

‖vA‖2
Σ := Tr(vTAΣ−1vA) = Tr((A−1vA)TA−1vA). (54)
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and consequently, it can be defined without referring to the parametrization, which makes it a
canonical choice. To prove this, remark that TA = {M ∈ Md(R), A−1M antisymmetric} and
SA = {M ∈ Md(R), A−1M symmetric} and that if M is symmetric and N is antisymmetric, then

Tr(MTN) =
d∑

i,j=1

mijnij =
d∑
i=1

miinii +
∑

16i<j6d

mij(nij + nji) = 0. (55)

Let us now show that this is the choice made by xNES and GIGO-A (which are well-defined
algorithms updating a square root of the covariance matrix).

Proposition 7. Let A ∈ Mn(R). The vA given by the xNES and GIGO-A algorithms lies in SA = {u ∈
Md(R), AuT − uAT = 0} = SA.

Proof. For xNES, let us write γ̇(0) = (vµ, vΣ) and vA := 1
2
AGM . We have A−1vA = 1

2
GM , and

therefore, forcing M (and GM ) to be symmetric in xNES is equivalent to A−1vA = (A−1vA)T , which
can be rewritten as AvTA = vAA

T . For GIGO-A, Equation (40) shows that Σt(JΣ − JµµTt ) is symmetric,
and with this fact in mind, Equation (42) shows that we have AvTA = vAA

T (vA is Ȧt).

6.1.3. Pure Rank-µ CMA-ES

We now recall the pure rank-µ CMA-ES algorithm. The general CMA-ES algorithm is described
in [21].

Definition 10 (Pure rank-µ CMA-ES algorithm). The pure rank-µ CMA-ES algorithm with sample size
N , weights wi and learning rates ηµ and ηΣ is defined by the following update rule: At each step,
N points x1, ..., xN are sampled from the distribution N (µ,Σ). Without loss of generality, we assume
f(x1) < ... < f(xN). The parameter is updated according to:

µ← µ+ ηµ

N∑
i=1

wi(xi − µ),

Σ← Σ + ηΣ

N∑
i=1

wi((xi − µ)(xi − µ)T − Σ).

The pure rank-µ CMA-ES can also be described in the IGO framework; see, for example, [20].

Proposition 8 (Pure rank-µ CMA-ES as IGO). The pure rank-µ CMA-ES algorithm with sample size
N , weights wi and learning rates ηµ = ηΣ = δt coincides with the IGO algorithm with sample size N ,
weights wi, step size δt and the parametrization (µ,Σ).

6.2. Twisting the Metric

As we can see, the IGO framework does not allow one to recover the learning rates for xNES and pure
rank-µ CMA-ES, which is a problem, since usually, the covariance learning rate is set much smaller than
the mean learning rate (see either [19] or [21]).
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A way to recover these learning rates is to incorporate them directly into the metric (see also blockwise
GIGO, in Section 6.4). More precisely:

Definition 11 (Twisted Fisher metric). Let ηµ, ηΣ ∈ R, and let (Pθ)θ∈Θ be a family of normal probability
distributions: Pθ = N (µ(θ),Σ(θ)), with µ and Σ C1. We call the “(ηµ, ηΣ)-twisted Fisher metric” the
metric defined by:

Ii,j(ηµ, ηΣ)(θ) =
1

ηµ

∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

ηΣ

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
. (56)

All of the remainder of this section is simply a rewriting of the work in Section 2 with the twisted
Fisher metric instead of the regular Fisher metric. We will use the term “twisted geodesic” instead of
“geodesic for the twisted metric”.

This approach seems to be somewhat arbitrary: arguably, the mean and the covariance play a
“different role” in the definition of a Gaussian (only the covariance can affect diversity, for example),
but we lack a reasonable intrinsic characterization that would make this choice of twisting more natural.
This construction can be slightly generalized (see the Appendix).

The IGO flow and the IGO algorithms can be modified to take into account the twisting of the metric;
the (ηµ, ηΣ)-twisted IGO flow reads:

dθt

dt
= I(ηµ, ηΣ)−1(θ)

∫
X

W f
θt(x)∇θ lnPθ(x)Pθt(dx). (57)

The only difference with (9) is that I−1(θ) has been replaced by I(ηµ, ηΣ)−1(θ).
This leads us to the twisted IGO algorithms.

Definition 12. The (ηµ, ηΣ)-twisted IGO algorithm associated with parametrization θ, sample size N ,
step size δt and selection scheme w is given by the following update rule:

θt+δt = θt + δtI(ηµ, ηΣ)−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
.

Definition 13. The (ηµ, ηΣ)-twisted geodesic IGO algorithm associated with sample size N , step size δt
and selection scheme w is given by the following update rule:

θt+δt = expθt(Y δt) (58)

where:

Y = I(ηµ, ηΣ)−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
. (59)

By definition, the twisted geodesic IGO algorithm does not depend on the parametrization (but it does
depend on ηµ and ηΣ).

There is some redundancy between δt, ηµ and ηΣ: the only values actually appearing in the equations
are δtηµ and δtηΣ. More formally:
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Proposition 9. Let k, d,N ∈ N, ηµ, ηΣ, δt, λ1, λ2 ∈ R and w : [0; 1]→ R.
The (ηµ, ηΣ)-twisted IGO algorithm with sample sizeN , step size δt and selection schemew coincides

with the (λ1ηµ, λ1ηΣ)-twisted IGO algorithm with sample size N , step size λ2δt and selection scheme
1

λ1λ2
w. The same is true for geodesic IGO.

In order to obtain the twisted algorithms, the Fisher metric in IGO has to be replaced by the metric
from Definition 11. In practice, the equations found by twisting the metric are exactly the equations
without twisting, except that we have “forced” the learning rates ηµ, ηΣ to appear by multiplying the
increments of µ and Σ by ηµ and ηΣ.

