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Abstract: This paper is concerned with the robust H∞ finite-time control for discrete
delayed nonlinear systems with Markovian jumps and external disturbances. It is
usually assumed that the disturbance affects the system states and outputs with the same
influence degree of 100%, which is not evident enough to reflect the situation where the
disturbance affects these two parts by different influence degrees. To tackle this problem,
a probabilistic distribution denoted by binomial sequences is introduced to describe the
external disturbance. Throughout the paper, the definitions of the finite-time boundedness
(FTB) and the H∞ FTB are firstly given respectively. To extend the results further, a model
which combines a linear dynamic system and a static nonlinear operator is referred to
describe the system under discussion. Then by virtue of state feedback control method,
some new sufficient criteria are derived which guarantee the FTB and H∞ FTB performances
for the considered system. Finally, an example is provided to demonstrate the effectiveness
of the developed control laws.
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1. Introduction

In the past few years, finite-time control issues have become a hot topic due to their wide applications
in practical engineering, such as switched systems [1–3], Markovian jump systems [4,5], singular
systems [6], etc. For real industrial systems, it is usually required that the values of the system states
should not exceed some given level in a certain time interval, avoiding the saturations of the sensors
or damages to the equipments caused by the excitation of nonlinear dynamics [7]. On the other hand,
it is always necessary to observe some transient properties of the industrial systems such as overshoot,
settlement time, etc. [8].

As for the finite-time control, there are mainly two kinds of issues, including finite-time boundedness
(FTB) and finite-time stability (FTS). Given constraints on the initial values and the energy of disturbance
inputs, a system is called FTB if its states remain under a given value over a fixed time interval [9]. While
FTS [10] can be viewed as a special case of FTB where no disturbances are considered. In particular,
recently the issue concerning input to output finite-time stability (IO-FTS) has also been investigated
based on Differential/Difference LMIs [11], where necessary and sufficient conditions are achieved.
Though IO-FTS is a more general type, we think the research on FTB is the basis of IO-FTS study and
can be applied (if achieved) to it by introducing the IO-FTS concept. Hence this paper deals with the
FTB as a primary issue.

Note that both of FTB and FTS deal with the short-time performances over a finite time interval,
which is the key difference from the Lyapunov stability where the asymptotical behaviors over a infinite
time interval are investigated. Though the asymptotical performances are usually sufficient for the
industrial operations, the aforementioned situations make it necessary to pay close attention to FTB
and FTS problems.

At present, topics about hybrid and stochastic systems also raise interest; for instance, lead-following
consensus of multi-agent systems [12], synchronization of complex networks based on entropy
measures [13,14]. As a typical type of hybrid and stochastic system, Markovian jump systems are
largely employed to describe the practical industrial processes with random mode changes due to such as
failures of the components, abrupt environment changes, variations of the operation point, etc. [15–17].
The mode change is ruled by a Markov chain subject to certain mode-to-mode transition probabilities. In
addition, recently many interesting results concerning the finite-time control of Markovian jump systems
have been achieved. For instance, in [18], FTB is investigated for a class of singular time-delayed
neural networks with Markovian jumps. Authors of [19] make a research on the H∞ finite-time control
for Markovian jump systems. Further, subject to average dwell time and partially known transition
probabilities, H∞ filtering is studied to obtain the FTB performance for Markovian jump systems in [20].

Furthermore, due to finite speeds of the information transmission, time-delays always exist which are
the resource of poor control performances and even system instabilities. Therefore it is more reasonable
to add the delay terms into the controlled systems. In addition, disturbances in the environment also have
a bad effect on the control performance. To minimize or reduce the effect of the external disturbance on
the controlled system, it is popular to introduce the H∞ control concept [21]. However, to the best of our
knowledge, in most of the literatures it is usually assumed that the disturbance is incorporated into both
the system states and the outputs with the same influence degree of 100%, which actually is not accurate
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enough to reflect the real system due to the case where the disturbance affects the system states and
outputs with different percentages of the total degrees, respectively. In particular, as is shown in Figure 1,
the disturbance enters both the system states and system outputs. Here two cases are considered.
In Case I, the disturbance affects the system states and system outputs by 100%. While in Case II,
the disturbance enters the system states and system outputs by 100q% and 100(1− q)% , respectively,
where q is called the distribution ratio (0 ≤ q ≤ 1), and 100q% and100(1−q)% refer to the disturbance
influence degree. In this paper, this work will be carried out as one of the few attempts.

Figure 1. Concept of disturbance distribution.

Motivated by aforementioned facts, H∞ finite-time control for discrete delayed nonlinear systems
with Markovian jumps and disturbances of probabilistic distributions is addressed in this paper. Firstly,
referring to the model in [22] which is the interconnection of a linear dynamic system and a static
nonlinear operator, a new set of equations are established to describe the discrete-time delayed nonlinear
system with Markovian jumps. By introducing the Bernoulli distribution and Binomial distribution
sequences, the disturbance distributed into the system states and outputs by different influence degrees
is incorporated into the model system. Then by employing the Lyapunov functions and state feedback
control method, some new criteria are derived such that the robust H∞ finite-time control performances
are achieved for all possible Markovian jumps and disturbances of probabilistic distributions. Finally an
example is provided to validate the developed control laws.

