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Abstract: We perform a computer simulation of the reaction-diffusion and convection that 

takes place in Rayleigh–Bénard and Bénard–Poiseuille regimes. The lattice Boltzmann 

equation (LBE) is used along with the Boussinesq approximation to solve the non-linear 

coupled differential equations that govern the systems’ thermo-hydrodynamics. Another 

LBE, is introduced to calculate the evolution concentration of the chemical species involved 

in the chemical reactions. The simulations are conducted at low Reynolds numbers and in 

terms of steady state between the first and second thermo-hydrodynamics instability. The 

results presented here (with no chemical reactions) are in good agreement with those 

reported in the scientific literature which gives us high expectations about the reliability of 

the chemical kinetics simulation. Some examples are provided. 
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1. Introduction 

The Rayleigh–Bénard convection phenomenon is common in nature, governing various phenomena 

such as atmospheric fronts [1], thermal inversion (Bénard–Marangoni), ocean currents [2], circulation 

of the mantle [3], etc. In the chemical industry, convective rolls are present in the chemical and 
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electrochemical reactors [4], fuel cells, distillation columns, selective membranes, ion exchange, among 

others. To characterize these phenomena in complex systems, a wide variety of numerical methods have 

been used: such as the finite element [5–8] and finite differences [9,10], among others. 

Other methods of statistical physics have also been successfully used, such as Monte Carlo algorithms 

in the study of microscopic aspects of the Rayleigh–Bérnard dynamics as a phase transition [11,12]. 

Recently, the Lattice Boltzmann Method (LBM) has emerged [13,14] as one of the most powerful tools 

to describe complex thermos-hydrodynamic system [15–17]. The introduction of the BGK collision 

operator approach permits to significantly simplify the LB algorithm, although at some expenses of 

numerical stability in very low viscous regimes. Most importantly, in LBM the transport (free-streaming) 

is linear and can be dealt with exactly, while diffusion emerges from the relaxation dynamics of the 

collision operator, which is fully local. These are major advantages over macroscopic formulations of 

hydrodynamics. 

When a fluid is heated from below and the Reynolds number is small, the heat transfer takes place by 

conduction. However, if a critical value is exceeded, natural convection is the predominant phenomena. 

The so-called Rayleigh–Bénard convection occurs due to the competition between the gravity and 

buoyant forces, creating instabilities in the fluid, which induces convective currents. 

There are two thermo-convective instabilities in the Rayleigh–Bénard systems [18]. The first 

corresponds to the transition from a steady-state thermal conduction towards a state of thermal 

convection, formed by well-defined bidimensional stationary rollers. This transition occurs, 

theoretically, at a Rayleigh number of 1707.76, regardless of the value of the Prandtl number. The second 

transition occurs when the Rayleigh value increases until it can be considered a function of the Prandtl 

number. It consists of a bifurcation from a single frequency oscillating state, to a quasiperiodic double 

frequency flow. An additional increment of the Rayleigh number leads to a chaotic regime in a fully 

developed turbulence. Recently, a large number of articles with regard to the LBM applied on  

Rayleigh–Bénard convection, mainly between the first and second transition, where the Boussinesq 

approximation is valid, have been published. The first approach to Rayleigh–Bérnard systems by LBM 

is introduced by 1993 [19,20]. 

Many theoretical and experimental results restricted to low Reynolds and Rayleigh numbers have 

shown that layered Bénard–Poiseuille flow remains also stable, as long as the Prandtl number does not 

exceed a critical value. There are several articles based on finite differences [3,4,10] and in LBM [21] 

that have to do with the theory and numeric of this type of flow analysis. However, so far, there are few 

publications related to reactive systems under Rayleigh–Bénard and Bénard–Poiseuille regimes despite 

their importance among the applications above mentioned [22]. 

In order to simulate the dynamics of chemical reactions in two-dimensional systems with thermal and 

convective phenomena, a D2Q9 LBM is used in this paper at mesoscopic scale by taking into account 

(virtual) particles which move synchronously in a regular lattice, in accordance with discrete time steps. 

