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Abstract: The randomness and fuzziness that exist in rolling bearings when faults occur 

result in uncertainty in acquisition signals and reduce the accuracy of signal feature 

extraction. To solve this problem, this study proposes a new method in which cloud model 

characteristic entropy (CMCE) is set as the signal characteristic eigenvalue. This approach 

can overcome the disadvantages of traditional entropy complexity in parameter selection 

when solving uncertainty problems. First, the acoustic emission signals under normal and 

damage rolling bearing states collected from the experiments are decomposed via ensemble 

empirical mode decomposition. The mutual information method is then used to select the 

sensitive intrinsic mode functions that can reflect signal characteristics to reconstruct the 

signal and eliminate noise interference. Subsequently, CMCE is set as the eigenvalue of the 

reconstructed signal. Finally, through the comparison of experiments between sample 

entropy, root mean square and CMCE, the results show that CMCE can better represent the 

characteristic information of the fault signal. 
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1. Introduction 

The rolling bearing is the most common element of the rolling mechanism. Approximately 30% of 

mechanical faults occur in rolling bearings; hence, detecting and diagnosing faults in rolling bearings 

are popular issues among scholars worldwide. In the last 10 years, acoustic emission (AE) technology 

has become significant in monitoring the states of rolling bearings. This technology can help effectively 

detect early signs of pitting corrosion defect and crack initiation, and thus, prevent disastrous 

consequences [1,2]. Researchers have investigated characteristic extraction methods for AE signals on 

bearings. A.M. Al-Ghamdi compared the root mean square (RMS), amplitude, and kurtosis values of the 

AE and vibration signals from the outer race fault of a rolling bearing. He asserted that AE technology 

was more effective than vibration technology in early fault diagnosis [3]. P. Beck investigated related 

parameters of AE, such as the relationship between physical properties and AE energy in material 

fracturing. The test results revealed a linear relationship between AE energy and fracture area or  

depth [4]. B. Kilundu employed a cyclostationary technique and proposed an indicator that was more 

sensitive to the continuous monitoring of defects compared with traditional temporal indicators  

(e.g., RMS, kurtosis, crest factor) [5]. 

Considering the poor working environment of mechanical equipment, signals collected on-the-spot 

are frequently seriously polluted. To eliminate noise from signals, some researchers introduced wavelet 

noise reduction technology into the feature extraction of AE signals and achieved good results. However, 

this method exhibits difficulties in selecting the wavelet base and determining the threshold. Empirical 

mode decomposition (EMD) does not have a fixed basis formula, and thus, difficulties in selecting 

wavelet base during wavelet analysis can be avoided. This technique is more effective in non-stationary 

signal de-noising than other wavelet transform methods. [6]. However, EMD suffers from model mixing 

problems, which can distort the decomposed intrinsic mode function (IMF). To solve the frequency 

mixing problem in EMD de-noising, Huang proposed ensemble EMD (EEMD) to perform signal 

decomposition and enhance the thoroughness of de-noising [7]. 

Given the complex structure of mechanical equipment, existing randomness and fuzziness in fault 

causes, fault phenomena, and fault mechanisms may result in uncertainty in signal acquisition. 

Uncertainty can influence the accuracy of signal feature extraction and reduce the precision of fault 

diagnosis. Entropy is a measurement unit of uncertainty. It can effectively reduce the dimension of an 

eigenvalue and fully represent the feature information of a signal. Energy entropy, information entropy, 

appropriate entropy (ApEn), sample entropy (SampEn), and so on, are frequently used as the eigenvalue 

of signals. Yan et al. [8] integrated ApEn into the state monitoring of bearings and achieved good results. 

Su et al. [9] introduced SampEn into fault feature extraction in rolling bearings. Based on the results of 

experiments, SampEn performs better than ApEn, which is suitable for distinguishing the fault states of 

rolling bearings. However, these two methods experience difficulty in terms of the complexity in 

parameter selection and other shortcomings, such as a slight variation in threshold will cause a sudden 

change in entropy, which affects the stability of statistics. To overcome the disadvantages of traditional 

entropy, this study presents a solution; namely, cloud model characteristic entropy (CMCE). CMCE (En) 

is obtained from a reverse cloud generator without threshold and dimension settings. This generator can 

prevent the difficulties caused by parameter selection and better solve the uncertainty problem. 
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Based on a cross of probability theory and fuzzy mathematic theory, Li [10] proposed that the cloud 

model, which was obtained from a specific structure algorithm, could be an alternative model of 

qualitative concepts and quantitative expressions. The cloud model cannot only reflect the uncertainty 

of a natural language concept, but also the correlation between randomness and fuzziness, which 

constitutes mutual mapping between qualitative and quantitative concepts. CMCE is one of the digital 

characteristics of the cloud model that can represent the uncertainty measurement of qualitative concepts. 