The contributions of this paper mainly lie in three aspects: (i) establish a more general model which
helps extend the results into more nonlinear systems; (ii) attenuate the effect of the disturbance on the
output with a prescribed level; (iii) model the disturbance influence degree between the system states and
the outputs such that the effect of disturbances subject to certain probabilistic distribution on the control
performance is investigated.

The rest of this paper is organized as follows. Problem formulations and preliminaries are given in
Section 2. Section 3 presents the main results of the robust H∞ finite-time controller design. In Section 4,
an illustrative example is demonstrated to verify the effectiveness of the proposed control approaches.
Finally, some conclusions are drawn in Section 5.

Notations: The superscript “T” stands for matrix transposition. l2[0,∞) is the space of square
integrable vector functions over [0, ∞). ℜn denotes n dimensional Euclidean space, and ℜn×m is the set
of all n×m real matrices. I denotes identity matrix of appropriate orders. ∗ denotes the symmetric parts.
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diag{. . .} stands for a block-diagonal matrix. ∥x∥ denotes the Euclid norm of vector x. The notation
X > Y , where X and Y are matrices of the same dimensions, means that the matrix X −Y is positive
definite. Pr{·} denotes the occurrence probability of event “·”. Pr{A|B} represents the occurrence
probability of event A on condition B. E{·} stands for the mathematical expectation of event “·”.
If X ∈ ℜp and Y ∈ ℜq, C(X ;Y ) denotes the space of all continuous functions mapping ℜp → ℜq.
N0 represents the set of nonnegative integers.

2. Problem Formulations and Preliminaries

Based on the model [22], we establish the following new sets of equations with Markovian jumps:{
x(k+1) =A(rk)x(k)+Ad(rk)x(k− τ)+Bp(rk)ϕ(ξ (k))+Bu(rk)u(k)+Bw(rk)w(k)

ξ (k) =Cq(rk)x(k)+Cqd(rk)x(k− τ)+Dp(rk)ϕ(ξ (k))+Du(rk)u(k)+Dw(rk)w(k)
(1)

with the initial condition function x(k) = ρ(k) ∀k ∈ [−τ,0], where x(k) ∈ ℜn is the system state,
u(k)∈ ℜm is the control input, w(k)∈ ℜs is the external disturbance which belongs to l2[0,∞). ξ ∈ ℜL is
the input of the nonlinear function ϕ , ϕ ∈C(ℜL;ℜL) is the nonlinear function satisfying ϕ(0) = 0, L∈N0

is the number of nonlinear functions. A(rk) ∈ ℜn×n, Ad(rk) ∈ ℜn×n, Bp(rk) ∈ ℜn×L, Bu(rk) ∈ ℜn×m,
Bw(rk) ∈ ℜn×s, Cq(rk) ∈ ℜL×n, Cqd(rk) ∈ ℜL×n, Dp(rk) ∈ ℜL×L, Du(rk) ∈ ℜL×m, and Dw(rk) ∈ ℜL×s

are mode-dependent matrices where r(k) denotes the discrete-time Markov chain taking values from a
finite set V = {1,2, · · · ,s} with the mode-to-mode transition probabilities as follows:

Pr{rk+1 = j|rk = i}= µi j (2)

where 0 ≤ µi j ≤ 1, ∑s
j=1 µi j = 1 ∀i ∈V .

For a better representation, here we denote Q(rk) as Qi ∀rk = i, i ∈ V , i.e., A(rk) is denoted by Ai,
Ad(rk) by Adi, and so on.

Here we adopt the following state feedback controller:

u(k) = Kix(k) (3)

where Ki ∈ ℜm×n, i ∈V .

Remark 1. We choose linear state feedback control here because it is a quite classical and effective
method to stabilize the system. If nonlinear feedback is applied, better control performances may be
achieved although, the implementation may become a little more complex or difficult than that of linear
state feedback. Furthermore, once the state feedback is successfully applied to the desired issue, based
on which Luenburger-like state estimator which is of nonlinear type can be constructed to investigate the
current issue further. To this regard, we made the choice of linear state feedback for its important role in
further study.

Substituting (3) in (1), we obtain:{
x(k+1) = Āix(k)+Adix(k− τ)+Bpiϕ(ξ (k))+Bwiw(k)

ξ (k) = C̄qix(k)+Cqdix(k− τ)+Dpiϕ(ξ (k))+Dwiw(k)
(4)

where Āi = Ai +BuiKi, C̄qi =Cqi +DuiKi.
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Definition 1. (FTB): Given 0 ≤ c1 ≤ β , c2 ≥ 0, Ri > 0, N ∈ N0 and the time delay τ , if
E{xT (k)Rix(k)} ≤ c2

1

(k ∈ [−τ, 0])

E{
N

∑
k=0

wT (k)w(k)} ≤ c2
2

⇒ E{xT (k)Rix(k)} ≤ β 2 ∀k = 1, · · · ,N. (5)

system (4) is said to be FTB with respect to (c1,c2,β ,Ri,N).

Here we consider the following output:

z(k) =Czix(k)+Dzwiw(k) (6)

where Czi ∈ ℜl×n and Dzwi ∈ ℜl×s are both mode-dependent matrices.

Definition 2. (H∞ FTB): With the FTB control performance defined in Definition 1 achieved, if the
following index holds under zero initial conditions:

J = E

{
N

∑
k=0

(
zT (k)z(k)− γ2wT (k)w(k)

)}
< 0 (7)

system (4) is said to be H∞ FTB for any nonzero w(k), where γ > 0 is called the disturbance
attenuation rate.