Then, when these particles reach simultaneously the same node of this lattice, they interact among 

themselves following collision rules that comply with the principles of mass, momentum and energy 

conservation, recovering in the macroscopic limit (through multiscale expansion), a number of 

differential equations, relying on the described phenomena. After the interaction, which is assumed to 

be instantaneous, the particles are scattered through first or second neighbors in the lattice. These define 
a distribution function of pseudo-particles if ; namely, the probability that a particle is in a site-specific 
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lattice node at time t, moving with speed ic  [23,24]. There are several other researches on coupled 

chemical reactions (electrokinetic) and reactive transport within micropores using mesoscopic  

modeling [25]. Pioneer work in the study of chemical kinetics using LBM has also been considered in 

this paper [26–28]. We perform a simulation in the Rayleigh–Bénard and Bénard–Poiseuille regimes for 

the Nitrous Oxide decomposition where Boussinesq approximation is valid, introducing the chemical 

kinetics as a function of the temperature via the Arrhenius law. 

2. Thermal Decomposition of Nitrous Oxide  

In this section, we address two different cases; the first pertains to the thermal decomposition of 

nitrous oxide (so called laughing gas) in the bulk of a fluid containing air plus the different species 

involved in this well characterized chemical reaction. This fluid performs a laminar flow through a 

rectangular open channel. The second case is similar but in a closed cavity; namely, the Rayleigh–Bénard 

and Bénard–Poiseuille regimes. See Figure 1. 

 

Figure 1. The non-isothermal closed and open cavities used in this paper. 

In 1903, Boussinesq noted that when the differences of temperature were small, the thermodynamic 

properties of the fluid, such as the viscosity, the thermal diffusivity and the specific heat were also small, 

thus the fluid was approximately incompressible, while buoyant fluid effects were significant. This is 

due to the fact that the acceleration of the fluid is considerably less than the gravitational acceleration. 
Namely, the product of the gravity acceleration g  and a small density difference is not negligible 

compared to other terms in the vertical movement component of the fluid in the Navier–Stokes equation. 

Boussinesq proposed an equation of state in which the fluid density is a linear function of the temperature 

and does not depend on the pressure. Following this hypothesis, the nonlinear coupled partial differential 

equations governing the thermos-hydrodynamic instability are as follows [29]. 

 The continuity equation 

0t u       (1)

 The Navier–Stokes equation with buoyant forces (G ). 

[ ]tu u u P G         (2)
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 The infinitesimal balance of heat transfer, based on the Fourier’s law, including effects of natural 

convection and viscous dissipation. 

  :t p TC T k T uT u          (3)

 The linear Bousinesq equation of state. 

 0 0[1 ]T T      (4)

In these equations  , pC  and Tk  are the density, heat capacity and thermal conductivity of the fluid, 

respectively. Besides, u , P  and T  are the speed, pressure and temperature of the fluid;   is the 

molecular momentum flux tensor. In this paper, we use the dimensionless version of Equations (1)–(3), 

namely; 

0u     (5)
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             (7)

where Ra , Pr  are the Reynolds and Prandtl dimensionless numbers. 

The chemical dynamics are governed by the following equation of reaction-diffusion and convection 

is used in this paper. 

t i i i i QC D C u C R        (8)

The left side of this equation represents the changes of the chemical species in accordance to the 

concentration of i . Meanwhile, on the right side for each species i , the first term corresponds to the 
molar diffusion flux, with iD  as the diffusion coefficient; the second term represents the convective 

transport drew by currents of fluid moving with speed u ; finally, the third term corresponds to the  

speed of the different species production by the chemical reaction. This equation is considered in 

dimensionless form.  

Equations (5)–(8) are a set of nonlinear differential equations, regardless of the nature of the chemical 

reaction, that pose a serious challenge to its resolution.  

The decomposition of the laughing gas is considered as an example in this paper:  

2 2 2

1
N O N O

2
   (9)

Experimental evidence indicates that the corresponding chemical kinetics is given by [28] 

 
 2

2

1 2
N O

2 2

N O
.

