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Abstract: Closed, steady or cyclic thermodynamic systems, which have temperature
variations over their boundaries, can represent an extremely large range of plants, devices
or natural objects, such as combined heating, cooling and power plants, computers and
data centres, and planets. Energy transfer rates can occur across the boundary, which
are characterized as heat or work. We focus on the finite time thermodynamics aspects,
on energy-based performance parameters, on rational efficiency and on the environmental
reference temperature. To do this, we examine the net work rate of a closed, steady or cyclic
system bounded by thermal resistances linked to isothermal reservoirs in terms of the first and
second laws of thermodynamics. Citing relevant references from the literature, we propose a
methodology that can improve the thermodynamic analysis of an energy-transforming or an
exergy-destroying plant. Through the reflections and analysis presented, we have found an
explanation of the second law that clarifies the link between the Clausius integral of heat over
temperature and the reference temperature of the Gouy–Stodola theorem. With this insight
and approach, the specification of the environmental reference temperature in exergy analysis
becomes more solid. We have explained the relationship between the Curzon Ahlborn heat
engine and an irreversible Carnot heat engine. We have outlined the nature of subsystem
rational efficiencies and have found Rant’s anergy to play an important role. We postulate
that heat transfer through thermal resistance is the sole basis of irreversibility.

Keywords: anergy; Clausius inequality; exergy; finite time thermodynamics; Gouy–Stodola
theorem; irreversible thermodynamics; rational efficiency; reference temperature; second
law; thermal resistance
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1. Introduction

Closed, steady or cyclic thermodynamic systems, which have temperature variations over their
boundaries, can represent an extremely large range of plants, devices or natural objects, such as combined
heating, cooling and power plants, thermoelectric devices, regenerative and non-regenerative braking
systems, energy storage systems, computers and data centres and planets. We consider a system
closed if no matter crosses its boundary. We consider a closed system steady if its energy and entropy
remain constant and if the distribution of temperature over the entropy transfer rate through its surface
(Section 2.7) is invariant with time; with this definition, we do not require further information about its
state. We consider a closed system cyclic if it returns one or more times to a state with the same energy,
entropy and surface temperature distribution over the entropy transfer rate.

The analysis of a closed, steady or cyclic, reversible or irreversible system linked by thermal
resistances to a heat source and a heat sink has been well studied in the literature, e.g., Novikov [1],
Curzon and Ahlborn [2], Angulo-Brown et al. [3], Chen [4], Amelkin et al. [5], Feidt [6], Açıkkalp and
Yamık [7] and Hernández et al. [8]. We use the term ‘reversible system’ to mean a system within which
all processes are thermodynamically reversible and the term ‘irreversible system’ to mean a system
within which some processes are not thermodynamically reversible. Many papers are concerned with
establishing upper bounds for the thermal efficiency of a heat engine at maximum power, but general
performance characteristics have also been examined for heat engines, reverse heat engines and plants
with more than one useful output rate, i.e., a positive net rate of work output and/or exergy output rates
corresponding to heat transfer rates at various temperatures.

We look at first law performance parameters and second law rational efficiencies of such
arrangements, including cases where there are more than two isothermal reservoirs. For the configuration
where there is only one isothermal reservoir in addition to the environmental isothermal reservoir, we
demonstrate the relationships between energy-based thermal efficiencies or coefficients of performance
(COPs) and second law rational efficiencies. For completeness, we introduce a new heat engine COP,
applicable where the heat sink (the exergy source in this case) is at a temperature below the ambient one.
This engine COP is a practical alternative to defining the thermal efficiency as the ratio of the power
output to a rate of heat input at environmental temperature (this rate of heat transfer has no exergetic
or economic value). It can be seen that there is nice symmetry between the expressions for thermal
efficiencies, COPs and rational efficiencies that we present. Between them, they describe the complete
first law and second law performance characteristics of the composite system investigated, not just the
optimal performance. The composite, irreversible system has four operational cases: the heat engine
(HE1) where the heat source is above the ambient temperature, the heat engine (HE2) where the heat
sink is below the ambient temperature, the heat pump (reverse heat engine, RHE1) and the refrigeration
plant (RHE2). We also present the rational efficiency at maximum power, which we have not found
in the literature, although it is implicit. This is the rational efficiency of the Curzon–Ahlborn engine
operating at maximum power.

Exergy analysis is based on the concept of an idealized, all-enclosing, reference environment that
has infinite heat capacity and thermal conductivity, is uniform and is in equilibrium at the environmental
reference temperature, T0. The actual surroundings of a real plant, such as a heat engine, a heat pump or a
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refrigerator, may differ significantly from the ideal. We apply the concepts of finite time thermodynamics
to refine the concept of T0, thereby making exergy analysis more consistent with reality.

1.1. Model

As an actual ‘environment’ may not be in thermal equilibrium: a real plant may interact with multiple
thermal reservoirs, e.g., with the ground, with a large body of water, with the air, with the sun and with
the sky, as well as available sources of exergy, such as a combustion region or a source of waste heat.
Usually, also, there will be at least one intended exergy sink, which needs to be adequately defined and
characterized: it could be a sink of mechanical shaft power, a sink of electrical power or, as a pertinent
example, an isothermal reservoir attached to the system by a thermal resistance. It should be noted too
that an intended exergy sink could be a source of heat transfer at a temperature that is lower than T0.

Referring to Figure 1, we consider a closed reversible or irreversible system, A, that produces a net
shaft work interaction rate while undergoing heat transfer interactions with n isothermal reservoirs, each
linked to the boundary of System A by a constant thermal resistance. The thermal resistances would
have SI units of K/W. We assume that the physical regions associated with the thermal resistances have
negligible heat capacity. We assume that the arrows shown in Figure 1 indicate the positive directions
for the associated heat transfer rates and the net work rate.

Reversible
or Irreversible
System A

Ri

Rn

R1
R2

Q  2 

Q  i 

Q  n 

T0

T = T 0' 0

T1'

T2'

Tn'

Ti'

Q  1 

Q  = 0 0

R  0

Ti

T1

T2

Tn W  net

System B

B = {A, R , R , ..., R }  0 1 n

Figure 1. A closed reversible or irreversible system, A, bounded by constant thermal
resistances linked to isothermal reservoirs.

As a key constraint, we assume that System A undergoes no net change. For simplicity, we assume
that it is closed, as otherwise we would have to include net transport of energy and entropy in our
energy and entropy balances. It may be in a steady state, but if its state is unsteady, the net work
interaction rate is the time-averaged value, and the heat transfer rates are time-averaged values at stated
fixed temperatures. A virtual isothermal reservoir at the effective environmental temperature, T0, is also
shown. As it is virtual, it has a heat transfer interaction rate of zero with A. Whenever we have only a
single, isothermal, environmental reservoir, we will label its temperature T0, and it need not be virtual, as
it is likely to provide or accept a finite rate of heat transfer, Q̇0. It is a fundamental assumption of exergy
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analysis that there is a reservoir that can either supply or accept heat transfer at this fixed temperature,
without limit.

An isothermal reservoir does not have to be infinite, as long as it can accept or provide the required
heat transfer rate. Engineers know how to make such a thing, e.g., by making use of a thermoelectric
device. We can maintain a temperature on the boundary. We also assume that we can vary or set the
various heat transfer rates, as required. For this discussion, the thermal reservoirs are held at constant
temperatures, just as Carnot [9] described for the hot and cold bodies in his book of 1824.

In Figure 1, we also show a second system, B, that includes A and the thermal resistances. At the
boundary of System B, heat transfer occurs at the temperatures of the external isothermal reservoirs.

If there are just two isothermal reservoirs, then the heat engine would operate with one heat source
and one heat sink. If the thermal resistances are negligible and System A is reversible, we would have a
reversible Carnot cycle operating directly between the two isothermal reservoirs.

If there are n isothermal reservoirs, all of the thermal resistances are negligible and System A is
reversible, then there could be multiple Carnot cycles involved. In fact, when we plot a general “cycle”
of a reversible closed system that undergoes no net change on a temperature versus entropy-transfer-rate
diagram (Section 2.7), every cycle is a Carnot cycle. In the translated book “The Mechanical Theory of
Heat” of 1879, Clausius [10] broke up reversible cycles, plotted on diagrams of pressure against volume,
into thin strips, each of which corresponded to a Carnot cycle. He used the diagram on p. 89 to explain
his famous equality for a reversible cycle

∫
dQ/T = 0 and cited his original paper of 1854, published

in Poggendorffs Annalen. In an analogous way, we can model any reversible closed system, within
which no net change is occurring as it interacts with multiple thermal reservoirs, with an assembly of
contiguous, but adiabatically-separated Carnot cycle systems. Moreover, we can model any irreversible
closed system, within which no net change is occurring as it interacts with multiple thermal reservoirs,
as an assembly of contiguous, but adiabatically-separated Carnot cycle systems bounded by thermal
resistances, each of which interacts only with two isothermal reservoirs and a work reservoir. A work
reservoir is a system that can accept or provide a rate of shaft work. Indeed, we can go further and
allow the “Carnot” cycle to be irreversible. Where we are interested in modelling a range of operating
conditions or the performance of subsystems, a finite-time thermodynamics model incorporating an
irreversible cycle is likely to be closer to reality than one where all of the irreversibility is modelled
by the bounding thermal resistances only.

The entropy transfer rate associated with a rate of heat transfer Q̇i through a boundary that is at
absolute temperature Ti is given by Equation (1).