Assumption 1. [22]: We assume the nonlinear functions in (1) are monotonically non-decreasing and
globally Lipschitz, i.e., the following relation holds:

0 ≤ ϕl(ε1)−ϕl(ε2)

ε1 − ε2
≤ hl (8)

where ∀ε1,ε2 ∈ ℜ,ε1 ̸= ε2, l = 1, . . . ,L,hl > 0.

And in our work, the disturbance process is described by a Bernoulli distribution α0(k). According
to (4) and (6), the disturbance enters the system states and the outputs respectively. Here we consider
two main cases as follows, which is also shown in Figure 1:
Case I:

No distribution of the disturbance occurs between two parts (system states and outputs), in another
word, the influence degree of the disturbance for two parts are the same by 100%.
Case II:

The disturbance affects two parts by 100q% and 100(1 − q)% of the total influence degrees,
respectively, where q (0 ≤ q ≤ 1) is defined as the distribution ratio.

α0(k) =

{
1, Case I

0, Case II

where Pr{α0(k) = 1}= E{α0(k)}= b.
Consider the Binomial distribution sequences as follows:

α1(k) = v1

we define q = v1
v ,v1 = 1,2, · · · ,v, where v denotes the total trial numbers, b1 denotes E{q}. Hence

E{α1(k)}= vb1.
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Remark 2. The Markovian process denoted by the Markov chain rk is independent of the Bernoulli
distribution α0(k).

Remark 3. For the system under discussion, there are two kinds of noises (disturbances), i.e., the
process noise which enters the system states and the measurement noise which enters the system outputs.
Usually, these two kinds of noises are taken as mutually uncorrelated white noises when dealing with
control problems such as state estimation. However, in practical engineering, colored noises may
occur which makes it difficult for the controlled system to guarantee this assumption, especially for a
discrete time system sampled from a continuous time system where the process noise is correlated to the
measurement noise [23]. Motivated by this kind of application or the like, in this paper we propose the
idea of distributed disturbance subject to certain probabilistic distribution shown in Figure 1 to make an
alternative research.

Taking the probabilistic distributed disturbance into account, we obtain the following
augmented system:

x(k+1) = Āix(k)+Adix(k− τ)+Bpiϕ(ξ (k))+
(

α0(k)+(1−α0(k))
α1(k)

v

)
Bwiw(k)

ξ (k) = C̄qix(k)+Cqdix(k− τ)+Dpiϕ(ξ (k))+
(

α0(k)+(1−α0(k))
α1(k)

v

)
Dwiw(k)

z(k) =Czix(k)+
(

α0(k)+(1−α0(k))(1−
α1(k)

v
)

)
Dzwiw(k)

(9)

3. Main Results

In this section, the conditions for the FTB performance and the H∞ FTB performance are derived in
the first two theorems, respectively. To obtain the desired controller, Theorem 3 and Corollary 1 are
displayed for time-delayed and non-delayed systems respectively.

Theorem 1. Given 0 ≤ c1 ≤ β , c2 ≥ 0, Ri > 0, and N ∈ N0, system (9) is said to be FTB with respect
to (c1,c2,β ,Ri,N) provided there exist σ−1

1 > 0, σ2 > 0, σ−1
3 > 0, α ≥ 1, symmetric positive definite

matrices Pi,Γ,Qi, a set of diagonal positive definite matrices Λi, and matrices Ki such that the following
LMIs hold:

Gi =


Gi11 0 Gi13 Gi14 Gi15

∗ Gi22 0 0 0
∗ ∗ Gi33 Gi34 Gi35

∗ ∗ ∗ Gi44 Gi45

∗ ∗ ∗ ∗ Gi55

< 0 (10)

Ri < Pi < σ−1
1 Ri (11)

0 < Qi < σ2I (12)

0 < Γ < σ−1
3 Ri (13)

dσ2c2
2 + τσ−1

3 c2
1 −β 2α−N + c2

1σ−1
1 < 0 (14)
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where

Gi11 =
s

∑
j=1

µi jĀT
i PjĀi −αPi +Γ, Gi13 =

s

∑
j=1

µi jĀT
i PjAdi

Gi14 =
s

∑
j=1

µi jĀT
i PjBpi +C̄T

qiHΛi, Gi15 = n1

s

∑
j=1

µi jĀT
i PjBwi

Gi22 = diag{(1−α)Γ, · · · ,(1−α)Γ︸ ︷︷ ︸
τ−1

}, Gi33 =
s

∑
j=1

µi jAT
diPjAdi −αΓ

Gi34 =
s

∑
j=1

µi jAT
diPjBpi +CT

qdiHΛi, Gi35 = n1

s

∑
j=1

µi jAT
diPjBwi

Gi44 =−2Λi +ΛiHDpi +DT
piHΛi +

s

∑
j=1

µi jBT
piPjBpi, Gi45 = n1

s

∑
j=1

µi jBT
piPjBwi +n1HΛiDwi

Gi55 = (n2
1 + n̄1)

s

∑
j=1

µi jBT
wiPjBwi −dQi, n1 = b+b1(1−b)

n̄1 = (1−b1)
2m+(

1−b
v

)2m1 +
mm1

v2 , i = 1,2, · · · ,s

m = E
{
(α(k)−b)2}= b(1−b), m1 = E

{
(α1(k)− vb1)

2}= vb1(1−b1)

Proof. Take the following Lyapunov functional:

V (k) = xT (k)Pix(k)+
−1

∑
θ=−τ

xT (k+θ)Γx(k+θ) (15)

where Pi > 0, Γ > 0.