In [11], Li evaluated the stability of segmented sequence data, and then identified and expressed the 

basic characteristics of a time series in self-adaption. In [12], Yu used CMCE to measure the fluctuation 

range of harmonic current under normal operation mode. Harmonic current was determined according 

to the curves of the 3En outer boundary of normal cloud membership. Meanwhile, the cloud model is 

widely applied in the field of emitter identification, power transformer fault diagnosis, and network 

intrusion detection, among others [13–15]. However, the use of this model in the fault signal feature 

extraction of rolling bearings has not yet been reported. Accordingly, this study decomposes AE signals 

using the EEMD algorithm and selects sensitive IMFs that can represent characteristic information via 

the mutual information (MI) algorithm to eliminate noise interference. Meanwhile, CMCE is used as the 

eigenvalue of the reconstructed signal to overcome the shortcomings of traditional entropy. This process 

can improve the accuracy of signal feature extraction and the precision of fault diagnosis. 

2. AE Signal Feature Extraction Theory of Rolling Bearing 

2.1. EEMD Algorithm 

The EEMD algorithm is an auxiliary signal processing method that deals with noises. In this 

algorithm, Gaussian white noise is imposed on the signals, and mixed signals are calculated repeatedly 

via empirical mode decomposition. After noise is added, signal continuity may be achieved in regions 

with different frequencies because of the evenly distributed statistical properties of Gaussian white noise 

frequencies. Consequently, the mixing degree of the IMF component model is reduced. The EEMD 

algorithm is described as follows [16]. 

(1) The overall average time M and the standard deviation of white noise k are set. 

(2) The EMD experiments are performed m times after adding white noise. 

(2.1) After a random Gaussian white noise nm(t) is added into the input signal x(t), signal xm(t) is 

obtained as follows: 

( ) ( ) ( )m mx t x t kn t   (1)

(2.2) xm(t) is decomposed by EMD to obtain cj,m, which indicates that j IMF is obtained in the m-th 

decomposition (j = 1, 2, …, Nm). Nm denotes the number of IMF in the m-th decomposition. 

(2.3) If m < M, then let m = m + 1 and return to (2.2). 

(2.4) Take the minimum number of model components in each IMF group, which is obtained in M 

times decomposition as the final overall average number of IMF. 

(3) Each IMF in m times decomposition is averaged as follows: 

 
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(4) jc  is outputted as the j-th IMF obtained after EEMD decomposition. The added white noise  

nm(t) is generated randomly in each experiment. When the value of M is large, the overall average 

of the added Gaussian white noise is close to zero. 

2.2. MI Algorithm 

The MI algorithm was proposed by Claude Elwood Shannon, the developer of information theory. 

This algorithm refers to the statistical correlation between two random variables and is obtained from 

the extended concept of entropy. Entropy refers to a measure of the degree of disordered state of a 

physical system. The variable of entropy X is defined as [17] 

2( ) ( ) log ( )
x X

H X p x p x


   (3)

where p(x) is the probability that event X will occur. 

Conditional entropy between two different random variables X and Y is defined as follows: 

2
,

( | ) ( ) ( | ) log ( | )
x X y Y

H X Y p y p x y p x y
 

    
(4)

where p(y) is the probability that event Y will occur independently, and p(x|y) is the conditional 

probability that event X will occur under the condition that event Y is occurring. The joint entropy of  

X and Y is 

2
,

( , ) ( , ) log ( , )
x X y Y

H X Y p x y p x y
 

    (5)

where p(x, y) is the simultaneity probability (i.e., joint probability) that events X and Y will occur.  