Ṡi =
Q̇i

Ti
(1)

We find it very useful to plot temperature against the cumulative rate of entropy transfer, over the
surface of the assembly of Carnot cycle systems or the assembly of irreversible systems that involve heat
transfer at two temperatures only, which undergo no net change, and over time. We have that sort of
arrangement in mind when we put forward these n isothermal reservoirs. The integer n could have any
value up to infinity, and if it is infinity, then we could have smooth temperature glides (over part of the
boundary of the surface or over intervals of time). Hence, we can have constant temperatures and/or
temperature glides.
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Amelkin et al. [5,11] have considered a multiple reservoir arrangement of the type shown in Figure 1,
both for the case where System A is reversible and where it involves irreversibility. In optimizing the
plant for the maximization of power output, they came to the conclusion that not all thermal reservoirs
should be chosen. In the present paper, we are not concerned with performing such an optimization, but
rather with characterizing the performance of the overall system as it exchanges energy by heat transfer
at specified rates with specified isothermal reservoirs.

1.2. Aims

Our first aim in this paper is to examine the energy-based, or first law, performance parameters
of System B, consisting of a closed reversible system linked by thermal resistances to n isothermal
reservoirs. In engineering, we still use first law performance quantifiers: specifically, thermal efficiencies
and coefficients of performance. Equation (2) defines the thermal efficiency of a heat engine.
Equations (3) and (4) define the coefficients of performance of a heat pump and a refrigeration plant,
respectively. These performance parameters are traditional and convenient, but not entirely logical. An
efficiency must be greater than or equal to zero and less than unity. A coefficient of performance must
be greater than or equal to zero, but need not be less than unity.

Eth eng =
Ẇnet out

Q̇in
=

Desired energy output rate
Necessary energy input rate

(2)

COPhp =
Q̇out

Ẇnet in
= ditto (3)

COPref =
Q̇in

Ẇnet in
=

Desired energy input rate
Necessary energy input rate

(4)

For example, the performance of an ideal heat pump, as characterized by the Carnot COP, could be
five or it might be thirty five. This is the COP of a reversible Carnot cycle, operating in reverse as a
reverse heat engine. In 1852, William Thomson [12], Lord Kelvin, wrote a paper, “On the economy
of heating or cooling of buildings by means of currents of air”, in which he came up with the ratio of
the required work input to the heat transfer that would be required for the direct heating of the air as
1/35. We would now describe such performance, using the inverse of Kelvin’s fraction, by quoting
a heat pump COP of 35. In Kelvin’s calculations, the air was to be heated from 50 °F to 80 °F, i.e.,
from 10.00 °C to 16.67 °C. Based on these temperatures, the Carnot heat pump COP would have been
18.0. However, Kelvin based his calculations on increasing the temperature of the air reversibly using
a non-steady-flow, open, reversible system. Equivalently, calculating the integrated Carnot COP over
the temperature glide of the air as it is heated at constant pressure in a steady flow system by a series
of infinitesimal Carnot heat pumps, we obtain an overall heat pump COP for the reversible heat pump
of 35.3. Current technology heat pumps for heating houses yield a COP of up about four. We are a
long way from the ideal performance that Kelvin described accurately in 1852. The value of the COP
quoted for a real system does not inherently indicate what the performance could be for an ideal system
providing the same effect.
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We also wanted to present the second law performance parameters: the rational efficiency values for
System B, implemented as a heat engine, a heat pump or a refrigeration plant. We were interested, also,
in the rational efficiency values of subsystems of the overall system. In addition, we wanted to explore
the meaning of the environmental reference temperature.

2. Concept Development

We adopt a methodology that may help us to extract the structure of and appreciate the nature of the
exergy flow paths associated with heat transfer, provide insight into ways of defining rational efficiency
in exergy analysis and make the choice of environmental reference temperature somewhat more solid and
method based, recognizing the significance of finite time in real thermodynamic processes that involve
heat transfer. We start with the simplest case and develop the concepts progressively.

2.1. One Heat Source and One Heat Sink with Reversible Heat Transfer

In Figure 2, a system, A, has a net work interaction while exchanging heat with just two isothermal
reservoirs, at temperatures T1 and T0, where each thermal reservoir is linked to the boundary of the
system, without any thermal resistance between them. For the moment, we assume the net work is an
energy output and that T1 > T0. We also assume that System A undergoes only reversible processes.

Reversible
System A

T1

T0

Q  1 

Q  0 

T  = T 0' 0

T = T1' 1

W  net rev 

Figure 2. A closed reversible system, A, bounded by two isothermal reservoirs, without
intermediate thermal resistances.

The thermal efficiency, Eth rev, is given by Equation (5), and the net rate of work output is given by
Equation (6). This efficiency is known as the Carnot efficiency, ECarnot, as Sadi Carnot [9] first described
the concept of an idealized cycle of a heat engine system, based on reversible processes and with only
infinitesimal temperature differences causing the heat transfer interactions between the system and two
isothermal reservoirs. Carnot also pointed out that this maximum efficiency, expressing the “motive
power” of the heat transfer rates, was independent of the particular working substance, whether solid,
liquid, vapour or two-phase. The Carnot efficiency would be applicable for any net rate of work output
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of a reversible steady-state or cyclic device, operating between the two isothermal reservoirs, for which
the assumption of zero or infinitesimal connecting thermal resistances held.

Eth rev =
Ẇnet rev

Q̇1

= ECarnot =

(
T1 − T0
T1

)
=

(
1− T0

T1

)
(5)

Ẇnet rev = Q̇1

(
1− T0

T1

)
(6)

Now, we consider cases where the net work interaction is an energy input and where T1 may be
greater than or less than T0. Carnot [9] (p.11) pointed out that the net work output of his idealized heat
engine could be reversed, so that the energy taken from the source and that transferred to the sink could
be returned, leaving no net effect on the heat engine system or its surroundings. The heat pump and
refrigeration COPs of a reversible heat engine, operating in reverse, are given by Equations (7) and (8).

COPhp rev =
Q̇1

Ẇnet rev
=

1

ECarnot
=

(
T1

T1 − T0

)
(7)

COPrefr rev = −
Q̇1

Ẇnet rev
= − 1

ECarnot
=

(
T1

T0 − T1

)
(8)

In Equation (7), Q̇1 and Ẇnet rev are both negative, and the isothermal reservoir at temperature T1 is
the heat sink at a temperature above T0. In Equation (8), Ẇnet rev is negative, and the isothermal reservoir
at temperature T1 is the heat source, which is at a temperature below T0.

There remains a further case to be considered. Imagine we had an isothermal reservoir somewhere
under the surface of the Earth at −100 ◦C. Then, our heat engine could operate between ambient
temperature, T0, and that low-temperature reservoir, at T1. This would be one of four different application
cases that are possible. We could have:

• a heat engine (which we denote as HE1) accepting heat transfer from a high temperature heat
source at T1 and rejecting heat at T0 (if irreversible, the entropy transfer rate out at T0 is greater
than the entropy transfer rate in at T1),

• a heat engine (HE2) accepting heat transfer at T0 and rejecting heat to a low temperature heat sink
at T1 (if irreversible, the entropy transfer rate out at T1 is greater than the entropy transfer rate in
at T0),

• a heat pump (which we denote as a reverse heat engine, Type 1, RHE1) rejecting heat to a high
temperature sink at T1 and accepting heat transfer at T0 (if irreversible, the entropy transfer rate
out at T1 is greater than the entropy transfer rate in at T0) or,

• a refrigerator (RHE2) accepting heat transfer from a low temperature source at T1 and rejecting
heat at T0 (if irreversible, the entropy transfer rate out at T0 is greater than the entropy transfer rate
in at T1).
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The Type 1 systems or devices (HE1 and RHE1) operate at temperatures that are mainly above
ambient temperature, while Type 2 (HE2 and RHE2) operates mainly at temperatures below ambient
temperature. In all four cases, entropy has to be balanced to respect the second law, which states that
for a system that is undergoing no net change, the rate of entropy creation must be greater than or equal
to zero and can only equal zero if there is no irreversibility occurring within the system. Where entropy
is being created within the system, there must be a corresponding net rate of entropy rejection from the
system. As a consequence, for a unique net rate of entropy transfer into the system (positive or negative)
from the thermal energy reservoir at T1 (this reservoir either provides or accepts a rate of exergy transfer)
and a unique rate of entropy generation within the system, there must be a unique rate of heat transfer
into or out of the environmental isothermal reservoir at T0: the existence of the environmental isothermal
reservoir allows this balancing heat transfer rate to occur. It could be called a rate of anergy transfer,
using the term proposed by Rant [13]. It may be that progress in the field of exergy analysis and finite
time thermodynamics has been held back by a lack of attention to anergy transfer.

Cases HE1 and HE2 are the heat engine cases where T1 > T0 or T1 < T0. There is a net rate of exergy
input associated with heat transfer at T1 and a net rate of exergy output as work. RHE1 and RHE2 are
the reverse heat engine cases where T1 > T0 or T1 < T0. There is a net rate of exergy input as work and
a net rate of exergy output associated with heat transfer at T1.

For a reversible HE2, where T1 < T0, the following expressions apply.

Eth rev

∣∣∣∣
T1<T0

= ECarnot =

(
T0 − T1
T0

)
=

(
1− T1

T0

)
(9)

Ẇnet rev

∣∣∣∣
T1<T0

= Q̇0

(
1− T1

T0

)
(10)

2.2. One Heat Source and One Heat Sink with Thermal Resistances

Assuming an HE1 heat engine (T1 > T0), taking into account the temperature drops associated with
heat transfer through resistancesR1 andR0 in Figure 3 and lettingRtot = R1+R0, the thermal efficiency
is given by Equation (11) and the net power output by Equation (12).