We can now describe pure rank-µ CMA-ES and xNES with separate learning rates as twisted IGO
algorithms:

Proposition 10 (xNES as IGO). The xNES algorithm with sample size N , weights wi and learning rates
ηµ, ησ = ηB = ηΣ coincides with the ηµ

δt
, ηΣ

δt
-twisted IGO algorithm with sample size N , weights wi, step

size δt and in which, given the current position (µt, At), the set of Gaussians is parametrized by:

(δ,M) 7→ N

(
µt + Atδ,

(
At exp(

1

2
M)

)(
At exp(

1

2
M)

)T)
,

with δ ∈ Rm and M ∈ Sym(Rm).
The parameters maintained by the algorithm are (µ,A), and the xi are sampled from N (µ,AAT ).

Proposition 11 (Pure rank-µ CMA-ES as IGO). The pure rank-µ CMA-ES algorithm with sample size
N , weights wi and learning rates ηµ and ηΣ coincides with the (ηµ

δt
, ηΣ

δt
)-twisted IGO algorithm with

sample size N , weights wi, step size δt and the parametrization (µ,Σ).

The proofs of these two statements are an easy rewriting of their non-twisted counterparts: one can
return to the non-twisted metric (up to a ηΣ factor) by changing µ to

√
ησ√
ηµ
µ.

We give the equations of the twisted geodesics of Gd in the Appendix.

6.3. Trajectories of Different IGO Steps

As we have seen, two different IGO algorithms (or an IGO algorithm and the GIGO algorithm)
coincide at first order in δt when δt → 0. In this section, we study the differences between pure rank-µ
CMA-ES, xNES and GIGO by looking at the second order in δt, and in particular, we show that xNES
and GIGO do not coincide in the general case.

We view the updates done by one step of the algorithms as paths on the manifold Gd, from (µ(t),Σ(t))

to (µ(t+ δt),Σ(t+ δt)), where δt is the time step of our algorithms, seen as IGO algorithms.
More formally:

Definition 14. (1) We call the GIGO update trajectory the application:

TGIGO : (µ,Σ, vµ, vΣ) 7→
(
δt 7→ expN (µ,AAT )(δtηµvµ, δtηΣvΣ)

)
.

(exp is the exponential of the Riemannian manifold Gd(ηµ, ηΣ))
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(2) We call the xNES update trajectory the application:

TxNES : (µ,Σ, vµ, vΣ) 7→
(
δt 7→ N (µ+ δtηµvµ, A exp[ηΣδtA

−1vΣ(A−1)T ]AT )
)
,

with AAT = Σ. The application above does not depend on the choice of a square root A.

(3) We call the CMA-ES update trajectory the application:

TCMA : (µ,Σ, vµ, vΣ) 7→
(
δt 7→ N (µ+ δtηµvµ, AA

T + δtηΣvΣ)
)
.

These applications map the set of tangent vectors to Gd (TGd) to the curves in Gd(ηµ, ηΣ).
We will also use the following notation: µGIGO := φµ◦TGIGO, µxNES := φµ◦TxNES, µCMA := φµ◦TCMA,

ΣGIGO := φΣ ◦ TGIGO, ΣxNES := φΣ ◦ TxNES and ΣCMA := φΣ ◦ TCMA, where φµ (resp. φΣ) extracts the
µ-component (resp. the Σ-component) of a curve.

In particular, Im(φµ) ⊂ Rd and Im(φΣ) ⊂ Pd, where Pd (the set of real symmetric
positive-definitematrices of dimension d) is seen as a subset of Rd2

.

For instance, TGIGO(µ,Σ, vµ, vΣ)(δt) gives the position (mean and covariance matrix) of the GIGO
algorithm after a step of size δt, while µGIGO and ΣGIGO give, respectively, the mean component and the
covariance component of this position.

This formulation ensures that the trajectories we are comparing had the same initial position and the
same initial speed, which is the case provided the sampled points (the values directly sampled from
N (µ,Σ), not from N (0, I) and transformed) are the same.

Different IGO algorithms coincide at first order in δt. The following proposition gives the second
order expansion of the trajectories of the algorithms.

Proposition 12 (Second derivatives of the trajectories). We have:

µGIGO(µ,Σ, vµ, vΣ)′′(0) = ηµηΣvΣΣ−1
0 vµ,

µxNES(µ,Σ, vµ, vΣ)′′(0) = µCMA(µ,Σ, vµ, vΣ)′′(0) = 0,

ΣGIGO(µ,Σ, vµ, vΣ)′′(0) = η2
ΣvΣΣ−1vΣ − ηµηΣvµv

T
µ ,

ΣxNES(µ,Σ, vµ, vΣ)′′(0) = η2
ΣvΣΣ−1vΣ,

ΣCMA(µ,Σ, vµ, vΣ)′′(0) = 0.

Proof. We can immediately see that the second derivatives of µxNES, µCMA and ΣCMA are zero. Next,
we have:

ΣxNES(µ,Σ, vµ, vΣ)(t) = A exp[tA−1ηΣvΣ(A−1)T ]AT

= AAT + tηΣvΣ +
t2

2
η2

ΣvΣ(A−1)TA−1vΣ + o(t2)

= Σ + tηΣvΣ +
t2

2
η2

ΣvΣΣ−1vΣ + o(t2).

The expression of ΣxNES(µ,Σ, vµ, vΣ)′′(0) follows.
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Now, for GIGO, let us consider the geodesic starting at (µ0,Σ0) with initial speed (ηµvµ, ηΣvΣ).
By writing Jµ(0) = Jµ(t), we find µ̇(t) = Σ(t)Σ−1

0 µ̇0. We then easily have µ̈(0) = Σ̇0Σ−1
0 µ̇0.

