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Abstract: For the modeling of complex and nonlinear crude oil price dynamics
and movement, wavelet analysis can decompose the time series and produce multiple
economically meaningful decomposition structures based on different assumptions of
wavelet families and decomposition scale. However, the determination of the optimal model
specification will critically affect the forecasting accuracy. In this paper, we propose a new
wavelet entropy based approach to identify the optimal model specification and construct
the effective wavelet entropy based forecasting models. The wavelet entropy algorithm is
introduced to determine the optimal wavelet families and decomposition scale, that will
produce the improved forecasting performance. Empirical studies conducted in the crude
oil markets show that the proposed algorithm outperforms the benchmark model, in terms of
conventional performance evaluation criteria for the model forecasting accuracy.
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1. Introduction

In recent years, rapid development of electronic technology and the increasing level of global
economic integration have fundamentally changed the crude oil markets, both in terms of market
structure and market risk exposure. Higher levels of price fluctuations are witnessed in crude oil markets,
accompanied by more competitive and risky environments, increasingly dominated by nonlinear multi
scale dynamics. Besides, due to the unique characteristics of crude oil markets, such as high storage
costs, etc., they exhibit unique features that deserve research attention during the modeling process.

With the volatile crude oil price movement observed in the market, the modeling and forecasting of
daily crude oil price movement remains one of the most important and difficult research issues in the
energy research field. It attracts significant research interests as its resolution is fundamentally important
to some important theoretical issues such as the crude oil derivatives and the energy risk management.

Over the years, numerous approaches have been developed to incorporate nonlinearity, auto
correlation and heteroscedasticity data features into the modeling process, aiming at improving the
forecasting accuracy further. These models include structural and econometric models, artificial
intelligence models, and ensemble models. Equilibrium models analyze the economic relationships
among participants in crude oil market and derive analytic equations to model them. For example,
Bekiros et al. [1] used the time-varying Vector Autoregressive (VAR) model to model the impact of the
economic policy uncertainty on the oil price movement and found the improved forecasting performance
compared to other more standard univariate models [1]. Deng and Sakurai [2] used the multiple kernel
learning regression method to forecast the crude oil spot price. They found that information from
different time frame is useful in improving the forecasting accuracy of the model [2]. Chen [3] found the
oil sensitive stock index to be significant predictors for the oil price movement [3]. Cuaresma et al. [4]
derived a simple unobserved component model incorporating asymmetric cycles and found it to
be superior in performance than the symmetric counterparts and benchmark Auregressive (AR)
models [4]. Interestingly Alquist and Kilian [5] showed contradictory results: they found Random
Walk (RW) model to be by far the best models available [5]. Meanwhile artificial intelligence models
such as the traditional neural network and the more recent support vector regression have achieved
significant progress. Empirical work utilizing the power of these models is on the rise, but with mixed
results. For example, Godarzi et al. [6] found that the proposed dynamic Artificial Neural Network
model achieves the improved forecasting accuracy than the time series and static neural network
model [6]. Yu et al. [7] found that Artificial Neural Network (ANN) outperforms Autoregressive
Moving Average (ARMA) model, but has room for further improvement using ensemble algorithms.
Shin et al. [8] proposed a semi-supervised learning method to predict the directional movement of
oil price. They have found the improved accuracy with the proposed method [8]. Work by
Bildirici and Ersin [9] show that the multilayer perception type neural network contributes significantly
the performance improvement in the proposed model [9]. Ensemble algorithm aims at combining
individual forecasters to produce forecasts which are based on more complete information [10]. Since
the seminal work by Bates and Granger [10], ensemble forecasts from different models to further
reduce forecasting errors have attracted much research attention [10]. For example, Yu et al. [7]
proposed the adaptive neural network to ensemble individual forecasts using neural network to model
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components extracted by Empirical Mode Decomposition (EMD) and observed significant performance
improvement [7].