Eth

∣∣∣∣
T1>T0

= 1− T0

T1 − Q̇1Rtot
(11)

Ẇnet

∣∣∣∣
T1>T0

= Q̇1

(
1− T0

T1 − Q̇1Rtot

)
(12)
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Figure 3. A closed reversible system, A, bounded by two constant thermal resistances linked
to isothermal reservoirs.

Assuming an HE2 heat engine (T1 < T0), the thermal efficiency is given by Equation (13) and the net
power output by Equation (14). We note that the thermal efficiency is still defined as the net rate of work
output divided by the rate of heat input and that, in this case, the rate of heat input is Q̇0.

Eth

∣∣∣∣
T1<T0

=
Ẇnet

Q̇0

= 1− T1

T0 − Q̇0Rtot
(13)

Ẇnet

∣∣∣∣
T1<T0

= Q̇0

(
1− T1

T0 − Q̇0Rtot

)
(14)

The heat pump and refrigeration COPs are given by Equations (15) and (16).

COPhp =
−Q̇1

−Ẇnet
=

1

Eth
=

(
T1 − Q̇1Rtot

T1 − T0 − Q̇1Rtot

)
(15)

COPrefr =
Q̇1

−Ẇnet
= − 1

Eth
=

(
T1 − Q̇1Rtot

T0 − T1 + Q̇1Rtot

)
(16)

At this point, we define one more first law performance parameter that we will refer to subsequently
as part of our second law analysis of HE2 heat engines. We use the engine COP of Equation (17) for an
HE2 to express the ratio of the net work output rate to the rate of heat rejection to the low temperature
sink at T1, where T1 < T0. The work output rate is given by Equation (18).

COPeng

∣∣∣∣
T1<T0

= −Ẇnet

Q̇1

=

(
T0

T1 − Q̇1Rtot
− 1

)
(17)

Ẇnet

∣∣∣∣
T1<T0

= Q̇1

(
1− T0

T1 − Q̇1Rtot

)
(18)
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2.3. Heat Input Rate and Thermal Efficiency of a Heat Engine at Maximum Power

For an HE1 heat engine (where T1 > T0) at maximum net power output, the rate of heat input is given
by Equation (19) and the thermal efficiency by Equation (20).

Q̇1, max power

∣∣∣∣
T1>T0

=
T1 −

√
T1
√
T0

Rtot
(19)

Eth, max power

∣∣∣∣
T1>T0

=
Ẇnet, max power

Q̇1, max power
= 1−

√
T0√
T1

(20)

Similar expressions can be written for an HE2 heat engine: Equations (21) and (22). We also provide
Equations (23) and (24), as we regard Q̇1 as the principal heat transfer rate.

Q̇0, max power

∣∣∣∣
T1<T0

=
T0 −

√
T0
√
T1

Rtot
(21)

Eth, max power

∣∣∣∣
T1<T0

=
Ẇnet, max power

Q̇0, max power
= 1−

√
T1√
T0

(22)

Q̇1, max power

∣∣∣∣
T1<T0

=
T1 −

√
T0
√
T1

Rtot
(23)

COPeng, max power

∣∣∣∣
T1<T0

= −
Ẇnet, max power

Q̇1, max power
= 1−

√
T0√
T1

(24)

Vaudret et al. [14] have traced the history of Equation (20) to a 1929 book by Reitlinger and have
included a scanned image of the relevant excerpt in their paper. Furthermore, an equation equivalent
to Equation (20) for thermal efficiency was provided by Novikov [1], where T1 was the temperature at
which heat transfer evolved in a nuclear reactor and T0 was the ambient temperature. As a simplification
underlying this form of the equation, the working fluid cycle was assumed to be reversible. Novikov
credited a number of other authors with developing this type of expression. Equation (20) was
popularized by Curzon and Ahlborn [2], and their paper has been very widely cited.

Equations (11), (12) and (16) were included (the last in two end-of-chapter problems) for
the first time in the seventh edition (2013) of the popular heat and mass transfer textbook by
Incropera et al. [15], emphasizing a growing appreciation of the structural relationship between
the temperature differences associated with heat transfer interactions and optimization of plant
performance—the papers by Novikov [1] and Curzon and Ahlborn [2] were cited. As an example,
McGovern and Harte [16,17] included internal thermal resistances in exergy analyses of the operation of
refrigeration compressors.

We note that System B in Figure 3, which undergoes irreversible processes, has the same thermal
efficiency as System A, which undergoes only reversible processes. The fact that both systems have
the same thermal efficiency emphasizes the weakness of a first-law-only parameter, such as Eth, for
characterizing the performance of the heat engine. Systems B and A also share the same heat pump or
refrigeration COPs.
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2.4. Exergy Analysis Principles to Be Applied

The equality of Clausius [10], Equation (25), applies to the reversible system, A, of Figure 3, while
his inequality, Equation (26), applies to the irreversible system, B, that includes the thermal resistances.

1∑
i=0

Q̇i

T ′i
= 0 (25)

1∑
i=0

Q̇i

Ti
< 0 (26)

Here, we write Clausius’ expressions on a time rate basis for a closed, steady or cyclic system. If the
system is steady, the summation is performed over the surface, requiring knowledge of the distribution
of the heat flux and temperature. If the system is cyclic, the summation is performed over the surface and
over time, requiring knowledge of the distribution of heat flux and temperature over the surface and over
time. These expressions represent the second law of thermodynamics, while Equation (27) represents
the first law.

1∑
i=0

Q̇i = Ẇnet (27)

Equations (25), (26) and (27) give rise to the Gouy–Stodola theorem, Equation (28), a derivation of
which is available in Bejan [18] (Ch. 2). In this equation, Ẇlost, 0 is the rate at which available work
(also known as exergy) is destroyed, e.g., in System B in Figure 3, and Ṡgen is the rate of entropy
generation within the system. In including a zero in the subscript label of Ẇlost, 0, Bejan explained
and emphasized that the expressed rate at which available work is destroyed is with reference to an
associated energy transfer rate (also known as an anergy transfer rate in this context) occurring at the
specified environmental reference temperature T0.

As Bejan [18] (Ch. 2) explained, it is common to draw the boundary of an overall system being
analysed in entropy generation minimization analysis (or in exergy analysis) conventionally, in such
a way that the ultimate ‘balancing’ transfer of energy to or from the environment occurs at T0. The
Gouy–Stodola theorem applies for just this case, but is not applicable for systems, or particularly
subsystems, subject to constraints, such as being adiabatically separated from the environment, or
bounded by a surface over which different or varying temperatures exist, or being bounded by an
external surface of the overall system over which different environmental temperatures exist. Any
entropy creation within a closed, steady or cyclic system undergoing no net change will require entropy
transfer out of the system somewhere on the boundary, at some temperature, or over some ranges of
temperature. If the system is steady, the rate of entropy rejection must be contemporaneous with the rate
of entropy creation. In addition to writing Equation (28) with a zero in the identifying subscript of the
lost work term, Bejan also provided an equation, equivalent to Equation (29), that allowed the lost work
to be expressed relative to an associated reference temperature, Tj , on a system or subsystem boundary
where balancing heat transfer or balancing entropy transport or transfer occur to satisfy the inequality
of Clausius. This could be for cases where we are interested in the performance of a subsystem in
the context of its own local constraints. We borrow this concept in relation to the exergy transfer
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rate associated with a rate of heat transfer, which we refer to an appropriate boundary temperature,
Equation (30) and Figure 4.

Ẇlost, 0 = T0Ṡgen (28)

Ẇlost, j =
Tj
T0
Ẇlost, 0 (29)

From the Carnot efficiency of a reversible engine operating between isothermal reservoirs at Ti and
Tj , the reversible shaft work associated with a heat transfer rate Q̇i at Ti is given by Equation (30), as
explained schematically in Figure 4. The algebraic sign of the exergy transfer rate is automatically taken
into account [19], but care is needed in its interpretation. The exergy transfer rate Ẋ will have the same
sign as Q̇ if T > T0, but will have the opposite sign if T < T0. In a vapour compression refrigeration
plant, the energy transfer rate to the refrigerant in the evaporator is an input to the refrigeration system,
but the corresponding exergy transfer rate is a negative input, which means that the exergy output rate is
positive. Thus, Equation (30) gives the exergy transfer rate, Ẋi,j , associated with an actual heat transfer
rate in the context of the temperature Tj of an isothermal reservoir at which any required heat and entropy
transfer to satisfy the inequality of Clausius can occur.

Ẋi, j = Q̇i

(
1− Tj

Ti

)
= Q̇i − Ȧi, j (30)

Qi
HErev HErev

X  i, jQi

Qj Qj

Qj

Ti Ti

Tj

QiTi

Figure 4. The exergy transfer rate, Ẋi,j , corresponding to a heat transfer rate Q̇i at Ti,
relative to an isothermal reservoir at temperature Tj (virtual reversible heat engines, HErev,
are employed).

The rate of anergy transfer, Ȧi,j , associated with a rate of heat transfer at temperature Ti is given
by Equation (31). We note that the rate of anergy transfer is directly proportional to the reference
temperature Tj (which is usually the same as T0) and indirectly proportional to the temperature at which
the heat transfer occurs. It follows from Equation (31) that the rate of anergy transfer associated with a
rate of heat transfer is always in the same direction as the heat transfer. We also note that the anergy rate
of a rate of heat transfer at a given temperature equals the corresponding entropy transfer rate multiplied
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by the reference temperature for exergy and anergy Tj , which we call T0 if it applies for the entire
composite system under consideration.