1 N OQ

k
R r

k
  


 (10)

here 1k  and 2k  are constants obtained through experiments. Obviously, the 2N O  decomposition is not 

elemental; i.e. if we assume that two molecules of 2N O  collide and spontaneously disappear, at certain 

required conditions, becoming two molecules of 2N  and one of 2O , then the kinetics should be 
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2

2

N O 2N OQR r k   , which experimentally is not the case. Thus, this is a non-elemental chemical 

reaction and needs a new proposed mechanism for itself; namely, a set of elemental reactions take place 

at the decomposition rate. At a fixed temperature, it is proportional to the collision of molecules (or the 

spontaneous decomposition of one molecule), and also proportional to the concentration of the species 

involved. In such a case, we must introduce some molecular non-stable structures (they are produced 

and immediately consumed in another elemental reaction) whose concentration cannot be measured by 

experiments and are small enough to have a rate of production (or decomposition) equal to zero. These 

structures are called intermediate complex chemical states. 

We propose the following reaction mechanism that suits this kinetics as follows:  

1'

2 '

2 22N O N O
k

k

X    (11)

3'

2 2

1
N O .

2

k

X     (12)

here, 1'k , 2'k , 3'k  are theoretical constants ( 1k  and 2k  are related with these hypothetical constants). 

Equations (11) and (12) are added together to build the chemical reaction (9) experimentally obtained 

and are assumed to be elemental, so we have four differential equations (one for each rate of production 
or decomposition of the species; 2N O , *X , 2N  and 2O ) and the corresponding algebraic equations 

obtained by stoichiometry; thus it is possible to write, in this mechanism, the global 2N O  decomposition 

rate only in terms of the 2N O  concentration. From the full set of available equations all species’ 

concentrations and rates follow. In the first step of our mechanism (Equation (11)), 2N O  disappears 

following Equation (13), and it may be noted that we deal with this as elemental kinetics.  

     22
1' 2 2' 2N O N O

d N O
k k X

dt
       (13)

By the hypothesis of non-stable intermediate steady-state ( * 0
X

r  ), the speed of production of the 

intermediate complex chemical state X   is zero. Considering elemental kinetics: 

   2

1' 2 2' 2 3'

[ ]
N O N O 0

d X
k k X k X

dt


        (14)

From Equations (13) and (14) and the algebraic equations from stoichiometry follow the kinetics  

given by (10).  

In this study, the following simplifying considerations are taken into account.  

1. The gaseous fluid (air and different species involved in the thermal decomposition of the laughing 

gas) is incompressible and Newtonian.  

2. The thermal conductivity, viscosity, coefficient of thermal expansion and coefficient of diffusion of 

chemical species are all constant throughout the studied temperature range.  

3. The variation of density is only significant in terms of buoyant forces. 

4. Viscous dissipation is negligible.  

5. The Reynolds number is small (for Bénard–Poiseuille flow).  

6. The laughing gas decomposition is the only chemical reaction that takes place in the system.  
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7. In the top and bottom plates, temperature is constant. This means that the heat generated by the 

chemical reaction is assumed to be efficiently removed from the system.  

8. In the bottom plates, there are two heat sources (or hot spots) for both the opened and closed channels 

at a higher temperature than the low constant temperature set in 7. These heat sources trigger the (N2O 

decomposition) reaction.  

9. The concentrations of chemical species are kept sufficiently small so that they dominate the properties 

of air during the phenomenon of natural convection. 

There are experimental values for the kinetic constants 1k  and 2k  in (10), which we assume follow 

the Arrhenius law [30]. 
19.39 81800/

1 10 RTk e  (15)

8.69 28400/
2 10 RTk e  (16)

We chose temperatures in order that the chemical reaction rate is relatively slow so the heat generated 

by it is also small. 

3. The Lattice Botlzmann Model  

In this section, we introduce the general lattice Boltzmann framework used in this paper. 