In other words:
µGIGO(µ,Σ, vµ, vΣ)′′(0) = ηµηΣvΣΣ−1

0 vµ.

Finally, by using Theorem 4 and differentiating, we find:

Σ̈ = ηΣΣ̇(JΣ − JµµT )− ηΣΣJµµ̇
T ,

Σ̈0 = ηΣΣ̇0
1

ηΣ

Σ−1
0 Σ̇0 −

ηΣ

ηµ
µ̇0µ̇

T
0 = η2

ΣvΣΣ−1
0 vΣ − ηΣηµvµv

T
µ .

In order to interpret these results, we will look at what happens in dimension one. In higher
dimensions, we can suppose that the algorithms exhibit a similar behavior, but an exact interpretation is
more difficult for GIGO in Gd.

• In [19], it has been noted that xNES converges to quadratic minima slower than CMA-ES and that
it is less subject to premature convergence. That fact can be explained by observing that the mean
update is exactly the same for CMA-ES and xNES, whereas xNES tends to have a higher variance
(Proposition 12 shows this at order two, and it is easy to see that in dimension one, for any µ, Σ,
vµ, vΣ, we have ΣxNES(µ,Σ, vµ, vΣ) > ΣCMA(µ,Σ, vµ, vΣ)).
• At order two, GIGO moves the mean faster than xNES and CMA-ES if the standard deviation

is increasing and more slowly if it is decreasing. This seems to be a reasonable behavior (if the
covariance is decreasing, then the algorithm is presumably close to a minimum, and it should not
leave the area too quickly). This remark holds only for isolated steps, because we do not take into
account the evolution of the variance.
• The geodesics of G1 are half-circles (see Figure 2 below; we recall that G1 is the Poincaré

half-plane). Consequently, if the mean is supposed to move (which always happens), then σ → 0

when δt→∞. For example, a step whose initial speed has no component on the standard deviation
will always decrease it. See also Proposition 15, about the optimization of a linear function.
• For the same reason, for a given initial speed, the update of µ always stays bounded as a function

of δt: it is not possible to make one step of the GIGO algorithm go further than a fixed point
by increasing δt. Still, the geodesic followed by GIGO changes at each step, so the mean of the
overall algorithm is not bounded.

We now show that xNES follows the geodesics of Gd if the mean is fixed, but that xNES and GIGO
do not coincide otherwise.

Proposition 13 (xNES is not GIGO in the general case). Let µ, vµ ∈ Rd, A ∈ GLd, vΣ ∈ Md.
Then, the GIGO and xNES updates starting atN (µ,Σ) with initial speeds vµ and vΣ follow the same

trajectory if and only if the mean remains constant. In other words:
TGIGO(µ,Σ, vµ, vΣ) = TxNES(µ,Σ, vµ, vΣ) if and only if vµ = 0.

Proof. If vµ = 0, then we can compute the GIGO update by using Theorem 4: since Jµ = 0, µ̇ = 0, and
µ remains constant. Now, we have JΣ = Σ−1Σ̇; this is enough information to compute the update. Since
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θt+dt
θt

µ

σ

Y

Figure 2. One step of the geodesic IGO (GIGO) update.

this quantity is also preserved by the xNES algorithm (see, for example, the proof of Proposition 14), the
two updates coincide.

If vµ 6= 0, then ΣxNES(µ,Σ, vµ, vΣ)′′(0)−ΣGIGO(µ,Σ, vµ, vΣ)′′(0) = ηµηΣvµv
T
µ 6= 0 and, in particular,

TGIGO(µ,Σ, vµ, vΣ) 6= TxNES(µ,Σ, vµ, vΣ).

6.4. Blockwise GIGO

Although xNES is not GIGO, it is possible to define a family of algorithms extending GIGO and
including xNES, by decomposing our family of probability distributions as a product and by following
the restricted geodesics simultaneously.

Definition 15 (Splitting). Let Θ be a Riemannian manifold. A splitting of Θ is n manifolds Θ1, ...,Θn

and a diffeomorphism Θ ∼= Θ1 × ... × Θn. If for all x ∈ Θ, for all 1 6 i < j 6 n, we also have
Ti,xM ⊥ Tj,xM as subspaces of TxM (see Notation 2), then the splitting is said to be compatible
with the Riemannian structure. If the Riemannian manifold is not ambiguous, we will simply write a
“compatible splitting”.

We now give some notation, and we define the blockwise GIGO update:

Notation 2. Let Θ be a Riemannian manifold, Θ1, ...,Θn a splitting of Θ, θ = (θ1, ..., θn) ∈ Θ, Y ∈ TθΘ
and 1 6 i 6 n.

• We denote by Θθ,i the Riemannian manifold

{θ1} × ...× {θi−1} ×Θi × {θi+1} × ...× {θn},

with the metric induced from Θ. There is a canonical isomorphism of vector spaces TθΘ =

⊕ni=1TΘθ,i. Moreover, if the splitting is compatible, it is an isomorphism of Euclidean spaces.

• We denote by Φθ,i the exponential at θ of the manifold Θθ,i.

Definition 16 (Blockwise GIGO update). Let Θ1, ...,Θn be a compatible splitting. The blockwise
GIGO algorithm in Θ with splitting Θ1, ...,Θn associated with sample size N , step sizes δt1, ..., δtn
and selection scheme w is given by the following update rule:

θ ← (θt+δt11 , ..., θt+δtnn ) (60)
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where:

Y = I−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
, (61)

θt+δtkk = Φθt,k(δtkYk), (62)

with Yk the TΘθ,k-component of Y . This update only depends on the splitting (and not on the
parametrization inside each Θk).