Ȧi, j = Q̇i
Tj
Ti

= ṠiTj = ṠiTk
Tj
Tk

= Ȧi, k
Tj
Tk

(31)

For our definition of rational efficiency, η, we use the ratio, for a specified system, of the sum of the net
exergy outputs to all exergy sinks, divided by the sum of the net exergy inputs from all exergy sources;
Equation (32). To be rigorous, we need to make the following stipulations. There can only be one or more
sources or one or more sinks, not both, associated with the net work rate. Likewise, for any temperature
or infinitesimal temperature range where heat transfer occurs over the boundary, there can only be one
or more sources or one or more sinks, not both, for the associated exergy transfer rate. This definition
is entirely boundary-based. If a net exergy output rate will ultimately be destroyed and is therefore not
useful, we have the choice of extending the boundary into the reference environment to include that rate
of exergy destruction, thereby eliminating it from the numerator of the rational efficiency.

η =

∑
Ẋnet, out∑
Ẋnet, in

(32)

In a seminal paper in 1986, Valero, Lozano and Muñoz [20] introduced the concept of exergetic cost,
defined as the amount of exergy per unit time required to produce a physical flow, and proposed a set
of propositions relating to it as part of a theory of exergy saving. The concepts introduced amounted
to a new way of looking at overall systems in terms of the laws of thermodynamics and the principles
of economics. For costing and rational efficiency evaluation purposes, their proposition 2P, “. . . all
the products of a generic equipment have the same unit exergetic cost” is key to addressing furcations
(or forks) in the flow of exergy through an overall system or plant. Lozano and Valero published a
comprehensive paper on the theory of exergetic cost in 1993 [21]. In this publication, the corresponding
proposition, P4b, had the wording “. . . if a unit has a product composed of several flows, then the same
unit exergetic cost will be assigned to all of them”.

We believe exergetic costing approaches, and exergonomic approaches built on them will be more
widely used as understanding of the nature of exergy flow through systems deepens. The reference
temperature is of central importance, as the numerical outcomes are dependent on it. McGovern [22]
focused on the structural issue of exergy recycles.

Now we point out the structural difference between a conventional mechanical efficiency of a power
transmission system, such as a gearbox, and a rational efficiency according to Equation (32). The
mechanical efficiency (shaft power output over input) could be 95%. The rational efficiency would
typically be zero (where the analysis boundary extends into the environment). However, in principle the
rational efficiency of an improved version could be higher than even the mechanical efficiency. If the
materials could withstand it, we could cause the heat rejection rate (energetically equivalent to 5% of the
input shaft power) to occur at a very high temperature relative to the temperature of the surroundings,
T0, and the net rate of exergy output could come arbitrarily close to the net input of mechanical power
(input minus output shaft power).
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2.5. Exergy Analysis of a Reversible System Linked without Thermal Resistances to Its Heat Source
and Sink

We now apply exergy analysis to the reversible heat engine, A, described in Section 2.1 and Figure 2.
We take T0 to be the temperature of the environment. The net rate of work Ẇnet rev is equivalent to a rate
of shaft work, so it is also a rate of exergy transfer. If T1 = T0, Ẇnet rev can only be zero, and all rates
of exergy output are zero, so the rational efficiency is undefined and irrelevant. In all other cases, the
rational efficiency is unity.

If T1 > T0 and Ẇnet rev is positive, System A is a reversible heat engine (HE1) producing a net work
output rate, Ẋout, work, according to Equation (6). We apply Equation (30) with Tj = T0 to find the rates
of exergy transfer associated with Q̇0 and with Q̇1, i.e., Ẋ0 = 0 and Ẋ1 = Q̇1 (1− T0/T1). Hence, the
rational efficiency is given by:

ηeng rev =
Ẇnet rev

Ẋ1

=
Ẋ1 + Ẋ0

Ẋ1

=
Q̇1 (1− T0/T1)
Q̇1 (1− T0/T1)

= 1 (33)

Similarly, if T1 < T0 and Ẇnet is positive, System A is a reversible heat engine (HE2) producing a net
work output rate. The rates of exergy transfer associated with Q̇0 and with Q̇1 are, once again, Ẋ0 = 0

and Ẋ1 = Q̇1 (1− T0/T1). We note that in this case, the exergy input rate is associated with the energy
output rate −Q̇1. Hence, the rational efficiency is once again given as unity by Equation (33).

If T1 > T0 and Ẇnet rev is negative, System A is a reversible heat pump (RHE1) providing heat transfer
to the isothermal reservoir at T1. The rational efficiency is given by:

ηhp rev =
−Ẋ1

−Ẇnet rev
=

1

ηeng rev
= 1 (34)

If T1 < T0 and Ẇnet is negative, System A is a reversible refrigerator (RHE2) accepting heat transfer
from the isothermal reservoir at T1 (an exergy output rate). The rational efficiency is given by:

ηrefr rev =
−Ẋ1

−Ẇnet rev
=

1

ηeng rev
= 1 (35)

2.6. Exergy Analysis of a Reversible System Linked to Its Heat Source and Sink by Thermal Resistances

We now apply exergy analysis to Heat Engine B described in Section 2.2 and Figure 3. If T1 = T0,
Ẇnet can only be negative (i.e., an exergy input rate) or zero. The rates of exergy output can only be zero,
so the rational efficiency is zero when Ẇnet is negative.

Using Equations (2), (13), (15), (16), (17) and (30), we obtain the following expressions for the
rational efficiency where System B functions as a heat engine (denoted “eng”) or a heat engine operating
in reverse (denoted “reng”, for “reverse engine”).

ηeng

∣∣∣∣
T1>T0

=
Ẇnet

Ẋ1

=
T 2
1 − (Q̇1Rtot + T0)T1

(T1 − T0)(T1 − Q̇1Rtot)
(36)

ηeng

∣∣∣∣
T1<T0

=
Ẇnet

Ẋ1

=
T 2
1 − (Q̇1Rtot + T0)T1

(T1 − T0)(T1 − Q̇1Rtot)
(37)
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ηhp = ηreng

∣∣∣∣
T1>T0

=
−Ẋ1

−Ẇnet
=

1

ηeng
=

(T1 − T0)(T1 − Q̇1Rtot)

T 2
1 − (Q̇1Rtot + T0)T1

(38)

ηrefr = ηreng

∣∣∣∣
T1<T0

=
−Ẋ1

−Ẇnet
=

1

ηeng
=

(T1 − T0)(T1 − Q̇1Rtot)

T 2
1 − (Q̇1Rtot + T0)T1

(39)

In Figures 5 and 6 we provide sample rational efficiency plots versus the principal heat transfer rates,
Q̇1, for heat engines (HE1 and HE2), a heat pump (RHE1) and a refrigeration plant (RHE2), each
corresponding to the overall system, B, in Figure 3.

For a heat engine (T1 > T0 or T1 < T0) at maximum net power output, the rational efficiency is given
by Equation (40).

ηeng, max power =
Ẇnet

Ẋ1

=
1

1 +
√

T1

T0

(40)
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Figure 5. Rational efficiency versus the principal heat transfer rate, Q̇1, for heat engines
(T1 > T0 and T1 < T0).
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Figure 6. Rational efficiency versus the principal heat transfer rate, Q̇1, for reverse heat
engines (T1 > T0 and T1 < T0).
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2.7. The Temperature versus Entropy Transfer Rate Diagram

We now consider the exergy analysis of the systems represented in Figure 3 with reference to a
diagram of temperature versus entropy transfer rate for whichever system or subsystem we wish to focus
on; Figure 7. Clausius’ cyclic integral, Equation (41), is applied over surface area and time to give the
rate of entropy generation within any closed system or subsystem that undergoes no net change, and the
Gouy–Stodola theorem, Equation (28), allows us to calculate the rate of lost work.

−
∑
i

Q̇i

Ti
= Ṡgen (41)

= SQ

T1

T0

T

Q
T

Q1

T1

Q0

T0

0

Q0

T0'T0'

T1'

ba c d

Q1

T1'

Figure 7. A diagram of temperature versus entropy transfer rates for a reversible heat
engine linked by thermal resistances to two isothermal reservoirs, one of which is at the
environmental temperature, T0.

For System B, with respect to the environmental isothermal reservoir at T0, the lost work rate is given
by Equation (42) and the rate of exergy input is given by Equation (43).

Ẇlost B = T0Ṡgen B = −T0
1∑

i=0

Q̇i

Ti
= −T0

(
Ṡab − Ṡad

)
(42)

Ẋin B = Q̇1

(
1− T0

T1

)
= Ṡab (T1 − T0) (43)

The rational efficiency of System B with respect to T0 is given by Equation (44). The quantities in
this expression correspond to positive and negative rectangular areas in Figure 7.

ηB, 0 =
Ẋin B − Ẇlost B

Ẋin B
=
Ṡab (T1 − T0) + T0(Ṡab − Ṡad)

Ṡab (T1 − T0)

=
Ṡab (T1 − T0)− T0Ṡbd

Ṡab (T1 − T0)
=
T1(T1′ − T0′)
T1′(T1 − T0)

=
T 2
1 − (Q̇1Rtot + T0)T1

(T1 − T0)(T1 − Q̇1Rtot)

(44)
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We also provide rational efficiency expressions for Systems A,R1 andR0 with respect to their entropy
balancing reference temperatures T0′ , T1′ and T0, respectively; Equations (45)–(47).