Remark 4. Recently, the Differential/Difference LMIs (D/DLMIs) are applied to FTS of linear systems
and deterministic hybrid systems [24,25], where necessary and sufficient conditions are derived.
However, in this paper, due to the introduction of Markov jumps, Pi is a mode-dependent matrix which
swifts between different values with the time instant going on. Since the number of modes is finite,
Pi takes values from a finite set. If Difference Lyapunov functional is adopted, P will be derived by
recursive algorithm rather than chosen from a finite set, which makes it hard to introduce the Markov
jumps. Therefore in our opinions DLMIs cannot be applied to our current work directly. However, future
work will concentrate on FTB issue of the nonlinear system without Markov jumps based on Difference
Lyapunov functional such that less conservative criteria can be derived and output feedback control is
also accessible.

Construct the following function:

Ṽ (k) =V (k+1)−αV (k)−dwT (k)Qiw(k) (16)

where Qi > 0, α ≥ 1, and d > 0.
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Define E{V (k+1)}= E{V (k+1,rk+1 = j)|rk = i}, then

E{Ṽ (k)}
= E{V (k+1)}−αE{V (k)}−dE{wT (k)Qiw(k)}

=
s

∑
j=1

xT (k+1)µi jPjx(k+1)+
−1

∑
θ=−τ

xT (k+1+θ)Γx(k+1+θ)

−αxT (k)Pix(k)−
−1

∑
θ=−τ

xT (k+θ)αΓx(k+θ)−dwT (k)Qiw(k)

=
s

∑
j=1

[
Āix(k)+Adix(k− τ)+Bpiϕ(ξ (k))+

(
α0(k)+(1−α0(k))

α1(k)
v

)
Bwiw(k)

]T

µi jPj

×
[

Āix(k)+Adix(k− τ)+Bpiϕ(ξ (k))+
(

α0(k)+(1−α0(k))
α1(k)

v

)
Bwiw(k)

]
− xT (k)αPix(k)−dwT (k)Qiw(k)+ xT (k)Γx(k)− xT (k− τ)αΓx(k− τ)

+
−τ+1

∑
θ=−1

xT (k+θ)(1−α)Γx(k+θ)

(17)

Since

α0(k)+(1−α0(k))
α1(k)

v

= α0(k)−b+b+[1− (α0(k)−b)]
α1(k)

v
−b

α1(k)− vb1 + vb1

v

= (α0(k)−b)+b+[1− (α0(k)−b)]
α1(k)− vb1 + vb1

v
− b

v
(α1(k)− vb1)−bb1

= (1−b1)(α0(k)−b)+
1−b

v
(α1(k)− vb1)−

(α0(k)−b)(α1(k)− vb1)

v
+b+b1(1−b)

(18)

using the following facts:
E{α0(k)}= b, E{(α0 −b)}= 0, m = E{(α0(k)−b)2}= b(1−b)

E{α1(k)}= b1, E{(α1(k)− vb1)}= 0, m1 = E{(α1(k)− vb1)
2}= vb1(1−b1)

n1 = b+b1(1−b), n̄1 = (1−b1)
2m+(

1−b
v

)2m1 +
mm1

v2

(19)
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we have

E{Ṽ (k)}

=
s

∑
j=1

[Āix(k)+Adix(k− τ)+Bpiϕ(ξ (k))+n1Bwiw(k)]T µi jPj[Āix(k)+Adix(k− τ)

+Bpiϕ(ξ (k))+n1Bwiw(k)]+
s

∑
j=1

wT (k)BT
wi[(1−

b1

v
)2m+(

1−b
v

)2m1 +
mm1

v2 ]µi j

×PjBwiw(k)− xT (k)αPix(k)−dwT (k)Qiw(k)+ xT (k)Γx(k)− xT (k− τ)αΓx(k− τ)

+
−τ+1

∑
θ=−1

xT (k+θ)(1−α)Γx(k+θ)

= xT (k)(
s

∑
j=1

µi jĀT
i PjĀi −αPi +Γ)x(k)+ xT (k− τ)(

s

∑
j=1

AT
diPjAdi −αΓ)x(k− τ)

+ϕ T (ξ (k))
s

∑
j=1

µi jBT
piPjBpiϕ(ξ (k))+wT (k)

(
(n̄1 +n2

1)
s

∑
j=1

µi jBT
wiPjBwi −dQi

)
w(k)

+2xT (k)
s

∑
j=1

µi jĀT
i PjAdix(k− τ)+2xT (k)

s

∑
j=1

µi jĀT
i PjBpiϕ(ξ (k))+2n1xT (k)

×
s

∑
j=1

µi jĀT
i PjBwiw(k)+2xT (k− τ)

s

∑
j=1

µi jAT
diPjBpiϕ(ξ (k))+2n1xT (k− τ)

s

∑
j=1

µi jAT
di

×PjBwiw(k)+2n1ϕ T (ξ (k))
s

∑
j=1

µi jBT
piPjBwiw(k)+

−τ+1

∑
θ=−1

xT (k+θ)(1−α)Γx(k+θ)

(20)

According to Assumption 1, the inequality (8) can be rewritten as follows:

ϕ 2
l (ξl(k))−hlϕl(ξl(k))ξl(k)≤ 0 (21)

which is equivalent to
2λilϕ 2

l (ξl(k))−2λilhlϕl(ξl(k))ξl(k)≤ 0 (22)

where λil > 0, l = 1, · · · ,L.
The above inequality can also be written in the matrix form as follows:

−2ϕ T (ξ (k))Λiϕ(ξ (k))+2xT (k)C̄T
qiHΛiϕ(ξ (k))

+2xT (k− τ)CT
qdiHΛiϕ(ξ (k))+2ϕ T (ξ (k))DT

piHΛiϕ(ξ (k))

+2n1wT (k)DT
wiHΛiϕ(ξ (k))≥ 0

(23)

where Λi = {λi1, · · · ,λiL}, H = {h1, · · · ,hL}.
Based on (20) and (23), we have

E{Ṽ (k)} ≤ ΨT GiΨ (24)

where Ψ = [xT (k) xT (k−1) · · · xT (k− τ +1) xT (k− τ) ϕ T (ξ (k)) wT (k)]T .
Since Gi < 0, we have

E{V (k+1)}< αE{V (k)}+dE{wT (k)Qiw(k)} (25)
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which implies that

E{xT (k)Pix(k)}< E{αNV (0)+d
N−1

∑
η=0

αN−ηwT (η)Qiw(η)} (26)

Since α ≥ 1, we have

E{xT (k)Pix(k)}< E{αNV (0)+dαN
N−1

∑
η=0

wT (η)Qiw(η)}

= αNE{xT (0)Pix(0)+
−1

∑
θ=−τ

xT (θ)ΓxT (θ)+d
N−1

∑
η=0

wT (η)Qiw(η)}
(27)

Let Pi = R1/2
i R−1/2

i PiR
−1/2
i R1/2

i , we have

E{xT (k)Pix(k)}= E{xT (k)R−1/2
i R1/2

i PiR
−1/2
i R1/2

i x(k)}

≥ E{λmin(R
−1/2
i PiR

−1/2
i )xT (k)Rix(k)}

(28)

and let Γ = R1/2
i R−1/2

i ΓR−1/2
i R1/2

i , according to the preconditions of Definition 1,

αNE{xT (0)Pix(0)+
−1

∑
θ=−τ

xT (θ)ΓxT (θ)+d
N−1

∑
η=0

wT (η)Qiw(η)}

≤ λmax(R
−1/2
i PiR

−1/2
i )αNc2

1 + τλmax(R
−1/2
i ΓR−1/2

i )αNc2
1 +dαNλmax(Qi)c2

2

(29)

Based on (28) and (29), we derive the following inequality:

E{λmin(R
−1/2
i PiR

−1/2
i )xT (k)Rix(k)}

< λmax(R
−1/2
i PiR

−1/2
i )αNc2

1 + τλmax(R
−1/2
i ΓR−1/2

i )αNc2
1 +dαNλmax(Qi)c2

2

i.e.,

E{xT (k)Rix(k)}

< λ−1
min(R

−1/2
i PiR

−1/2
i )αN

(
λmax(R

−1/2
i PiR

−1/2
i )c2

1 +τλmax(R
−1/2
i ΓR−1/2

i )c2
1 +dλmax(Qi)c2

2

) (30)

According to (11), we have

λmin(R
−1/2
i PiR

−1/2
i )≥ 1, λmax(R

−1/2
i PiR

−1/2
i )≤ σ−1

1 (31)

Similarly, (12) and (13) yield that

λmax(Qi)≤ σ2 (32)

λmax(R
−1/2
i ΓR−1/2

i )< σ−1
3 (33)

Based on (31), (32), and (33), (30) yields that

E{xT (k)Rix(k)}< αN (σ−1
1 c2

1 + τσ−1
3 c2

1 +dσ2c2
2
)

(34)

By virtue of (14), we obtain
E{xT (k)Rix(k)}< β 2 (35)

According to Definition 1, system (9) is FTB with respect to {c1,c2,β ,Ri,N}. Thus the proof
is completed.
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Theorem 2. Given 0≤ c1 ≤ β , c2 ≥ 0, Ri > 0, N ∈N0, and d > 0, if there exist σ−1
1 > 0, σ−1

3 > 0, α ≥ 1,
symmetric positive definite matrices Pi,Γ, a set of diagonal positive definite matrices Λi, and matrices Ki

such that the following LMIs hold:

Ḡi =


Ḡi11 0 Gi13 Gi14 Ḡi15

∗ Gi22 0 0 0
∗ ∗ Gi33 Gi34 Gi35

∗ ∗ ∗ Gi44 Gi45

∗ ∗ ∗ ∗ Ḡi55

< 0 (36)

Ri < Pi < σ−1
1 Ri (37)

0 < Γ < σ−1
3 Ri (38)

dc2
2 + τσ−1

3 c2
1 −β 2α−N + c2

1σ−1
1 < 0 (39)

where

Ḡi11 =
s

∑
j=1

µi jĀT
i PjĀi −αPi +Γ+CT

ziCzi, Ḡi15 = n1

s

∑
j=1

µi jĀT
i PjBwi +n2CT

ziDzwi

Ḡi55 = (n2
1 + n̄1)

s

∑
j=1

µi jBT
wiPjBwi −dI +DT

zwi(n
2
2 + n̄2)Dzwi

n2 = 1−b1(1−b), n̄2 = (
1−b

v
)2m1 +

mm1

v2 +mb2
1, i = 1,2, · · · ,s

m = E
{
(α(k)−b)2}= b(1−b), m1 = E

{
(α1(k)− vb1)

2}= vb1(1−b1)

then system (9) is said to be FTB with H∞ performances, γ =
√

d is called the disturbance
attenuation rate.