The compatibility condition ensures that the natural gradient of W f
θt (defined in Section 2.2) in the

whole manifold Θ really is the sum of the gradients of this same function in the submanifolds Θk.
A practical consequence is that the Yk in Equation (62) can be computed simply by taking the natural
gradient in Θk:

Yk = I−1
k (θti)

N∑
i=1

ŵi
∂ lnPθ(xi)

∂θk
, (63)

where Ik is the metric of Θk.
Since blockwise GIGO only depends on the splitting (and the tunable parameters: sample size,

step sizes and selection scheme), it can be thought of as almost parametrization-invariant.
Notice that blockwise GIGO updates and twisted GIGO updates are two different things: firstly,

blockwise GIGO can be defined on any manifold with a compatible splitting, whereas twisted GIGO
(and twisted IGO) are only defined for Gaussians. However, even in Gd(ηµ, ηΣ), with the splitting
(µ,Σ), these two algorithms are different: for instance, if ηµ = ηΣ and δt = 1, then the twisted GIGO
is the regular GIGO algorithm, whereas blockwise GIGO is not (actually, we will prove that it is the
xNES algorithm). The only thing blockwise GIGO and twisted GIGO have in common is that they are
compatible with the (ηµ, ηΣ)-twisted IGO flow Equation (57): a parameter θt following these updates
with δt→ 0 and N →∞ is a solution of Equation (57).

We now have a new description of the xNES algorithm:

Proposition 14 (xNES is a Blockwise GIGO algorithm). The Blockwise GIGO algorithm in Gd with
splitting Φ : N (µ,Σ) 7→ (µ,Σ), sample size N , step sizes δtµ, δtΣ and selection scheme w coincides
with the xNES algorithm with sample size N , weights wi and learning rates ηµ = δtµ, ησ = ηB = δtΣ.

Proof. Firstly, notice that the splitting (µ,Σ) is compatible, by Proposition 1.
Now, let us compute the Blockwise GIGO update: we have Gd

∼= Rd × Pd, where Pd is the space
of real positive-definite matrices of dimension d. We have Θθt,1 = (Rd × {Σt}) ↪→ Gd, Θθt,2 =

({µt} × Pd) ↪→ Gd. The induced metric on Θθt,1 is the Euclidean metric, so we have:

µ← µt + δt1Yµ.

Since we have already shown (using the notation in Definition 9) that Yµ = AGµ (in the proof of
Proposition 6), we find:

µ← µt + δt1AGµ.

On Θθt,2, we have the following Lagrangian for the geodesics:

L(Σ, Σ̇) =
1

2
tr(Σ̇Σ−1Σ̇Σ−1).
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By applying Noether’s theorem, we find that

JΣ = Σ−1Σ̇

is invariant along the geodesics of Θθt,2, so they are defined by the equation Σ̇ = ΣJΣ = ΣΣ−1
0 Σ̇0

(and therefore, any update preserving the invariant JΣ will satisfy this first-order differential equation
and follow the geodesics of Θθt,2). The xNES update for the covariance matrix is given by A(t) =

A0 exp(tGM/2). Therefore, we have Σ(t) = A0 exp(tGM)AT0 , Σ−1(t) = (A−1
0 )T exp(−tGM)A−1

0 ,
Σ̇(t) = A0 exp(tGM)GMA

T
0 and, finally, Σ−1(t)Σ̇(t) = (A−1

0 )TGMA
T
0 = Σ−1

0 Σ̇0. Therefore, xNES
preserves JΣ, and therefore, xNES follows the geodesics of Θθt,2 (notice that we had already proven this
in Proposition 13, since we are looking at the geodesics of Gd with a fixed mean).

Although blockwise GIGO is somewhat “less natural” than GIGO, it can be easier to compute for
some splittings (as we have just seen), and in the case of the Gaussian distributions, the mean-covariance
splitting seems reasonable.

7. Numerical Experiments

We conclude this article with some numerical experiments to compare the behavior of GIGO, xNES
and pure rank-µ CMA-ES (we give the pseudocodes for these algorithms in the Appendix). We made
two series of tests. The first one is a performance test, using classical benchmark functions and the
settings from [19]. The goal of the second series of tests is to illustrate the computations in Section 6.3
by plotting the trajectories (standard deviation versus mean) of these three algorithms in dimension one.

The source code is available at [22].

7.1. Benchmarking

For the first series of experiments, presented in Figure 3, we used the following parameters, taken
from [19] (we recall that xNES and pure rank-µ CMA-ES are seen as IGO algorithms):

• Varying dimension.
• Sample size: b4 + 3 log(d)c.
• Weights: wi =

max(0,log(n
2

+1)−log(i)∑N
j=1 max(0,log(n

2
+1)−log(j)

− 1
N

.

• IGO step size and learning rates: δt = 1, ηµ = 1, ηΣ = 3
5

3+log(d)

d
√
d
..

• Initial position: θ0 = N (x0, I), where x0 is a random point of the circle with center zero, and
radius 10.
• Euler method for GIGO: Number of steps: 100. We used the GIGO-A variant of the algorithm.

No significant difference was noticed with GIGO-Σ or with the exact GIGO algorithm. The only
advantage of having an explicit solution of the geodesic equations is that the update is quicker to
compute.
• We chose not to use the exact expression of the geodesics for this benchmarking to show that

having to use the Euler method is fine. However, we did run the tests, and the results are basically
the same as GIGO-A.

We plot the median number of runs to achieve target fitness (10−8). Each algorithm has been tested
in dimension 2, 4, 8, 16, 32 and 64: a missing point means that all runs converged prematurely.
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7.1.1. Failed Runs

In Figure 3, a point is plotted even if only one run was successful. Below is the list of the settings for
which at least one run converged prematurely.

• Only one run reached the optimum for the cigar-tablet function with CMA-ES in dimension eight.

• Seven runs (out of 24) reached the optimum for the Rosenbrock function with CMA-ES in
dimension 16.
• About half of the runs reached the optimum for the sphere function with CMA-ES in dimension

four.