ηA, 0′ =
Ẋin A, 0′ − Ẇlost A, 0′

Ẋin A, 0′
=
Ṡac(T1′ − T0′) + T0′(Ṡac − Ṡac)

Ṡac (T1′ − T0′)
= 1 (45)

ηR1, 1′ =
Ẋin R1, 1′ − Ẇlost R1, 1′

Ẋin R1, 1′
=
Ṡab (T1 − T1′) + T1′(Ṡab − Ṡac)

Ṡab (T1 − T1′)
=
Ṡab (T1 − T1′)− T1′Ṡbc

Ṡab (T1 − T1′)
= 0

(46)

ηR0, 0 =
Ẋin R0, 0 − Ẇlost R0, 0

Ẋin R0, 0
=
Ṡac (T0′ − T0) + T0(Ṡac − Ṡad)

Ṡac (T0′ − T0)
=
Ṡac (T0′ − T0)− T0Ṡcd)

Ṡac (T0′ − T0)
= 0 (47)

We suggest that these relative rational efficiencies are appropriate parameters to quantify the second
law performance of these component subsystems. In our case, System A is reversible, but in a more
general case, it would have a relative rational efficiency less than one. We note that when analysed in
relation to the entropy balancing reference temperatures for their own boundaries, systems R1 and R0

are exergy destruction sinks, which convert exergy to anergy.
We now provide rational efficiency expressions for Systems A and R1 with respect to the entropy

balancing reference temperature of the composite System B, T0; Equations (48) and (49) respectively.

ηA, 0 =
Ẋin A, 0 − Ẇlost A, 0

Ẋin A, 0
=
Ṡac (T1′ − T0) + T0(Ṡac − Ṡac)

Ṡac (T1′ − T0)
= 1 (48)

ηR1, 0 =
Ẋin R1, 0 − Ẇlost R1, 0

Ẋin R1, 0
=
Ṡab (T1 − T0) + T0(Ṡab − Ṡac)

Ṡab (T1 − T0)
=
Ṡab (T1 − T0)− T0Ṡbc

Ṡab (T1 − T0)

=
T1′ − T0′
T1′ − T0

=
T 2
1 − Q̇1R1T1 − T0T1

(T1 − Q̇1R1) (T1 − T0)

(49)

Figure 8 shows the exergy transfer rates between the subsystems of System B. System A has one
exergy input rate, Ẋin A, 0, and two exergy output rates, Ẇ and Ẋin R0, 0. We refer to this as a bifurcation
of the exergy transfer rate path. The relative magnitudes of the exergy output rates of System A are
characterized by their exergetic furcation factors; Equations (50) and (51).

fout A, Ẇ , 0 =
Ẋout A, Ẇ , 0

Ẋout A, Q̇, 0 + Ẋout A, Ẇ , 0

=
T0′ − T1′
T0 − T1′

=
[Q̇1R1 − T1] [Q̇1(R0 +R1) + T0 − T1]
[Q̇1(R0 +R1)− T1] (Q̇1R1 + T0 − T1)

(50)

fout A, Q̇0, 0 =
Ẋout A, Q̇, 0

Ẋout A, Q̇, 0 + Ẋout A, Ẇ , 0

=
T0 − T0′
T0 − T1′

=
Q̇1R0T0

[Q̇1(R0 +R1)− T1] (Q̇1R1 + T0 − T1)
(51)
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Figure 8. A diagram of the exergy transfer rates for the reversible heat engine linked
by thermal resistances to two isothermal reservoirs, one of which is at the environmental
temperature, T0.

The overall rational efficiency of System B is expressed in terms of two subsystem rational efficiencies
(the second of which is unity in this case) and one exergetic furcation factor; Equation (52). We note
that we can complete the entire analysis of System B and its subsystems, provided we have enough
information to draw the temperature versus entropy transfer rate diagram of Figure 7.

ηB, 0 = ηR1, 0 · ηA, 0 · fout A, Ẇ , 0 (52)

2.8. An Irreversible System Linked to Its Heat Source and Sink by Thermal Resistances

System B of Sections 2.6 and 2.7 is a prototype of a plant or device that is thermodynamically
irreversible, but can serve as a heat engine or a reverse heat engine. It exchanges heat at two temperature
levels only and has a net work rate. It is characterized by its rational efficiency that is known over the
ranges of its main operating parameters; Equations (36)–(39). The thermal resistances need not be linear,
and their exact nature will determine the performance characteristics of the plant. In practice, the hot
part of such an engine needs to be separated from the cold part, and the system boundary should be
adiabatic between them. System A, within System B, could be replaced by another system like B or
by an arbitrary system incorporating an appropriate cycle, such as an irreversible Carnot cycle, Stirling
cycle or non-superheated regenerative Rankine cycle. Equation (52) would still apply, but ηA, 0 would be
less than unity.

2.9. Lost Work Rate and the T–Ṡ Diagram

Figure 9 shows T–Ṡ diagrams for an irreversible HE1 and an irreversible HE2 that each have one
isothermal source and one isothermal sink. In both cases, the width of the shaded area gives the rate of
entropy generation, which is positive. For HE1, we can show that the shaded rectangle is the lost work
rate, as follows:

ṠgenTL = Q̇L, out −
TL

TH
Q̇H, in

= Q̇L, out − Q̇H, in + Q̇H, in(TH − TL)/TH

= −Ẇnet, out + Ẇnet, out, rev = Ẇnet, out, rev − Ẇnet, out = Ẇlost, L = Ẇlost, 0

(53)
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Figure 9. T–Ṡ Diagrams for an irreversible Heat Engine 1 (HE1) and an irreversible HE2.

For HE2, the same expression for Ẇlost, L applies, and we can obtain Ẇlost, H using Equation(29).
Hence,

Ẇlost, 0 = Ẇlost, H =
TH

TL
Ẇlost, L (54)

and we note that this is equal to the shaded area for HE2.
From Equation (31) for both HE1 and HE2, we see that ṠgenTL = ȦL, L (the shaded area shown for

HE1) and that ṠgenTH = ȦL, H (the shaded area shown for HE2). In HE1, the reservoir at TL is the
environmental thermal reservoir, so TL would correspond to T0 in our notation for Figure 3, while TH

would correspond to T1. In HE2, TH is the environmental temperature and TL would correspond to T1.
Similarly, for the reverse heat engines represented in Figure 10, we show that the shaded region for

RHE2 is equal to the lost work rate for it.

RHE2
(Refrigerator)T

T  = T0 H

TL

Sin

Sgen

RHE1
(Heat Pump)T

TH

T  = T0 L

Sin

Sgen

Figure 10. T–Ṡ Diagrams for an irreversible Reversed Heat Engine 1 (RHE1) and an
irreversible RHE2.

ṠgenTH = Q̇H, out −
TH

TL
Q̇L, in

= Q̇H, out − Q̇L, in + Q̇L, in(TL − TH)/TL

= Ẇnet, in − Q̇L, in
TH − TL

TL

= Ẇnet, in −
Q̇L, in

(TL)/(TH − TL)

= Ẇnet, in − Ẇnet, in, rev = Ẇlost, H = Ẇlost, 0

(55)
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For RHE1, the same expression for Ẇlost, H applies, and we can obtain Ẇlost, L using Equation (29).
Hence,

Ẇlost, 0 = Ẇlost, L =
TL

TH
Ẇlost, H (56)

and we note that this is equal to the shaded area for RHE1.
We note three special or limiting cases of the diagrams in Figures 9 and 10. They do not pose any

difficulties for the methodology, but is is helpful to be aware of them.

1. A reverse heat engine can operate between thermal reservoirs at TL and TH = T0, but with only an
infinitesimal heat transfer rate at TL (regarded as a highly irreversible refrigerator), or at TL again
when TL = T0 (regarded as a highly irreversible heat pump), Figure 10.

2. There can be a net rate of work input accompanied by a corresponding net rate of heat rejection at
T0, e.g., a brake or a churn; Figure 11, work rate dissipation.

3. There can be internal heat transfer through the system in the direction from the hotter surface to
the colder one with zero net work output (a thermal resistance); Figure 11, heat transfer rate.

Externally, case 2 is infinitesimally different to case 1. Internally, the systems would differ. The
highly irreversible heat pump or refrigerator would maintain a thermal gradient within the system,
and part of the exergy destruction rate would be associated with internal heat conduction through that
gradient, the remainder being associated with irreversibility in the reverse heat engine, also giving rise
to internal heat conduction. In a fluid brake or dry friction brake, the exergy destruction rate would be
associated with mechanical friction, giving rise to internal heat conduction. In an eddy current brake,
the exergy destruction rate would be associated with electrical resistance, also giving rise to internal
heat conduction.

T
Work rate 
dissipation

Heat transfer rate

Sin

T  = TH L

T

TH

TL

Sin

Sgen

Q  = Wout in

Sgen

Q  = Qout in

W  = 0net out

Figure 11. Diagrams of temperature versus entropy transfer rates for irreversible work rate
dissipation, as in a brake, and heat transfer rate in a thermal resistance.