In general, the relationship between the unite information entropy and the conditional information 

entropy is 

( , ) ( | ) ( )H X Y H X Y H Y   (6)

For variables X and Y, the definition of MI is as follows: 

( , ) ( ) ( | ) ( ) ( ) ( , )I X Y H X H X Y H X H Y H X Y      (7)

The MI obtained from Equation (5) is not domesticated, and will be domesticated by Equation (6)  

as follows: 

( , )

( ) ( )

I X Y
NMI

H X H Y



 (8)

2.3. Cloud Model Algorithm and CMCE 

2.3.1. Cloud Model Algorithm 

Let U be a quantitative universe that can be represented by a number, and C is the qualitative concept 

of U. If the quantitative value x U  is the first random realization of the qualitative concept C,  
then x’s certainty degree for C μ( ) [0,1]x   is a stable tendency random number. If μ : [0,1]U  ,  

x U  , and x → μ(x), then the distribution of x in the universe is a cloud, which can be denoted as C(x).  
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Each x is called a cloud droplet. The numerical characteristics of the cloud model include Ex (expected 

value), En (CMCE), and He (hyper entropy). The cloud model algorithm is divided into backward cloud 

generator algorithm and normal cloud generator algorithm [18]. 

The backward cloud generator algorithm indicates that a certain amount of data samples are  

expressed as qualitative concepts, which are expressed by digital characteristics, as shown in the 

following discussion. 

(1) Sample mean 
1

1 n

i
i

X x
n 

   is obtained according to sample point xi, The first order of the sample 

absolute center distance is 
1

1 n

i
i

x X
n 

 , and sample variance is 2 2

1

1
( )

1

n

i
i

S x X
n 

 
  . 

(2) Calculate the expected value as follows. 

xE X  (9)

(3) Calculate CMCE as follows. 

1

1

2

n

n i x
i

E x E
n




    (10)

(4) Calculate hyper entropy as follows. 

2 2
e nH S E   (11)

A normal cloud generator represents a mapping from qualitative mode to quantitative mode, and the 

cloud droplet is obtained according to digital characteristics (Ex, En, He). This algorithm generates 

random quantitative values with uncertain concepts as well as the degree of certainty of random 

quantitative values. The steps of the normal cloud generator algorithm are described as follows. 

(1) Generate a normal random number En′ with expected value En and standard deviation He. 

2

2

( )1
( ) exp[ ]

22n

n
E

ee

x E
f x

HH


   (12)

(2) Generate a normal random number “x” with expected value Ex and standard deviation En′. 
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The probability density formula of X is 

2 2

2 2

( ) ( )1
( ) ( ) ( ) exp[ ]
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The expected value of cloud droplet X is E(X) = Ex, and its variance is D(X) = En
2 + He

2. 

(3) Calculate 
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 (15)

(4) X is a cloud droplet of the universe, and y is the certainty degree. 
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(5) Repeat Steps (1)–(4) until the required number of cloud droplets is generated. The schematic of 

the final cloud model is shown in Figure 1. 
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Figure 1. Schematic of the cloud model. 

2.3.2. CMCE 

All properties of the concept expressed by the cloud model can be reflected by the digital 

characteristics of the cloud. The cloud model uses expected value (Ex), CMCE (En), and hyper  

entropy (He). Overall, these three digital characteristics symbolize the same concepts C (Ex, En, He). 

Among these, CMCE (En) represents the uncertainty of the reflected qualitative concept. CMCE (En) 

indicates the range of the cloud droplet group accepted by linguistic terms in the log domain space, 

which is also called ambiguity. Alternatively, CMCE (En) denotes the randomness of the appearance of 

a cloud droplet; a cloud droplet can symbolize a qualitative concept. Moreover, entropy also indicates 

the relevance between uncertainty and randomness. CMCE (En) can be used to represent the particle size 

of a qualitative concept. In general, when entropy is high, the concept is macroscopic, fuzziness and 

randomness are considerable, and definite quantization is difficult. 

2.4. Signal Feature Extraction Method Based on EEMD and CMCE 

According to the preceding analysis, the feature extraction method based on EEMD and CMCE can 

be concluded through the following steps. 

(1) IMFj (j = 1, 2, …, n) is obtained by decomposing the collected AE signals calculated by the  

EEMD algorithm. 

(2) All MI values between all IMFj and the original signal by the MI algorithm are calculated. 

Sensitive IMFs are selected according to MI threshold. 

The formula of the MI threshold is shown as follows [19] 

max( )
μ  

10 max(
1 2, ,

) 3
,i

h
i

i n
  




 (16)
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In Equation (16), μi is the MI between the i-th IMF and the original signal, n is the number of IMFs, 

and max (μi) is the maximum number of MI. 