Dimension d From 2 to 64

Sample size N 4 + 3 log(d)

Weights (wi)i∈[1,N ]
max(0,log( n

2 +1)−log(i)∑N
j=1 max(0,log( n

2 +1)−log(j)
− 1

N

IGO step size δt 1

Mean ηµ 1

learning rate
Covariance ηΣ

3
5

3+log(d)

d
√
d

learning rate
Euler step-size h 0.01(100 steps)
(for GIGO only)
GIGO implementation GIGO-A
Sphere function x 7→

∑d
i=1 x

2
i

Cigar-tablet x 7→ x2
1 +

∑d−1
i=2 104x2

i + 108x2
d

Rosenbrock x 7→
∑d−1
i=1 (100(x2

i − xi+1)2 + (xi − 1)2)

x-axis Dimension
y-axis Number of function calls

to reach fitness 10−8.

102

103

104

105

2 4 8 16 32 64

Cigar-tablet

CMA
GIGO
xNES

102

103

104

105

2 4 8 16 32 64

Sphere

CMA
GIGO
xNES

102

103

104

105

2 4 8 16 32 64

Rosenbrock

CMA
xNES

Figure 3. Median number of function calls to reach 10−8 fitness on 24 runs for: sphere
function, cigar-tablet function and Rosenbrock function. Initial position θ0 = N (x0, I),
with x0 uniformly distributed on the circle of center zero and radius 10. We recall that the
“CMA-ES” algorithm here is using the so-called pure rank-µ CMA-ES update.
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For the following settings, all runs converged prematurely.

• GIGO did not find the optimum of the Rosenbrock function in any dimension.

• CMA-ES did not find the optimum of the Rosenbrock function in dimension 2, 4, 32 and 64.

• All of the runs converged prematurely for the cigar-tablet function in dimension two with
CMA-ES, for the sphere function in dimension two for all algorithms and for the Rosenbrock
function in dimension two and four for all algorithms.

7.1.2. Discussion

As the last item in Section 7.1.1 shows, all of the algorithms converge prematurely in a low dimension,
probably because the covariance learning rate has been set too high (or because the sample size is too
small). This is different from the results in [19].

This remark aside, as noted in [19], the xNES algorithm shows more robustness than CMA-ES and
GIGO: it is the only algorithm able to find the minimum of the Rosenbrock function in high dimensions.
However, its convergence is consistently slower.

In terms of performance, when both of them work, pure rank-µ CMA-ES (or equivalently, IGO in
the parametrization (µ,Σ)) and GIGO are extremely close (GIGO is usually a bit better). An advantage
of GIGO is that it is theoretically defined for any δt, ηΣ, whereas the covariance matrix maintained by
CMA-ES (not only pure rank-µ CMA-ES) can stop being positive definite if ηΣδt > 1. However, in that
case, the GIGO algorithm is prone to premature convergence (remember Figure 2 and see Proposition 15
below), and in practice, the learning rates are much smaller.

7.2. Plotting Trajectories in G1

We want the second series of experiments to illustrate the remarks about the trajectories of the
algorithms in Section 6.3, so we decided to take a large sample size to limit randomness, and we chose
a fixed starting point for the same reason. We use the weights below because of the property of quantile
improvement proven in [23]: the 1/4-quantile will improve at each step. The parameters we used were
the following:

• Sample size: λ = 5, 000

• Dimension one only.
• Weights: w = 41q61/4 (wi = 4.1i61,250)

• IGO step size and learning rates: ηµ = 1, ηΣ = 3
5

3+log(d)

d
√
d

= 1.8, varying δt.
• Initial position: θ0 = N (10, 1)

• Dots are placed at t = 0, 1, 2 . . . (except for the graph δt = 1.5, for which there is a dot for each
step).

Figures 4–8 show the optimization of x 7→ x2, and Figures 9–11 show the optimization of x 7→ −x.
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Figure 4. Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in dimension one with
δt = 0.01, sample size 5000, weights wi = 4.1i61250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot every 100 steps. All algorithms exhibit a similar behavior
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Figure 5. Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in dimension one with
δt = 0.5, sample size 5000, weights wi = 4.1i61250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot every two steps. Stronger differences. Notice that after one step, the lowest mean is
still GIGO (∼ 8.5, whereas xNES is around 8.75), but from the second step, GIGO has the
highest mean, because of the lower variance.
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Figure 6. Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in dimension one with
δt = 0.1, sample size 5000, weights wi = 4.1i61250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot every 10 steps. All algorithms exhibit a similar behavior, and differences start to
appear. It cannot be seen on the graph, but the algorithm closest to zero after 400 steps is
CMA (∼ 1.10−16, followed by xNES (∼ 6.10−16) and GIGO (∼ 2.10−15).
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Figure 7. Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in dimension one with
δt = 1, sample size 5000, weights wi = 4.1i61250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot per step. The CMA-ES algorithm fails here, because at the fourth step, the
covariance matrix is not positive definite anymore (it is easy to see that the CMA-ES update
is always defined if δtηΣ < 1, but this is not the case here). Furthermore, notice (see also
Proposition 15) that at the first step, GIGO decreases the variance, whereas the σ-component
of the IGO speed is positive.
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Figure 8. Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in dimension one with
δt = 1.5, sample size 5000, weights wi = 4.1i61250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot per step. Same as δt = 1 for CMA. GIGO converges prematurely.
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Figure 9. Trajectories of GIGO, CMA and xNES optimizing x 7→ −x in dimension one with
δt = 0.01, sample size 5000, weights wi = 4.1i61250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot every 100 steps. Almost the same for all algorithms.
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Figure 10. Trajectories of GIGO, CMA and xNES optimizing x 7→ −x in dimension one
with δt = 0.1, sample size 5000, weightswi = 4.1i61250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot every 10 steps. It is not obvious on the graph, but xNES is faster than CMA, which
is faster than GIGO.
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Figure 11. Trajectories of GIGO, CMA and xNES optimizing x 7→ −x in dimension one
with δt = 1, sample size 5, 000, weights wi = 4.1i61,250 and learning rates ηµ = 1, ηΣ = 1.8.
One dot per step. GIGO converges, for the reasons discussed earlier.