3.1. Open Channel  

As mentioned above, three lattice Boltzmann structures are used in this paper. The first one concerns 

the thermo-hydrodynamics issue. We proposed for the momentum distribution function the  

following equation: 

       , , , ,eq
i i i i i i

F

t
f x c t t t f x t f x t f x t J


            (17)

For iJ , the buoyant term, we use the Boussinesq approximation, namely 

   3 , ,i i y iyJ w g T x t T x t c         (18)

A second LBE is formulated for the temperature field. The equation for the thermal distribution  

function is:  

       , , , ,eq
i i i i i

T

t
g x c t t t g x t g x t g x t


            (19)

A third LBE is formulated for the chemical reaction kinetics that rules the species’ concentration 

evolution.  

       ,, , , ,eq
i i i i i Q

D

t t
h x c t t t h x t h x t h x t R

Q
   


             (20)
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here, D  is the diffusion relaxation time 
2

1

2D
s

D

c
   , being D  the  ’s chemical specie Fick diffusion 

coefficient. The corresponding (three LBE) distribution equilibrium functions are defined by the 

following equations:  

  2 2 2
, 1

2
eq iA A iA iBA B

i t AB
s s s

c u c cu u
f x t w

c c c
 
  

     
  

, (21)
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. (23)

In a reactive system, we have as many equations ((20) and (23)) as needed (the same number as the 

chemical species involved in the reactions). The macroscopic variables are obtained as usual in the LBM. 

For example, the different species´ concentrations are obtained from the mesoscopic distribution 

functions as follows:  

i
i

C h
   . (24)

In Figure 2, we schematically introduce the so-called open channel system. The N2O current (mixed 

with air) enters by the open rectangular channel on the left side with a fixed and uniform speed and 

laminar regime (low Reynolds numbers). The internal part the channel interacts with heat sources which 

triggers the N2O thermal decomposition, following the mechanism’s reaction proposed in this paper by 

Equations (13) and (14). Simultaneously, the very same heat sources cause the appearance of convection 

rolls, and the reaction evolves at different rates, depending on the local temperature achieved by the 

reactive molecules in the fluid at each site of the channel. 

As for the boundary conditions we set the following scheme in the open channel case:  

1. For the top plate, bounce back boundary conditions for the fluid dynamic LBE and a low constant 

isothermal boundary conditions for the thermic LBE are used. 

2. Inlet and outlet periodic boundary conditions, for the moment and thermal LBE, are set. 

3. For the bottom plate, bounce back boundary conditions are imposed in all the nodes for the 

hydrodynamic LBE, while for thermal LBE we used bounce back conditions as well, except in the 

heat sources sites where Dirichlet boundary conditions are set.  

After obtaining the profiles of velocity and temperature in steady-state, we assess the evolution of the 

concentration of the chemical species for the reactive diffusional LBE. This procedure results from the 

fact that kinetics is coupled with the temperature field through the Arrhenius law, namely the 

concentration rate changes due to kinetic law by both concentration and temperature fields. 
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These boundary conditions are: 

1. Top and bottom bounce back boundary conditions. 

2. Invariable concentration in the inlet of the channel. 

3. Null gradient concentration in the outlet of the channel (von Neumann condition). 

 

Figure 2. The lattice Boltzmann model for a reactive flow (a mixture of nitrous oxide and 

air), with heat sources that promote its thermal decomposition in an open channel. 

3.2. Closed Channel 

Now consider nitrous oxide initially confined to a vessel at 250 K and suddenly the sources located 

in the bottom plate rise their temperature to 300 K (by the hot spots) producing the thermal 

decomposition of the laughing gas (Rayleigh–Bénard flow). All the settings given by the open channel 

case are kept except for the boundary conditions. In the closed channel case, these are the following: 

1. Bounce back boundary conditions at all the sites for the fluid and thermal LBE on all borders, except 

at the heat’s sources.  

2. Diritchlet boundary conditions at all high temperature sites (heat sources). 

3. Initial state with uniformly distributed nitrous oxide in the closed vessel, with initial concentration 

0C  and initial temperature 0T , smaller than the temperature of the sources. 

4. Bounce back boundary conditions at all the sites for the reaction-diffusion LBE on all borders.  

Figure 3 is a schematic representation of this system. 
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Figure 3. The lattice Boltzmann model for a reactive flow containing nitrous oxide mixed 

with air, with heat sources that promote its thermal decomposition in a closed vessel. 