Proof. According to the Schur Complement [26], Ḡi < 0 is equivalent to

Gi11 0 Gi13 Gi14 Gi15 Czi 0
∗ Gi22 0 0 0 0 0
∗ ∗ Gi33 Gi34 Gi35 0 0
∗ ∗ ∗ Gi44 Gi45 0 0
∗ ∗ ∗ ∗ (n2

1 + n̄1)∑s
j=1 µi jBT

wiPjBwi −dI n2Dzwi
√

n̄2DT
zwi

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (40)

In Theorem 1, let Qi = I, then Gi becomes the principle minor of the left side of (40). Thus Gi < 0 is
derived according to (40). Together with the conditions (37)–(39), it can be concluded that system (9) is
FTB based on Theorem 1. On the other hand, consider the following function:

V̄ (k) =V (k+1)−αV (k)+ zT (k)z(k)−dwT (k)w(k) (41)
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Since

E{V̄ (k)}
= E{V (k+1)}−αE{V (k)}+E{zT (k)z(k)}−dE{wT (k)w(k)}

= xT (k)(
s

∑
j=1

µi jĀT
i PjĀi −αPi +Γ+CT

ziCzi)x(k)+ xT (k− τ)(
s

∑
j=1

AT
diPjAdi −αΓ)x(k− τ)

+ϕ T (ξ (k))
s

∑
j=1

µi jBT
piPjBpiϕ(ξ (k))+wT (k)((n̄1 +n2

1)
s

∑
j=1

µi jBT
wiPjBwi −dI +DT

zwi

× (n2
2 + n̄2)Dzwi)w(k)+2xT (k)

s

∑
j=1

µi jĀT
i PjAdix(k− τ)+2xT (k)

s

∑
j=1

µi jĀT
i PjBpiϕ(ξ (k))

+2xT (k)(n1

s

∑
j=1

µi jĀT
i PjBwi +n2CT

ziDzwi)w(k)+2xT (k− τ)
s

∑
j=1

µi jAT
diPjBpiϕ(ξ (k))

+2n1xT (k− τ)
s

∑
j=1

µi jAT
diPjBwiw(k)+2n1ϕ T (ξ (k))

s

∑
j=1

µi jBT
piPjBwiw(k)

+
−τ+1

∑
θ=−1

xT (k+θ)(1−α)Γx(k+θ)

(42)

Consider the sector condition (23), we derive

E{V̄ (k)}< ΨT ḠiΨ (43)

Since Ḡi < 0, we have
E{V̄ (k)}< 0 (44)

i.e.,
E{V (k+1)}< αE{V (k)}−E{zT (k)z(k)−dwT (k)w(k)} (45)

which indicates that

E{V (k)}< αkE{V (0)}−E

{
k−1

∑
η=0

αk−1−η (zT (η)z(η)−dwT (η)w(η)
)}

< αkE{V (0)}−E

{
N

∑
η=0

αN−η (zT (η)z(η)−dwT (η)w(η)
)} (46)

Due to E{V (k)}> 0 and V (0) = 0, we derive

0 <−E

{
N

∑
η=0

(
zT (η)z(η)−dwT (η)w(η)

)}
(47)

i.e.,

E{
N

∑
η=0

zT (η)z(η)}< E{
N

∑
η=0

dwT (η)w(η)} (48)

Let γ =
√

d. According to Definition 2, it concludes that system (9) has H∞ performances with the
disturbance attenuation rate γ =

√
d. Thus the proof is completed.
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Theorem 3. Given 0 ≤ c1 ≤ β , c2 ≥ 0, Ri > 0, N ∈ N0, and d > 0, if there exist σ1 > 0, σ3 > 0, α ≥ 1,
symmetric positive definite matrices Xi,Y , a set of diagonal positive definite matrices Si, and matrices Wi

such that the following LMIs hold:

Mi =



−αXi 0 0 XiCT
qiH +W T

i DT
uiH 0 XiLT

1i 0 Xi XiCT
zi 0

∗ Mi22 0 0 0 0 0 0 0 0
∗ ∗ −αY YCT

qdiH 0 Y LT
2i 0 0 0 0

∗ ∗ ∗ −2Si +HDpiSi n1HDwi SiLT
3i 0 0 0 0

+SiDT
piH

∗ ∗ ∗ ∗ −dI LT
4i LT

5i 0 n2DT
zwi

√
n̄2DT

zwi

∗ ∗ ∗ ∗ ∗ −X 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −X 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Y 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



< 0

(49)

σ1R−1
i < Xi > R−1

i (50)

Y > σ3R−1
i (51)

dc2
2 −β 2α−N c1

√
τc1

∗ −σ1 0
∗ ∗ −σ3

< 0 (52)

where

Mi22 = diag{(1−α)Γ, · · · ,(1−α)Γ︸ ︷︷ ︸
τ−1

}

XiLT
1i =

[√µi1XiAT
i +

√µi1W T
i Bui, · · · , √µisXiAT

i +
√µisW T

i Bui

]
YiLT

2i =
[√µi1YAT

di, · · · , √µisYAT
di

]
SiLT

3i =
[√µi1SiBT

pi, · · · , √µisSiBT
pi

]
LT

4i =
[√µi1n1BT

wi, · · · , √µisn1BT
wi

]
LT

5i =
[√

µi1n̄1BT
wi, · · · ,

√
µisn̄1BT

wi

]
then system (9) is FTB with disturbance attenuation rate γ =

√
d. Furthermore, the feedback controller

gains are determined by Ki =WiX−1
i .