Figures 7, 8 and 11 show that when δt > 1, GIGO reduces the covariance, even at the first step. More
generally, when using the GIGO algorithm in G̃d for the optimization of a linear function, there exists a
critical step size δtcr (depending on the learning rates ηµ, ησ and on the weights wi), above which, GIGO
will converge, and we can compute its value when the weights are of the form 1q6q0 (for q0 > 0.5, the
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discussion is not relevant, because in that case, even the IGO flow converges prematurely. Compare with
the critical δt of the smoothed cross entropy method and IGO-ML in [1]).

Proposition 15. Let d ∈ N, k, ηµ, ησ ∈ R∗+; let w = k.1q6q0; and let

g : Rd → R
x 7→ −x1

.

Let µn be the first coordinate of the mean, and let σ2
n be the variance (at step n) maintained by the

(ηµ, ησ)-twisted geodesic IGO algorithm in G̃d associated with selection scheme w, sample size∞ and
step size δt, when optimizing g (“sample size∞" meaning the limit of the update when the sample size
tends to infinity, which is deterministic [1]).

There exists δtcr, such that:

• if δt > δtcr, (σn) converges to zero with exponential speed and (µn) converges.
• if δt = δtcr, (σn) remains constant and (µn) tends to∞ with linear speed.
• if 0 < δt < δtcr, both (σn) and µn tend to∞ with exponential speed.

The proof and the expression of δtcr can be found in the Appendix.
In the case corresponding to k = 4, n = 1, q0 = 1/4, ηµ = 1, ησ = 1.8, we find:

δtcr ≈ 0.84. (64)

8. Conclusions

We introduced the geodesic IGO algorithm, and we showed that in the case of Gaussian distributions,
Noether’s theorem directly gives a first order equation satisfied by the geodesics. In terms of
performance, the GIGO algorithm is similar to pure rank-µ CMA-ES, which is rather encouraging:
it would be interesting to test GIGO on real problems. Moreover, GIGO is a reasonable and totally
parametrization-invariant algorithm (provided we can compute the solution of the equations of the
geodesics), and as such, it should be studied for other families of probability distributions, like Bernoulli
distributions (although in that case, the Riemannian exponential is not defined if the step size is too large,
because the length of the geodesics is finite). Noether’s theorem could be a crucial tool for this.

We also showed that xNES and GIGO are not the same algorithm, and we defined blockwise GIGO, a
simple extension of the GIGO algorithm, showing that xNES has a special status, as it admits a definition
that is “almost” parametrization-invariant.
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Appendix A

Proof of Proposition 15. Let us first consider the case k = 1.
When optimizing a linear function, the non-twisted IGO flow in G̃d with the selection function w :

q 7→ 1q6q0 is known [1], and in particular, we have:

µt = µ0 +
β(q0)

α(q0)
σt, (65)

σt = σ0 exp(α(q0)t), (66)

where, if we denote byN a random vector following a standard normal distribution andF the cumulative
distribution of a standard normal distribution,

α(q0, d) =
1

2d

(∫ q0

0

F−1(u)2du− q0

)
, (67)

and:
β(q0) = E(N1N6F−1(q0)). (68)

In particular, α := α(1
4
, 1) ≈ 0.107 and β := β(1

4
) ≈ −0.319.

With a minor modification of the proof in [1], we find that the (ηµ, ησ)-twisted IGO flow is given by:

µt = µ0 +
β(q0)

α(q0)
σ0 exp(ηµα(q0)t), (69)

σt = σ0 exp(ησα(q0)t), (70)

Notice that Equation (69) shows that the assertions about the convergence of (σn) immediately imply
the assertions about the convergence of (µn).

Let us now consider a step of the GIGO algorithm: The twisted IGO speed is Y = (ηµβσ0, ησασ0),
with ασ0 > 0 (i.e., the variance should be increased: this is where we need q0 < 0.5).

Proposition 17 shows that the covariance at the end of the step is (using the same notation):

σ(δt) = σ(0)Im(
dievδt − c
cievδt + d

) = σ(0)
evδt(d2 + c2)

c2e2vδt + d2
=: σ(0)f(δt), (71)

and it is easy to see that f only depends on δt (and on q0). In other words, f(δt) will be the same at each
step of the algorithm. The existence of δtcr easily follows (furthermore, recall Figure 1 in Section 4.1),
and δtcr is the positive solution of f(x) = 1.

After a quick computation, we find:

exp(vδtcr) =

√
1 + u2 + 1√
1 + u2 − 1

. (72)

where:

u :=

√
ηµ

2nησ

β

α
, (73)

and:

v :=

√
η2
σα

2 +
ηµησ
2n

β2. (74)
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Finally, for w = k.1q6q0 , Proposition 9 shows that:

δtcr =
1

k

1

v
ln

(√
1 + u2 + 1√
1 + u2 − 1

)
. (75)

A1. Generalization of the Twisted Fisher Metric

The following definition is a more general way to introduce the twisted Fisher metric.

Definition 17. Let (Θ, g) be a Riemannian manifold, (Θ1, g|Θ1), ..., (Θn, g|Θn), a splitting (as defined in
Section 6.4) of Θ compatible with the metric g.

We call (η1, ..., ηn)-twisted metric on (Θ, g) for the splitting Θ1, ...,Θn the metric g′ on Θ defined by
g′|Θi = 1

ηi
g|Θi for 1 6 i 6 n, and Θi ⊥ Θj for i 6= j.