For an IMF whose MI value with the original signal is larger than the MI threshold, μh is maintained.  

For sensitive IMFs, an IMF whose MI value with the original signal is smaller than the MI threshold, 

then μh is removed. 

(3) The selected sensitive IMFs are used to reconstruct signals. 

(4) CMCE as the eigenvalue is calculated using the backward cloud generator to reconstruct signals. 

3. Experimental Verification and Result Analysis 

3.1. Design and Layout of Test Rig 

To complete the simulation experiment, two conditions—namely, normal and damage states of the 

inner ring of the bearing—were tested. The rolling bearing experimental test rig is illustrated in  

Figure 2. The test rig consists of the motor, coupling, test bearing and support structure. The type of 

rolling bearing used is K001, which is produced by Chinese Nanjing haning Bearing Manufacturing Co., 

Ltd. The lesion area of the bearing sample is 6 mm2, which is processed by electrical discharge. Physical 

samples are shown in Figure 3. 

 

Figure 2. Rolling bearing experimental rig. 

 

Figure 3. Damage fault in the inner ring of the bearing. 

damage 
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3.2. Instrumentation 

The test instrument used in the experiment is a four-channel signal acquisition system of PCI-2-PAC 
produced by the American Acoustic Physics Company. The acoustic sensor is R15α, whose response 

frequency is 60~500 kHz and service temperature is −20~80 °C. The acoustic sensor is fixed to the 

stents, which are attached to the bearing by an M20 magnetic fixture. The acoustic sensor is then 

connected to the data acquisition system by a preamplifier (40 dB). The output impedance of the 

preamplifier is 50 Ω, and the working frequency is 10 KHz~2 MHz. The data acquisition systems employ 

AEwin 3.5 software in data acquisition and analysis. The speed of the rotating motor is 14,000 r/min, 

and the sampling rate is 1MSPS during the experiments. The schematic of the data acquisition process 

is shown in Figure 4. 

 

Figure 4. Schematic of the data acquisition systems. 

3.3. Feature Extraction of Two Kinds of Signals 

The time domain waveform of the AE sensors measures the AE signals from the normal and damaged 

states of the inner ring of the rolling bearing, as shown in Figure 5. The decomposition of IMF1~IMF7 

is achieved after the two kinds of AE signals are decomposed by the EEMD algorithm, as shown in 

Figure 6. The added noise amplitude value is 0.01 times of standard deviation of original signals,  

at the same time, The overall average time M = 200. 
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Figure 5. Waveforms of the two signals. (a) Normal acoustic emission (AE) signal 

waveform; (b) Damage AE signal waveform. 
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Figure 6. Decomposition results of the two signals. (a) The normal signal decomposition 

results; (b) The damage signal decomposition results. 

In general, the most significant information of the original signal is centralized in the first several 

IMF components of EEMD decomposition. The MI values between IMF1~IMF7 and the original signal 

under normal and damage states are calculated by the MI algorithm, as shown in Figure 7. In this figure, 

the abscissa mark Ai (i = 1, 2, …, 7) indicates IMFi (i = 1, 2, …, 7) and the original signal. The normal 

and damage MI thresholds are calculated according to literature [19], with threshold values of 0.1452 

and 0.0711, respectively. In addition, Figure 7 shows that the MI value between IMF1 and IMF4 and 

the original signal under normal state is higher than the threshold of 0.1452, hence, IMF1 and IMF4 are 

determined as sensitive IMFs. The MI value between the remaining IMFs and the original signal is lower 

than the threshold of 0.1452, thus, these IMFs are removed as false components. Similarly, the MI value 

between IMF1 and IMF4 and the original signal under damage state is higher than the threshold of 

0.0711, hence, IMF1 and IMF4 are sensitive IMFs. Meanwhile, the MI values of the other IMFs are 

smaller than the threshold of 0.0711, and thus, these IMFs are removed as false components. In this 

manner, sensitive IMFs are determined under the two states. Consequently, we can obtain a summation 

according to sensitive IMFs. The reconstructed signals under the two states are shown in Figure 8. 
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Figure7. MI value between IMF1~ IMF 7 under the two states and the original signal. 
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Figure 8. Reconstruction signals. (a) The normal signal of reconstruction; (b) The damage 

signal of reconstruction. 