Proof.
Ḡi = G̃i +LT

i P̄Li < 0 (53)
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where

G̃i =



−αPi +Γ+CT
ziCzi 0 0 C̄T

qiHΛi n2CT
ziDzwi

∗ Gi22 0 0 0
∗ ∗ −αΓ CT

qdiHΛi 0
∗ ∗ ∗ −2Λi +ΛiHDpi n1HΛiDwi

+DT
piHΛi

∗ ∗ ∗ ∗ −dI +(n2
2 + n̄2)DT

zwiDzwi


< 0

Li =

[
L1i 0 · · · 0 L2i L3i L4i

0 0 · · · 0 0 0 L5i

]
P̄ = diag{P,P}, P = diag{P1,P2, · · · ,Ps}

According to the Schur Complement [26], (53) is equivalent to[
G̃i LT

i

∗ −P̄−1

]
< 0 (54)

i.e.,

−αPi 0 0 C̄T
qiHΛi 0 LT

1i 0 I CT
zi 0

∗ Gi22 0 0 0 0 0 0 0 0
∗ ∗ −αΓ CT

qdiHΛi 0 LT
2i 0 0 0 0

∗ ∗ ∗ −2Λi +ΛiHDpi n1HΛiDwi LT
3i 0 0 0 0

+DT
piHΛi

∗ ∗ ∗ ∗ −dI LT
4i LT

5i 0 n2DT
zwi

√
n̄2DT

zwi

∗ ∗ ∗ ∗ ∗ −P−1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −P−1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ−1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



< 0

(55)
Pre-and-post multiply diag{P−1

i ,Γ−1, · · · ,Γ−1︸ ︷︷ ︸
τ

,Λi, I, I, I, I, I, I} on both sides of (55), and let

Xi = P−1
i ,Y = Γ−1,Si = Λ−1

i ,Wi = KiXi (56)

we have Mi < 0 in (49).
Similarly, we can derive (50), (51), and (52) from (37), (38) and (39), respectively. Thus the proof

is completed.

Remark 5. If τ = 0 or Adi =Cqdi = 0, system (9) becomes a non-delayed system denoted as follows

x(k+1) = Āix(k)+Bpiϕ(ξ (k))+
(

α0(k)+(1−α0(k))
α1(k)

v

)
Bwiw(k)

ξ (k) = C̄qix(k)+Dpiϕ(ξ (k))+
(

α0(k)+(1−α0(k))
α1(k)

v

)
Dwiw(k)

z(k) =Czix(k)+(α0(k)+
(

1−α0(k))(1−
α1(k)

v
)

)
Dzwiw(k)

(57)
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In this case, H∞ FTB controller can still be designed by virtue of the following corollary.

Corollary 1. Given 0≤ c1 ≤ β , c2 ≥ 0, Ri > 0, N ∈N0, and d > 0, if there exist σ1 > 0, α ≥ 1, symmetric
positive definite matrices Xi, a set of diagonal positive definite matrices Si, and matrices Wi such that the
following LMIs hold:

M̄i =



−αXi XiCT
qiH +W T

i DT
uiH 0 XiLT

1i 0 XiCT
zi 0

∗ −2Si +HDpiSi n1HDwi SiL3i 0 0 0
+SiDT

piH
∗ ∗ −dI LT

4i LT
5i n2DT

zwi
√

n̄2DT
zwi

∗ ∗ ∗ −X 0 0 0
∗ ∗ ∗ ∗ −X 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (58)

σ1R−1
i < Xi > R−1

i (59)

[
dc2

2 −β 2α−N c1

∗ −σ1

]
< 0 (60)

then system (57) is FTB with disturbance attenuation rate γ =
√

d. Furthermore, the feedback controller
gains can still be determined by Ki =WiX−1

i .

4. Numerical Example

In this section, a numerical example is provided to demonstrate the effectiveness of the proposed
design method.

Example. Consider system (9) with the following parameters:

A1 =

[
0.4 0
0 0.6

]
, Ad1 = 02×2, Bp1 =

[
0.3 0.2 −0.3 0.2
−0.1 0.4 0.15 0.05

]
, Bu1 = Bw1 =

[
1
1

]

Cq1 =

[
1 0 0 0
0 1 0 0

]T

, Cqd1 =

[
0 0 1 0
0 0 0 1

]T

, Dp1 = 04×4, Du1 = Dw1 = 04×1

Cz1 =

[
0.1 0
0 0.1

]
, Dzw1 = 02×1

A2 =

[
0.5 0
0 0.3

]
, Ad2 = 02×2, Bp2 =

[
0.3 0.25 −0.2 0.15

−0.15 0.2 0.18 0.1

]
, Bu2 = Bw2 =

[
1
1

]