Proposition 16. The (ηµ, ηΣ)-twisted metric on Gd with the Fisher metric for the splitting N (µ,Σ) 7→
(µ,Σ) coincides with the (ηµ, ηΣ)-twisted Fisher metric from Definition 11.

Proof. It is easy to see that the (ηµ, ηΣ)-twisted Fisher metric satisfies the condition in Definition 17.

A2. Twisted Geodesics

The following theorem can be used to compute the twisted geodesics from the non twisted geodesics.
It is a simple calculation.

Theorem 7. Let ηµ, ηΣ ∈ R, µ0 ∈ Rd, A0 ∈ GLd(R), and (µ̇0, Σ̇0) ∈ TN (µ0,A0AT0 )Gd. Let

h : Gd → Gd

N (µ,Σ) 7→ N (
√

ηµ
ηΣ
µ,Σ)

. (76)

We denote by φ (resp. ψ) the Riemannian exponential of Gd (resp. Gd with the (ηµ, ηΣ)-twisted Fisher
metric) at N (

√
ηµ
ηΣ
µ0, A0A

T
0 ) (resp. N (µ0, A0A

T
0 )). We have:

ψ(µ̇0, Σ̇0) = h ◦ φ(

√
ηΣ

ηµ
µ̇0, Σ̇0) (77)

Proof. Let us denote by:

(
Iµ 0

0 IΣ

)
the Fisher metric in the parametrization µ,Σ, and consider the

following parametrization of Gd: (µ̃,Σ) 7→ N (
√
ηΣ√
ηµ
µ̃,Σ).

The Riemannian exponential at N (µ0, A0A
T
0 ) in this parametrization is:

h ◦ φ ◦ (dh(µ0, A0A
T
0 ))−1 (78)
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However, in this parametrization, the Fisher metric reads:(
ηΣ

ηµ
Iµ 0

0 IΣ

)
, (79)

which is proportional to the (ηµ, ηΣ)-twisted Fisher metric up to a factor 1
ηΣ

. Consequently, the
Christoffel symbols are the same as the Christoffel symbols of the (ηµ, ηΣ)-twisted Fisher metric, and so
are the geodesics. Therefore, we have:

ψ = h ◦ φ ◦ (dh(µ0, A0A
T
0 ))−1, (80)

which is what we wanted.

For the remainder of this section, we fix ηµ and ηΣ; Gd is endowed with the (ηµ, ηΣ)-twisted Fisher
metric, and G̃d is endowed with the induced metric. The proofs of the propositions below are a simple
rewriting of their non-twisted counterparts that can be found in Sections 4 and 5.1 and can be seen as
corollaries of Theorem 7.

Theorem 8. If γ : t 7→ N (µ(t), σ(t)2I) is a twisted geodesic of G̃d, then there exists a, b, c, d ∈ R, such
that ad− bc = 1, and v > 0, such that
µ(t) = µ(0) +

√
2dηµ
ησ

µ̇0

‖µ̇0‖ r̃(t), σ(t) = Im(γC(t)), with r̃(t) = Re(γC(t)) and:

γC(t) :=
aievt + b

cievt + d
. (81)

Proposition 17. Let n ∈ N, vµ ∈ Rn, vσ, ηµ, ησ, σ0 ∈ R, with σ0 > 0.

Let vr := ‖vµ‖, λ =
√

2nηµ
ησ

v :=

√
1
λ2 v

2
r+v2

σ

σ2
0

, M0 := 1
λ
vr
vσ2

0
and S0 := vσ

vσ2
0
.

Let c :=

(√
M2

0 +S2
0−S0

2

) 1
2

and d :=

(√
M2

0 +S2
0+S0

2

) 1
2

.

Let γC(t) := σ0
dievt−c
cievt+d

.
Then:

γ : t 7→ N
(
µ0 + λ

vµ
‖vµ‖

Re(γC(t)), Im(γC(t))

)
(82)

is the twisted geodesic of G̃n satisfying γ(0) = (µ0, σ0) and γ̇(0) = (vµ, vσ). The regular geodesics of
G̃n are obtained with ηµ = ησ = 1.

Theorem 9. Let γ : t 7→ N (µt,Σt) be a twisted geodesic of Gd. Then, the following quantities are
invariant:

Jµ =
1

ηµ
Σ−1
t µ̇t, (83)

JΣ = Σ−1
t (

1

ηµ
µ̇tµ

T
t +

1

ηΣ

Σ̇t). (84)

Theorem 10. If µ : t 7→ µt and Σ : t 7→ Σt satisfy the equations:

µ̇t = ηµΣtJµ (85)
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Σ̇t = ηΣΣt(JΣ − JµµTt ) = ηΣΣtJΣ −
ηΣ

ηµ
µ̇tµ

T
t , (86)

where:
Jµ =

1

ηµ
Σ−1

0 µ̇0,

and:

JΣ = Σ−1
0

(
1

ηµ
µ̇0µ

T
0 +

1

ηΣ

Σ̇0

)
.

then t 7→ N (µt,Σt) is a twisted geodesic of Gd.

Theorem 11. If µ : t 7→ µt and A : t 7→ At satisfy the equations:

µ̇ = ηµAtA
T
t Jµ, (87)

Ȧt =
ηΣ

2
(JΣ − JµµTt )TAt, (88)

where:
Jµ =

1

ηµ
(A−1

0 )TA−1
0 µ̇0

and:
JΣ = (A−1

0 )TA−1
0 (

1

ηµ
µ̇0µ

T
0 +

1

ηΣ

Ȧ0A
T
0 +

1

ηΣ

A0Ȧ
T
0 ),

then t 7→ N (µt, AtA
T
t ) is a twisted geodesic of Gd.