The backward cloud generator algorithm is used to calculate the cloud model digital characteristic 

quantity of two kinds of reconstructed signals. The cloud model characteristic quantity of reconstruction 

in the damage signal is Exa = 12.62; Ena = 317.2; and Hea = 38.85. The cloud model characteristic quantity 

of reconstruction in the normal signal is Exb = 43.62; Enb = 443.93; and Heb = 56.7. To conveniently 

observe the differences between the two kinds of cloud model, Hea and Heb are generally set to 0.1.  

The cloud model of the reconstructed signal calculated by the normal cloud generator algorithm is shown 

in Figure 9. As shown in the figure, the cloud models of the two kinds of reconstructed signals are 

obviously different. In particular, the difference between the values of cloud model characteristic entropy 

Ena and Enb is significant. 
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Figure 9. Cloud model diagram of the reconstructed signal. 

To analyze further the distribution rules of CMCE under the two states, 40 group samples under 

normal and damage AE signals are selected separately. All samples should be de-noised and 

reconstructed by the EEMD algorithm, and the CMCE of the reconstructed signal should be calculated. 

The fitting curves of all CMCE values are shown in Figure 10. As shown in the figure, the distribution 

of CMCE under two states remains stable with the increase in sample number. Moreover, the difference 

between entropy values is considerable, and the effect of such difference is highly evident. Thus, CMCE 

can be regarded as the eigenvalue of the signals to distinguish among the different states of the bearing. 
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Figure 10. Fitting curves of all CMCE values under the two states. 

To compare the differences among CMCE, SampEn, and RMS, 40 sample groups of the normal and 

damage AE signals are selected separately. The samples should be denoised and reconstructed by the 

EEMD algorithm. The SampEn and RMS of the reconstructed signals should be calculated.  

The parameter of SampEn should be selected as follows, model dimension m = 2, threshold r = 0.2, and 

time series length N = 4096. The fitting curves of all SampEn and RMS values are shown in Figures 11 

and 12, respectively. 
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Figure 11. Fitting curves of all SampEn values under the two states. 
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Figure 12. Fitting curves of all RMS values under the two states. 

As shown in Figures 10 and 11, change is relatively stable with the increasing number of sample 

CMCE and SampEn. However, the difference between normal and damage states of SampEn is minimal, 

and the distinguishing effect is not obvious. SampEn uses the unit step function, and threshold r is highly 

sensitive. Consequently, a sudden change occurs in SampEn, which causes the difference between the 

two states to decrease further. As shown in Figure 12, the RMS fluctuation of the AE signals under the 

two states is obvious and stability is relatively poor. Although differences occur in RMS between the 

normal and damage states, the distinguishing effect is poor. RMS can represent the change in signal 

amplitude, and thus, it is easily disturbed by the environment, has poor anti-noise capability, and fails to 

solve the signal uncertainty problem. Moreover, obvious fluctuations easily appear with the increase in 

sample number. 

The CMCE and SampEn of the reconstructed signal are set as the eigenvalue. Fault diagnosis is 

performed with K-nearest neighbor (KNN) classification algorithm and support vector machine (SVM) 

algorithm [20–22]. One hundred and twenty groups of samples are selected from CMCE and SampEn 

samples, respectively, among which, 80 groups are for training and 40 groups are for testing.  

Setting K = 3 in K-nearest neighbor (KNN) classification algorithm, the penalty factor C = 150, σ = 1 in 

support vector machine (SVM) algorithm, the experimental results are shown in Table 1, which show 

that the diagnostic performances of KNN and SVM are both good under EEMD–CMCE. Also, this 
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shows that the proposed EEMD–CMCE method is a better Feature Extraction method than the  

EEMD–SampEn method. 

Table 1. Comparison of fault diagnosis results. 

 Accuracy % 

Method KNN SVM 
EEMD–CMCE 96.2 97.5 

EEMD–SampEn 83.4 88.7 

4. Conclusions 

This study proposes a feature extraction method based on the EEMD and CMCE of rolling bearing 

fault signal. The EEMD algorithm is used in signal decomposition. Sensitive IMFs are then selected to 

reconstruct signals using the MI method, which finally eliminates noise. CMCE is used as the eigenvalue 

of the reconstructed signal to overcome the disadvantages of traditional entropy. According to the 

analysis of the AE signals from a rolling bearing under normal and damage states, the experimental 

results verify that the index, as bearing fault characteristics, is effective and superior. 
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