Cq2 =

[
1 0 0 0
0 1 0 0

]T

, Cqd2 =

[
0 0 1 0
0 0 0 1

]T

, Dp2 = 04×4, Du2 = Dw2 = 04×1
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Cz2 =

[
0.15 0

0 0.15

]
, Dzw2 = 02×1

c1 = 2, c2 = 1, β = 10, N = 20, τ = 2, b = 0.8, b1 = 0.4, v = 10, d = 6, R1 = R2 =

[
1 0
0 1

]

the disturbance w(t) is of uniform distribution over the interval [0,0.1], and the mode transition matrix is[
µ11 µ12

µ21 µ22

]
=

[
0.6 0.4

0.45 0.55

]

According to Theorem 3, we can design the feedback controller as follows:

αmax = 1.1377, X1 =

[
0.8756 0.0625
0.0625 0.9464

]
, X2 =

[
0.9783 −0.0193
−0.0193 0.9806

]
, Y =

[
3.0747 0.9991
0.9991 8.1905

]
S1 = diag{2.0097,3.4877,2.4420,4.7930}, S2 = diag{3.4612,4.4578,4.1899,14.6321}

W1 =
[
−0.3067 −0.3638

]
, W2 =

[
−0.3820 −0.2099

]
K1 =

[
−0.3244 −0.3629

]
, K2 =

[
−0.3949 −0.2218

]
The simulation results are demonstrated in Figures 2–9. Figure 2 shows the Markov jumping

signals subject to the mode-to-mode transition probabilities. The signal which determines whether the
distribution of the disturbance will occur is displayed by the Bernoulli sequence in Figure 3. Particularly,
the distribution ratio q is assumed to be described by the Binomial sequence in Figure 4. With these
signals and the developed controller, system (9) is FTB since E{xT (k)Rix(k)} (i = 1,2) in Figure 5
doesn’t exceed the prescribed level β = 10. The trajectories of system states are depicted in Figures 6
and 7, respectively. And the system outputs perform as shown in Figures 8 and 9. From Figures 6 and 7, it
also conclude that the FTB performance is achieved as the trajectories converge to zeros asymptotically
in the finite time interval [0, 20].

0 5 10 15 20
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0.5

1

1.5

2

2.5

3

time

m
o

d
es

Figure 2. Markovian jumping modes.
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α 0

Figure 3. Bernoulli distribution of the disturbance.
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Figure 4. Binomial distribution of the distribution ratio.
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Figure 5. Mathematical expectation of xT (k)Rix(k).
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Figure 6. Trajectory for system state x1(k).
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Figure 7. Trajectory for system state x2(k).
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Figure 8. Output performance for z1(k).
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Figure 9. Output performance for z2(k).

Tables 1 and 2 show the relations between the disturbance influence degree and the
disturbance attenuate rate. It can be seen from Table 1 that with the same b1 values, dmin

becomes larger with the increase of b, which demonstrates that with the same distribution
ratios, a larger disturbance attenuation rate is required for a lower occurrence probability
of disturbance distribution. On the other hand, Table 2 presents that with the same
b values, larger values of b1 demands higher dmin, which means with the same occurrence probability
of disturbance distribution, if the disturbance affects the system states more than the outputs, the
disturbance attenuation performances deserve more strict criteria. In a word, H∞ performances demands
higher levels if the disturbance affects the system states more than the outputs and is distributed with a
lower occurrence probability.

Table 1. Relations between the disturbance distribution and the attenuation rate: Part I
(α = 1.1364).

b b1 dmin

0.2 0.4 1.1400
0.4 0.4 1.6900
0.6 0.4 2.2900
0.8 0.4 2.9300
1 Null 3.6200

Compared with [4], the novelty of proposed results in our work mainly lies in the introduction of
disturbance distribution, where the disturbance enters the system states and system outputs with different
percentages of the total influence degrees. In addition, the simulations have proved that the disturbance
distribution does have an effect on control performances presented above. Besides, from Table 1, we
can see that when no distribution occurs in the disturbance (i.e., b = 1, b1 = Null), dmin is larger
than the counterparts in the case of distributed disturbances. And Table 2 shows the same conclusion.
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To this regard, the conservatism of the proposed criteria is much reduced with the idea of disturbance
distribution. Here we note that since no distribution occurs when b = 1 holds, it makes no sense for the
existence of b1 any more. Actually whatever b1 takes over the interval [0, 1], the simulation results for
dmin make no difference. Therefore, the expression “Null” is used to denote the value of b1 in the case of
b = 1.

Table 2. Relations between the disturbance distribution and the attenuation rate: Part II
(α = 1.1338).

b b1 dmin

0.8 0.2 2.4400
0.8 0.4 2.5700
0.8 0.6 2.7300
0.8 0.8 2.9300
1 Null 3.1500

5. Conclusions

This paper investigates the FTB and H∞ FTB issues for discrete delayed nonlinear systems with
Markovian jumps and disturbances of probabilistic distributions. Concepts of FTB and H∞ FTB are
proposed for the discussed system. Then new criteria are derived which guarantee the FTB and H∞

FTB performances for discrete delayed nonlinear systems with Markovian jumps and disturbances
of probabilistic distributions. And finally a numerical example is provided to validate the designed
controller. The system we considered here contains no uncertainties and linear feedback control is
used. Thus in our future work, output feedback control method will be considered for the FTB and
H∞ FTB of discrete delayed nonlinear uncertain systems with Markovian jumps and disturbances of
probabilistic distributions.
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