A3. Pseudocodes

A3.1. For All Algorithms

All studied algorithms have a common part, given here:
Variables: µ,Σ (or A such that Σ = AAT ).
List of parameters: f : Rd → R, step size δt, learning rates ηµ, ηΣ, sample size λ, weights (wi)i∈[1,λ],

N number of steps for the Euler method, r Euler step size reduction factor (for GIGO-Σ only).

Algorithm 1 For all algorithms.
µ← µ0

if The algorithm updates Σ directly then
Σ← Σ0

Find some A, such that Σ = AAT

else {The algorithm updates a square root A of Σ}
A← A0

Σ = AAT

end if
while NOT (Termination criterion) do

for i = 1 to λ do
zi ∼ N (0, I)

xi = Azi + µ

end for
Compute the IGO initial speed, and update the mean and the covariance (the updates are Algorithms 2 to 6).

end while
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Notice that we always need a square root A of Σ to sample the xi, but the decomposition Σ = AAT

is not unique. Two different decompositions will give two algorithms, such that one is a modification of
the other as a stochastic process: same law (the xi are abstractly sampled from N (µ,Σ)), but different
trajectories (for given zi, different choices for the square root will give different xi). For GIGO-Σ, since
we have to invert the covariance matrix, we used the Cholesky decomposition (A lower triangular. The
the other implementation directly maintains a square root of Σ). Usually, in CMA-ES, the square root of
Σ (Σ = AAT , A symmetric) is used.

A3.2. Updates

When describing the different updates, µ, Σ, A, the xi and the zi are those defined in Algorithm 1.
For Algorithm 2 (GIGO-Σ), when the covariance matrix after one step is not positive-definite, we

compute the update again, with a step size divided by r for the Euler method (we have no reason to
recommend any particular value of r, the only constraint is r > 1).

Algorithm 2 GIGO Update, one step, updating the covariance matrix.
1. Compute the IGO speed:

vµ = A

λ∑
i=1

wizi,

vΣ = A

λ∑
i=1

wi
(
ziz

T
i − I

)
AT .

2. Compute the Noether invariants:
Jµ ← Σ−1vµ,

JΣ ← Σ−1(vµ
tµ+ vΣ).

3. Solve numerically the equations of the geodesics:
Unhappy← true
µ0 ← µ

Σ0 ← Σ

k = 0

while Unhappy do
µ← µ0

Σ← Σ0

h← δt/(Nrk)

for i = 1 to Nrk do
µ← µ+ hηµΣJµ

Σ← Σ + hηΣΣ(JΣ − JµµT )

end for
if Σ positive-definite then

Unhappy← false
end if
k ← k + 1

end while
return µ, Σ
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Algorithm 3 GIGO Update, one step, updating a square root of the covariance matrix.
1. Compute the IGO speed:

vµ = A

λ∑
i=1

wizi,

vΣ = A

λ∑
i=1

wi
(
ziz

T
i − I

)
AT .

2. Compute the Noether invariants:
Jµ ← Σ−1vµ,

JΣ ← Σ−1(vµ
tµ+ vΣ).

3. Solve numerically the equations of the geodesics:
h← δt/N

for i = 1 to N do
µ← µ+ hηµAA

TJµ

A← A+
h

2
ηΣ(JΣ − JµµT )TA

end for
return µ, A

Algorithm 4 Exact GIGO, one step. Not exactly our implementation; see the discussion after
Corollary 1.

1. Compute the IGO speed:

vµ = A

λ∑
i=1

wizi,

vΣ = A

λ∑
i=1

wi
(
ziz

T
i − I

)
AT .

2. Learning rates

λ←
√
ηΣ

ηµ
µ← λµ

vµ ← ηµλvµ

vΣ ← ηΣvΣ

3. Intermediate computations.
G2 ← A−1

(
vΣ(A−1)TA−1vΣ + 2vµv

T
µ

)
(A−1)T

C1 ← ch(
G

2
)

C2 ← sh(
G

2
)G−1

R←
(
(C1 −A−1vΣ(A−1)TC2)−1

)T
4. Actual update
µ← µ+ 2ARC2A

−1vµ

A← AR

5. Return to the “real” µ
µ← µ

λ
return µ, A
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Algorithm 5 xNES update, one step.
1. Compute Gµ and GM (equivalent to the computation of the IGO speed):

Gµ =

λ∑
i=1

wizi

GM =

λ∑
i=1

wi
(
ziz

T
i − I

)
2. Actual update:
µ← µ+ ηµAGµ

A← A+A exp(ηΣGM/2)

return µ, A

Algorithm 6 pure rank-µ CMA-ES update, one step
1. Computation of the IGO speed:

vµ =

λ∑
i=1

wi(xi − µ)

vΣ =

λ∑
i=1

wi
(
(xi − µ)(xi − µ)T − Σ

)
2. Actual update:
µ← µ+ ηµvµ

Σ← Σ + ηΣvΣ

return µ, Σ

Algorithm 7 GIGO in G̃d, one step.
1. Compute the IGO speed:

Yµ =
λ∑
i=1

wi(xi − µ) ; Yσ =
λ∑
i=1

wi

(
(xi − µ)T (xi − µ)

2dσ
− σ

2

)
2. Better parametrization:

λ :=

√
2dηµ
ησ

vr :=
ηµ
λ
‖Yµ‖ ; vσ := ησYσ

3. Find a, b, c, d, v corresponding to µ, σ, µ̇, σ̇:

v =

√
v2
r + v2

σ

σ2

S0 :=
vσ
vσ2

; M0 :=
vr
vσ2

C :=

√
S2

0 +M2
0 − S0

2
; D :=

√
S2

0 +M2
0 + S0

2
c :=

√
C ; d :=

√
D

4. Actual Update:

z := σ
dievδt − c
cievδt + d

µ := µ+ λRe(z)
Yµ
‖Yµ‖

; σ := Im(z)

return µ, σ
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