3. The Environmental Temperature and Multiple Isothermal Reservoirs

Exergy analysis is built on the assumption of an enclosing environment that has a temperature that is at
least approximately constant, and much consideration has been given to the concept of the environmental
dead state [23,24]. Here, we use the configuration of Figure 1 to explore the meaning of T0.
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3.1. One Heat Source and Two Environmental Heat Sinks

We now consider System A, as in Figure 1, with one heat source at T1 and two environmental thermal
reservoirs at temperatures T2 and T3. As a concrete real-world example, heat rejection could occur from
a heat engine to ambient air at 25 ◦C and to seawater at 13 ◦C. We use the term ‘environmental’ thermal
reservoir to signify that any heat transfer with that reservoir has no intrinsic value, other than balancing
the energy inputs and outputs of the steady or cyclic system in accordance with the first and second laws
of thermodynamics. We assume the environmental thermal reservoirs are adiabatically separated from
each other. For the present, we assume that both are heat sinks, i.e., they accept heat transfer, and that
both T2 and T3 are lower than T1. For now, also, we assume that System A is reversible.

As the environmental heat sink temperatures are not the same, neither of them can be considered the
unique environmental reference temperature. We call upon a virtual isothermal reservoir to fulfil that
role, and in order for it to be virtual, we impose the constraint that its net rate of heat transfer to or from
System B is zero. We can imagine that this virtual reservoir connects to a point along resistance R2 or
a point along resistance R3 and shares the effective environmental temperature, T0, with that point. Our
task now is to quantify that temperature.

Figure 12 is a plot of temperature versus the cumulative entropy transfer rates for the boundaries
of Systems A and B. The area underneath any horizontal line on the diagram represents a rate of heat
transfer through a boundary at the corresponding temperature. The total heat rejection rate from System
B is given by Equation (57), and this must equal T0Ṡout, as indicated in Equation (58). This result can
be generalized for multiple ‘environmental’ isothermal reservoirs or for an environmental heat sink that
involves a temperature glide, as shown in Equation (59). The integration is performed over the regions
of the system where environmental entropy transfer takes place and over time.
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Figure 12. A diagram of temperature versus entropy transfer rates for a reversible heat
engine linked by thermal resistances to one heat source and two “environmental” heat sinks.
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Q̇0 = T3Ṡac + T2Ṡcf (57)

T0 =
T3Ṡac + T2Ṡcf

Ṡaf
(58)

T0 =

∫
Tenv dṠenv∫

dṠenv
(59)

We note, however, that T0 as defined in Equations (58) and (59) is also the average temperature of
entropy rejection from the entire composite System B.

3.2. Generalization for Multiple Thermal Reservoirs

Now, we apply a technique like the one that Clausius used for cycles described on a thermodynamic
state diagram, which we mentioned in Section 1.1. Rather than imagining thin Carnot cycle strips on a
p–V diagram, we imagine thin 3D bi-thermal (interacting with two isothermal reservoirs) closed, steady
or cyclic systems. By aggregating them side-by-side, we can construct an arbitrary multi-thermal closed,
steady or cyclic system. Each bi-thermal element of the side-by-side aggregation of subsystems has a hot
surface, a cold surface and surfaces that are adiabatic. We can arrange them so that our composite system
operates with a range of high and low temperatures distributed over the composite surface. The inequality
of Clausius applies to our composite system where the integral is performed over the composite external
surface and over time. We note that while the surface distribution of temperature over the cumulative
entropy transfer rate is of key importance, the manner in which different thermal zones are arranged
over the surface is incidental. This is not a system that we ever intend to build, but it can represent
any arbitrary closed, steady or cyclic system. We have thus shown that for thermodynamic analysis, the
real system can be represented as a collection of bi-thermal, adiabatically-isolated subsystems, which
could have identical first and second law performance parameters. We point out that the subsystems we
describe here need have no similarity to the actual component subsystems of the real system. Thus, all
of the expressions and the T–Ṡ diagram that we have already described for bi-thermal steady, closed or
cyclic systems apply for each of the bi-thermal subsystems.

3.3. The Nature of the Environmental Reference Temperature

We propose the following generalization of the definition of T0. Our first realization is that the
generalized System B, surrounded by many thermal reservoirs, is characterized by two temperatures,
TH avg and TL avg, the equivalent average high and low temperatures of the boundary at which the
entropy acceptance and entropy rejection rates occur, as defined in Equations (60)–(65). One of these
temperatures is associated with one of more “resources” (thermal sources of exergy), while the other is
associated with an “environment”. Typically, the environment is our environment, assumed to be at a
constant temperature.

Q̇in− =
∑
∀i

max
(
−Q̇i, 0

)
(60)
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Ṡin− =
∑
∀i

max

(
−Q̇i

Ti
, 0

)
(61)

TL avg =
Q̇in−

Ṡin−
(62)

We point out that Q̇in− is the rate of heat rejection from the system if the system is steady or the
average rate over a cycle. Likewise, Ṡin− is the rate of entropy rejection from the system if it is steady
or the average rate over a cycle. TL avg is thus the average temperature at which entropy rejection occurs
from the system. Furthermore, TH avg is the average temperature at which entropy transfer occurs into
the system.

Q̇in+ =
∑
∀i

max
(
Q̇i, 0

)
(63)

Ṡin+ =
∑
∀i

max

(
Q̇i

Ti
, 0

)
(64)

TH avg =
Q̇in

Ṡin+
(65)

The first law energy balance, Equation (27), can also be written as Equation (66). If Q̇in+ > Q̇in− ,
then Ẇnet out > 0; the system is a normal heat engine, and from the Clausius inequality, TH > TL. If
Q̇in+ < Q̇in− , then Ẇnet out < 0; the system is a reverse heat engine, and once again, TH > TL. In
steady state, or over the duration of one cycle, there is no net work output if TH = TL, i.e., if there is no
difference between the average temperatures at which entropy is accepted and rejected.

Q̇in+ − Q̇in− = Ẇnet out (66)

From our consideration of the entropy generation rate of the irreversible heat engine and the
irreversible reverse heat engine in Section 2.9, we conclude that for ‘above ambient’ devices (HE1
and RHE1) the environmental reference temperature of the Gouy–Stodola theorem, T0, is the same
as TL avg, the average temperature of entropy transfer out of the overall system, as evaluated over its
boundary. Thus, T0 HE1 = TL avg and T0 RHE1 = TL avg. For ‘below ambient’ devices, T0 HE2 = TH avg and
T0 RHE2 = TH avg.

We now propose Equation (67), where the left-hand side is the sum of the net exergy and
anergy transfer rates into a closed steady or cyclic system, which combines the Clausius inequality,
Equations (25) and (26) and the Gouy–Stodola theorem, Equation (28). In this equation, our use of the
terms exergy and anergy is consistent with Rant’s original usage [13], but is more restricted. Rather than
expressing the exergy and anergy of an amount of energy, we use a time rate form and determine the
exergy and anergy transfer rates corresponding to energy transfer rates across the boundary of a closed,
steady or cyclic system. The net energy input rate equals the sum of the net exergy and anergy input
rates, and this equation is equivalent to Equation (27) (a first law statement).

Ẋin + Ȧin = 0 (67)
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The net rate of anergy input is given by Equation (68), and the net rate of exergy input associated
with heat transfer is given by Equation (69). The net exergy transfer rate associated with work equals
the work transfer rate and has the same direction as it; Equation (70).

Ȧin = T0Ṡin = T0
∑
∀i

Q̇i

Ti
(68)

Ẋin Q̇ =
∑
∀i

(Ti − T0)
Q̇i

Ti
=
∑
∀i

(Ti − T0)Ṡi = Q̇in − T0
∑
∀i

Q̇i

Ti
(69)

Ẋin, Ẇ = Ẇnet in = −Ẇnet out (70)

Hence, we can re-write Equation (67) as Equation( 71).

Ẇnet in +
∑
∀i

(Ti − T0)
Q̇i

Ti
+ T0

∑
∀i

Q̇i

Ti
= 0 (71)

We note that the addition of the net rate of exergy input to T0 times the left-hand side of the Clausius
inequality converts it to an equality (which loses its second law nature, as the Q̇i/Ti terms cancel).
However, we can express the second law of thermodynamics using a ‘greater than zero’ inequality as
Equation (72) or, in more detail, as Equation (73).

Ẋin ≥ 0 (72)

Ẇnet in +

∫
(T − T0)

dQ̇in

T
≥ 0 (73)

where T0 is defined by Equation (74) or Equation (75), as appropriate.

T0 =

∫
dQ̇in−∫ dQ̇in−

T

for HE1 or RHE1 (74)

T0 =

∫
dQ̇in+∫ dQ̇in+

T

for HE2 or RHE2 (75)

4. Methodology Suggestions

We have shown that for a closed, steady or cyclic system, the average rate of exergy destruction, also
known as the lost work rate or the irreversibility rate, can be evaluated and the rational efficiency of the
system calculated. If we can partition the overall system into subsystems that are also closed and steady
or cyclic, then we can evaluate the average rates of exergy destruction and the rational efficiencies of
those subsystems, as well.

In practice, we may obtain the distribution of heat flux and temperature over the surface in various
ways: through measurement, simulation of the system and its surroundings (using all of the techniques of
mechanics, fluid mechanics, heat transfer, theory of electromagnetism, etc.), estimation or a combination
of these. If we have a thermal map of the surface and a map of the heat flux into the surface (positive
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and negative), over the entire surface of the boundary, then from the first law of thermodynamics,
we also know the net rate of work transfer into or out of the system. As an example of the use of
experimentation and estimation we provide reference [25], which describes non-intrusive performance
testing of a domestic freezer conducted by Oladunjoye and second law analysis by McGovern.

T
Heat Engine Reverse

Heat Engine

Sin

TH avg

TL avg

T

TH avg

TL avg

Sin

Sgen Sgen

Figure 13. Example diagrams of temperature versus entropy transfer rates for closed, steady
or cyclic systems.