4. The Lattice Botlzmann Algorithm 

In the following we describe the LBM algorithm used in this paper to perform the simulation of our 

models that allowed us to obtain our results. 

4.1. Open Channel  

After the discretization of the rectangular 2D domain, a D2Q9 lattice is implemented and then the 

following standard LBM steps are applied: 

1. The distribution functions f  and g  for the velocity u  and temperature T  fields, respectively, were 

evaluated simultaneously in a coupled fashion, taking into account iterative calculations performed 

by the following steps: 

1.1. Propagation (streaming) of the f  and g  distribution functions. 

1.2. Calculation of the distribution functions at equilibrium; eqf  and eqg . 

1.3. Actualization of the f  and g  distribution functions. 

1.4. Introduction of thermal and fluid dynamics boundary conditions. 
1.5. Calculation of the u  and T  fields from the new f  and g  distribution functions. 

1.6. Assessment of the new and preceding values of u  and T , if they are closed enough, finish the 

iterations; else, return to step 1.1. 

2. Once obtaining the steady temperature and velocity profiles, the temporal evolution of the distribution 
functions ih  for each one of the three chemical species is calculated, solving the LBM equations for 

the reaction-diffusion advection phenomena. This is a non-iterative procedure, structured practically 

by the same steps as the ones in the thermo-hydrodynamic analysis, except for that in the formulation 

of the diffusional distribution functions for each chemical species. The chemical kinetics term 

(Arrhenius law also considered) is introduced, keeping the 1:1:1/2 stoichiometric relationships 

between reactants and products. 

After a short period of time, the concentrations of the three chemical species reach a steady-state, due 

to the constant in-and-out reagent. 
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4.2. Closed Channel 

In this case, we use the open channel algorithm modifying a few instructions in the algorithm 

concerning the new boundary conditions and establishing a speed equal to zero in the input stream. The 

remaining instructions are kept unchanged in the algorithm. 

5. Results and Conclusions  

The results of our calculations are presented in Figures 4 and 5 for the open channel and in Figures 6 

and 7 for the closed channel. 

One goal of this paper is the analysis of the chemical reactions’ dynamics that are carried out on 

systems presenting thermo-hydrodynamic instabilities, using Boussinesq approximation since this is 

considered a main stream topic. The study presented here is a new step towards this direction. The model 

presented in this paper includes a non-stationary thermo-hydrodynamic system where the heat generated 

by the chemical reactions has an important role in the temperature interval studied. The reaction enthalpy 

data of several chemical reactions are available in the literature and can be plugged into the algorithm. 

The heat generated would lead to a different evolution of the Bénard convection rolls. In this case, the 

solution of the Boussinesq approach and the associated coupled chemical is quite different and shall be 

addressed elsewhere. 

Finally, data numerical analysis can be performed by Fourier series on the bidimensional images  

(or rough data on the plane) providing precise functions from the contours depicted in Figures 4–7.  

For example, in Figure 5, for the Nitrogen produced after 5 s, the upper contour of the lowest and  

second lowest concentration areas can be approached by the following function; 

   204 166.71cos .0034 361.2sin .0034y x x     with a correlation of 0.994, being x  and y  space 

coordinates in the channel. Further work should be done in the near future to take full advantage of  

our approach. 

 

Figure 4. Temperature field evolution for the Bernard–Poiseuille reactive flow as iterations 

are carried on up to reach the thermo-hydrodynamic steady state.  
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Figure 5. Species concentration field evolution for the Bénard–Poiseuille reactive flow as 

iterations that are carried out for 5, 10 and 20 s.  

 

Figure 6. Temperature field evolution for the Rayleigh–Bénard reactive flow as iterations 
that are carried out to reach the thermo-hydrodynamic steady state, x  and y  are the space 

coordinates in the cavity. 
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Figure 7. Species concentration field evolution for the Rayleigh–Bénard reactive flow as 
iterations that are carried out for 5, 15, 25 and 50 seconds, here x  and y  are the space 

coordinates in the cavity.  
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