We suggest that the diagram of temperature versus cumulative entropy transfer rate into the surface
is a useful tool for the analysis. Figures 9 and 10 are the simplest case examples. The incremental
‘amounts’ of heat transfer rate through the boundary can be sorted, and the resulting overall diagrams
for a heat engine or a reverse heat engine might be as shown in Figure 13. We define T0 strictly on the
basis of the overall boundary. When analysing exergy flows within the overall analysis boundary, we also
use T0 of the overall boundary for calculating the exergy transfer rates at the subsystem boundaries. In
most cases, we extend the overall analysis boundary into the real physical environment of the plant, but
in some cases, the effective environment could involve various temperature glides or levels. Furthermore,
the method would allow cyclic variations in the environmental temperature to be taken into account, e.g.,
diurnal temperature variations.

5. The Irreversible Carnot System of Finite Thermal Resistance

We denote any system of the type shown in Figure 2 as a reversible Carnot system, as it corresponds
to the class of systems that Carnot described in 1824 [9]. This class could employ a vapour (two phase),
gaseous, liquid or solid medium—Carnot indicated he did not favour liquid or solid. He specified that
only infinitesimal temperature differences for heat transfer should subsist in his ideal heat engine. Thus,
the working medium would have only infinitesimal thermal resistance, or would require infinite time
to produce a finite net work output. Carnot also clearly stated that all temperature changes within the
working medium were to be due to compression and expansion only. He wrote, “We have shown that
the character of the most effective utilization of heat in the production of movement would be that all
temperature changes in the body were due to volume changes. The more we approach meeting this
condition, the better the heat will be used,” ([9], p. 50, our translation). Carnot was very clear that this
ideal heat engine (normal or reverse) was the limiting case for maximum performance.
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Carnot may not have considered or known about the possibility of regenerative internal heat transfer,
as in the prior Stirling (gas) or subsequent Malone (liquid) cycles, or the idealized cycle of today’s
Rankine steam cycle plants with regenerative feed water heating, which could exist within a ‘Carnot
system’. His statement in relation to temperature changes of the working medium was not sufficiently
general to include these cases. We propose: for each and every infinitesimal temperature range through
which the temperature of the medium is increased and decreased in a reversible cycle between two
isothermal reservoirs, there can be only a net external energy transfer that is entirely work. Clausius’
equality applies and is sufficient. We now elaborate the irreversible Carnot system.

Figure 14 illustrates an irreversible Carnot cycle and an irreversible reverse Carnot cycle on a state
diagram of temperature versus specific entropy. There is no regenerative internal heat transfer. We can
imagine a system that undergoes this cycle, such as Carnot’s Figure 1 ([9], p. 17). For the normal heat
engine or the reverse engine to be reversible, the adiabatic compression and expansion processes (the
dashed lines in Figure 14) would have to be vertical, which would correspond to Carnot’s ideal. If
these are irreversible, entropy must increase in each. It seems to us that the possible mechanisms of
irreversibility, such as mechanical friction, fluid friction, electrical resistance and, of course, temperature
differences within the body of the medium while it is being expanded or compressed, all require the
presence of thermal resistance, and will not involve any irreversibility otherwise. If the thermal resistance
of the working substance is low or infinitesimal then no continuous amount of that medium can be
allowed to contact the high and low temperature reservoirs at the same time. As an aside, perhaps
this gives us a clue as to how one might construct an electrically and thermally superconducting,
reversible thermoelectric device: the arrangement might involve energy storage and switching. We
propose therefore that finite thermal resistance is an inherent characteristic of the irreversible Carnot
system, just as infinitesimal thermal resistance is mandatory for a reversible Carnot system.
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23
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Figure 14. Temperature versus specific entropy diagrams for irreversible Carnot cycles
undergone by a two phase working fluid. For a normal heat engine the sense is clockwise,
while for an reverse heat engine the sense is anticlockwise.

The Curzon Ahlborn system, B in Figure 3, is an instance of an irreversible Carnot system. Based
on what happens at its boundary (as distinct from its internal structure), the irreversible Carnot system
is indistinguishable from the Curzon Ahlborn system. Also, the way in which the two resistances of the
Curzon Ahlborn system are apportioned between R1 and R0 is immaterial (R = R0 + R1). Figures 9
and 10 apply for an irreversible Carnot system, just as they do for a Curzon Ahlborn system. The
irreversible Carnot system has a characteristic thermal resistance that is given by the same expressions
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as apply for the Curzon Ahlborn system, Equations (76) and (77). We derived these expressions from
Equations (36) and (38). In Figure 15, we summarize how the rational efficiency implies the resistance,
or vice versa. There is no implication that the real system has a single thermal resistance that can be
localized—it characterizes the entire distributed irreversibility.

RCHE irr =
(1− η)(T1 − T0)T1

Q̇H in[T1 − η(T1 − T0)]
(76)

RCRHE irr =
(1− η)(T1 − T0)T1
Q̇H out(T1 − T0 − ηT1)

(77)
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Figure 15. Summary of the equivalence of an irreversible Carnot system having a given
rational efficiency relative to T0 and a Curzon Ahlborn system having a certain resistance

6. Overall and Subsystem Rational Efficiencies

Whenever we evaluate a rational efficiency for an overall closed, steady or cyclic plant there is the
presumption that, in principle, the plant could be replaced with a perfect thermodynamic device that
would have a rational efficiency of unity when interacting with the same exergetic resource and the same
environment. The rate of exergy supply from the exergetic resource is always positive. The exegetic
resource may be a thermal reservoir with an ‘above ambient’ effective temperature, or one with a ‘below
ambient’ effective temperature. In the first case the rate of heat transfer from that resource can be
specified as a positive fraction of the heat transfer rate from the resource, while in the second case
the rate of heat transfer from the resource is a negative quantity and the rate of exergy transfer can be
expressed as a negative fraction of it. Otherwise, the exergetic resource is a source of a positive rate of
work. The environment will have an effective temperature for the supply or acceptance of an entropy
transfer rate (which we can express as a heat transfer rate or anergy flow by multiplying the entropy
transfer rate by T0).

From the balances we have examined in detail, the perfect device differs from the real plant: it
exchanges entropy, heat or anergy with the environment at a lower rate. Therefore the nature of the
reference environment must be such that it does not constrain the rate of entropy transfer to or from itself.
When we widen the analysis boundary, as we conventionally do in exergy analysis, we are ensuring this
freedom from constraint. By doing so, we acknowledge the constraints that actually exist. For a closed,
steady or cyclic system that undergoes no net change this constraint is associated with thermal resistance.
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Considering System B in Figure 1 to be a subsystem of some overall system, its rational efficiency
quantifies how efficiently energy transformations between heat transfer rates and a net work rate in either
direction are brought about. More generally, the transformations can be between two or more exergy
transfer rates, where the exergy transfer rates can be associated with net heat transfer rates at specified
temperature levels or a net work rate. If the exergetic resource is thermal, certain of the isothermal
reservoirs are receiving a flow of exergy directly or indirectly from it; others may be supplying flows
of exergy to thermal exergy sinks to meet specified demands, while the remainder are supplying or
receiving anergy directly or indirectly to or from the environment. If the exergetic resource is one that
is providing a rate of work, some of the isothermal reservoirs are providing rates of exergy output to
thermal exergy sinks to meet specified demands, while the remainder are supplying or receiving anergy
directly or indirectly to or from the environment.

Without knowledge of the effective temperature of the environment it is possible to determine the
rational efficiency of System B, based on the effective temperature T0, B of those “isothermal reservoirs”
(in fact, just surfaces through which heat transfer is occurring) that are neither receivers of exergy
flow from the exergetic resource, nor suppliers of exergy flow directly or indirectly to exergy sinks
to meet specified demands, based on the actual operating parameters. T0, B is the constrained reference
temperature of System B at this operating point. Therefore, for a particular operating point the system
can be characterized by its rational efficiency and the rate and direction of anergy flow referred to T0, B

can be determined. This is very significant, as we have a way of characterizing the performance of
subsystems in a way that does not depend on the temperature of the environment T0. When we know the
effective temperature of the environment we can complete the evaluation of the overall rational efficiency.
We note that an anergy flow at the constrained reference temperature of a subsystem corresponds to an
exergy flow relative to the environmental temperature. However, we also have the option of evaluating
Ȧ0 (the anergy flow at T0) directly from Ȧ0, B (the anergy flow relative to T0, B) by using Equation (31).

Valero et al. [20] identified level of aggregation as a significant aspect to be considered in the analysis
of energy transforming systems. If a closed, steady or cyclic system that undergoes no net change
contains flow cycles, such as the Rankine or reversed Rankine cycle, it cannot be disaggregated into
closed systems that would isolate components such as a turbine, a nozzle or a condenser for closer
analysis. O’Toole and McGovern [26] have shown how a net flow across a boundary owing to several
streams can have an equivalent exergy transfer rate. Building on this, McGovern and O’Toole [27,28]
proposed a virtual system concept that can be used to extract the network structure of exergy flows
associated with complex steady flow heat engines.

7. Discussion

We present these ideas for consideration and for discussion. Real plants are complex, and we do
not expect to find analytical expressions that accurately represent their performance characteristics.
However, we have the means to model irreversibility in great detail if we so wish. This exploration
of a simple arrangement of a closed system linked to isothermal reservoirs has enabled the isolation of
some significant aspects of exergy analysis and finite time thermodynamics. Exergy analysis is not an
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alternative to entropy generation minimization analysis or finite-time thermodynamics methods. These
approaches overlap, but are complementary.

Equation (20) has some notoriety, as it contains only two parameters and, yet, is a step closer to reality
than Equation (5). The difference between these two equations is the difference between finite time and
infinite time thermodynamics. In reality, thermal resistance exists. The reversible Carnot cycle system
has no thermal resistance and, therefore, only models real processes that would take infinite time to
complete in a reversible manner. Using Equation (12) for the Curzon and Ahlborn system, B in Figure 3,
and the cost of Q̇1 in e per W, if we have the annual cost of conductance, 1/Rtot, in e per W/K, we can
estimate an appropriate plant efficiency. Equation (20) is appropriate for a particular thermo-economic
situation where maximum power is needed. It gives a reasonably good rough estimate of what is possible,
on the basis that engineers currently implement working fluid cycles, such as the Rankine cycle, with a
very high inherent rational efficiency. In using these equations, T1 should be calculated in the manner of
Equations (62) and (65).

Allowing for only a constant environmental temperature in exergy analysis is rather restrictive. We
have shown that such restriction is not essential for exergy analysis. Each subsystem has its own
constrained environment, and in this paper, we have provided the foundation for developing this concept.

Sometimes, the overall composite system may have one single thermal reservoir with which it
interacts. The net work output rate can only be negative, and the system is an exergy destruction
sink, which may seem trivial. Computer chips that consume exergy are cases in point, but overall
size-and-performance optimization typically leads to a chip operating temperature that is not the same
as the temperature of the environment and should therefore involve exergoeconomic analysis. Currently,
large-scale data centres or computer server farms destroy exergy at a high rate, and the challenge is to
minimize this. Indeed, because the temperature of the environment varies cyclically, these plants have a
multi-thermal boundary. Exergoeconomic analysis is certainly appropriate.

The applications of thermodynamics generally are vast. The planet Earth is an example of a system
that has a roughly cyclic temperature distribution over its surface and an associated, roughly cyclic heat
flux distribution. As a simplification, its exergetic resource is the disc of the sun and its environment is
the balance of a spherical shell at the cosmic background temperature. Perhaps the approach described
here has some relevance to understanding it better. Likewise, could it be applied to the map of cosmic
temperature and its associated heat flux distribution over time and surface?

8. Conclusions

The model of a closed reversible or irreversible system linked by constant resistances to isothermal
reservoirs provides useful insights into finite time, or irreversible, thermodynamics. The temperature
versus entropy transfer rate method can localize exergy destruction rates and provide subsystem
rational efficiencies. Without going to extraordinary lengths, a methodical approach can be used to
specify an appropriate thermal reference environment model as part of an overall exergy analysis
approach, respecting the principles of finite time thermodynamics. We have shown that the reference
environment need not necessarily be at a single constant temperature. By expressing the second law of
thermodynamics in terms of the net exergy input rate to a closed, steady or cyclic system that undergoes
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no net change, we have clarified the link between the Clausius integral of heat over temperature and
the reference temperature of the Gouy–Stodola theorem. We have demonstrated the equivalence of
the Curzon Ahlborn system and the irreversible Carnot system. We have also outlined how subsystem
rational efficiencies relate to overall rational efficiency. We have found that Rant’s anergy is in fact a
very important concept for the analysis of heat and work rates over the boundary of a system. From the
evidence we have presented, we postulate that heat transfer through thermal resistance is the sole basis
of irreversibility.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Novikov, I.I. The efficiency of atomic power stations (a review). J. Nucl. Energy (1954) 1958,
7, 125–128.

2. Curzon, F.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. AJP 1975,
43, 22–24.

3. Angulo-Brown, F.; Rocha-Martinez, J.; Navarrete-Gonzalez, T. A non-endoreversible Otto cycle
model: Improving power output and efficiency. J. Phys. D Appl. Phys. 1996, 29, 80–83.

4. Chen, J. The efficiency of an irreversible combined cycle at maximum specific power output. J.
Phys. D Appl. Phys. 1996, 29, 2818–2822.

5. Amelkin, S.; Andresen, B.; Burzler, J.; Hoffmann, K.; Tsirlin, A. Maximum power processes for
multi-source endoreversible heat engines. J. Phys. D Appl. Phys. 2004, 37, 1400–1404.

6. Feidt, M. Two examples of exergy optimization regarding the “thermo-frigopump” and combined
heat and power systems. Entropy 2013, 15, 544–558.

7. Açıkkalp, E.; Yamık, H. Limits and optimization of power input or output of actual thermal cycles.
Entropy 2013, 15, 3219–3248.

8. Hernández, A.C.; Roco, J.; Medina, A.; Sánchez-Salas, N. Heat engines and the Curzon-Ahlborn
efficiency. Rev. Mex. Fis. 2014, 60, 384–389.

9. Carnot, S. Réflexions sur la Puissance Motrice du Feu, et sur les Machines Propres à Développer
cette Puissance; Chez Bachelier: Paris, France, 1824. (In French)

10. Clausius, R.J. The Mechanical Theory of Heat; Macmillan and Co.: London, UK, 1879.
11. Amelkin, S.; Andresen, B.; Burzler, J.; Hoffmann, K.; Tsirlin, A. Thermo-mechanical systems with

several heat reservoirs: Maximum power processes. J. Non-Equilib. Thermodyn. 2005, 30, 67–80.
12. Thomson, W. On the economy of the heating and cooling of buildings by means of currents of air.

Phil. Soc. Proc. (Glasgow) 1852, 3, 268–272.
13. Rant, Z. Exergie und anergie. Wiss. Z. Techn. Univers. Dresden 1964, 3, 1145–1149. (In German)
14. Vaudrey, A.; Lanzetta, F.; Feidt, M. H. B. Reitlinger and the origins of the efficiency at maximum

power formula for heat engines. J. Non-Equilib. Thermodyn. 2014, 39, 199–203.
15. Incropera, F.; de Witt, D.P.; Bergman, T.; Lavine, A.S. Principles of Heat and Mass Transfer,

7th ed.; John Wiley: New York, NY, USA, 2013.



Entropy 2015, 17 6742

16. McGovern, J.; Harte, S. Computer simulation of exergy destruction within a reciprocating
compressor. In Proceedings of International Compressor Engineering Conference, West Lafayette,
IN, USA, 1992; pp. 309–315.

17. McGovern, J.; Harte, S. An exergy method for compressor performance analysis. Int. J. Refrig.
1995, 18, 421–433.

18. Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of
Finite-Size Systems and Finite-Time Processes; Taylor & Francis: Boca Raton, FL, USA, 1995.

19. McGovern, J.; Le Goff, P. Termes de signe positif et négatif en analyses exergétiques des flux de
chaleur. Rev. Gén. Therm. 1996, 35, 651–655. (In French)

20. Valero, A.; Lozano, M.; Muñoz, M. A general theory of exergy saving. I. On the exergetic cost.
Computer-Aided Eng. Energy Sys. 1986, 3, 1–8.

21. Lozano, M.A.; Valero, A. Theory of the exergetic cost. Energy 1993, 18, 939–960.
22. McGovern, J.A. Exergetic cost analysis of a mechanical exergy recycle. In Proceedings of

International Conference of Energy Systems and Ecology (ENSEC’93), Cracow, Poland, 5–9 July
1993; pp. 351–358.

23. Gaggioli, R.A. The dead state. IJoT 2012, 15, 191–199.
24. Rosen, M.A.; Dincer, I. Effect of varying dead-state properties on energy and exergy analyses of

thermal systems. Int. J. Therm. Sci. 2004, 43, 121–133.
25. McGovern, J.A.; Oladunjoye, S. Non-intrusive second law performance evaluation of a domestic

freezer. In Proceedings of the 8th International Conference on Sustainable Energy and
Environmental Protection, Renfrewshire, UK, 2015; pp. 48–53.

26. O’Toole, F.; McGovern, J. Some concepts and conceptual devices for exergy analysis. Proc. Instn.
Mech. Engrs., Part C: J. Mech. Eng. Sci. 1990, 204, 329–340.

27. McGovern, J.A.; O’Toole, F. A virtual-system concept for exergy analysis of flow network plant;
Part I: Principles. In Proceedings of International Symposium on Efficiency, Costs, Optimization
and Simulation of Energy Systems, New York, NY, USA, 1992; pp. 155–160.

28. McGovern, J.A.; O’Toole, F. A virtual-system concept for exergy analysis of flow network
plant; Part II: Exergetic and exergoeconomic analysis illustration. In Proceedings of International
Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems, New York, NY,
USA, 1992; pp. 161–166.

© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Model
	Aims

	Concept Development
	One Heat Source and One Heat Sink with Reversible Heat Transfer
	One Heat Source and One Heat Sink with Thermal Resistances
	Heat Input Rate and Thermal Efficiency of a Heat Engine at Maximum Power
	Exergy Analysis Principles to Be Applied
	Exergy Analysis of a Reversible System Linked without Thermal Resistances to Its Heat Source and Sink
	Exergy Analysis of a Reversible System Linked to Its Heat Source and Sink by Thermal Resistances
	The Temperature versus Entropy Transfer Rate Diagram
	An Irreversible System Linked to Its Heat Source and Sink by Thermal Resistances
	Lost Work Rate and the T– Diagram

	The Environmental Temperature and Multiple Isothermal Reservoirs
	One Heat Source and Two Environmental Heat Sinks
	Generalization for Multiple Thermal Reservoirs
	The Nature of the Environmental Reference Temperature

	Methodology Suggestions
	The Irreversible Carnot System of Finite Thermal Resistance
	Overall and Subsystem Rational Efficiencies
	Discussion
	Conclusions