Recently, data driven computational approaches have emerges to take advantage of the nonlinear data
characteristics during the modelling process. Typical nonlinear data features include chaotic, fractal
and the multi scale data characteristics revealed by accumulating empirical evidence in the financial
literature [11]. For example, Alvarez-Ramirez et al. [12] revealed that the autocorrelation of the crude
oil price is sensitive to the price asymmetry and different time scales, which are one form of embodiment
of price nonlinearity [12]. Barkoulas et al. [13] used the correlation dimensions test and recurrent plot
to test the data generating mechanisms of the crude oil price. They found that the crude oil price
contains non nomral nonlinar dynamics, which the current ARMA and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models provide insufficient modeling capability [13]. It
becomes increasingly clear that the incorporation of the nonlinear and complex dynamics during the
modeling process provide the promising alternative to deeper understanding of the market dynamics
and higher level of forecasting accuracy, especially when the modeling and forecasting exercises are
conducted at the daily frequency level, higher than three weekly and monthly frequency in the literature.
Rodriguez et al. [14] showed that the level of market efficiency varies across different time scales.

Wavelet analysis as a technique to extract and decompose the multiscale data structure emerged as
an important and promising approach to analyze the nonlinear and complex data characteristics in the
multiscale domain. There has been more and more empirical evidence of the existence of multi scale
data feature in the crude oil price movement and its co-movement with other macroeconomic variables.
For example, Shahbaz et al. [15] found the relationship between the crude oil price and real exchange
rate to be anti-cyclical while work by Jammazi et al. [16] suggested that this relationship exists in a
asymmetric manner over different time horizons [15,16]. Tiwari et al. [17] found some interesting
economic relationship between share prices and crude oil price when it is viewed in the multiscale
domain [17]. In the meantime, we have found some positive results in wavelet based forecasting
exercises for crude oil price movement. For example, He et al. [18] proposed a wavelet decomposed
ensemble model, which introduces wavelet analysis to analyze the time varying dynamic underlying
Data Generating Process, representative of heterogeneous market microstructure at finer time scale
domain. Results from empirical studies show the superior performance of the proposed algorithm
against the benchmark models [18]. Jammazi and Aloui [19] combined the A trous wavelet analysis and
neural network in forecasting the crude oil price, and found the improved forecasting performance [19].
de Souza e Silva et al. [20] used the wavelet analysis to remove the high frequency data components for
the modeling and forecasting by Hidden Markov Model. Experiment results show positive performance
improvement [20]. Yousefi et al. [21] used wavelet analysis to decompose crude oil price and extended
them directly to make forecasts [21]. However, much more positive forecasting results are accumulating
in other areas, most notably in the electricity field. For example, Zhang et al. [22] used wavelet
analysis to extract different data components of interests, where nonlinear component is modeled by
neutral network and volatility component is modeled by GARCH model [22]. Kriechbaumer et al. [23]
used an improved combined wavelet-autoregressive integrated moving average (ARIMA) to forecast
monthly price of aluminum, copper, lead and zinc, and found the improved forecasting accuracy [23].
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Gallegati et al. [24] used wavelet analysis to analyze the information content of some interest rate spread
for future output growth [24].

However, one research issue left intact in the literature is the impact of additional parameters
introduced by wavelet analysis on modeling and forecasting accuracy. The wavelet based forecasting
algorithm introduces the additional parameters including wavelet families and decomposition scales.
Previous researches relied on the arbitrarily selected wavelet families to analyze the historical
information, leaving their validity under question. When the wavelet analysis is introduced in the
economic and financial field, the ultimate aim is to achieve better understanding of the economic
and financial relationship among variables, with the improved forecasting accuracy in the end. The
determination of these parameters will critically affect the modeling accuracy and the derived policy
implications. The wavelet analysis decomposes the data into the multiscale structure which is assumed
to represent the true underlying multiscale data structure. Wavelet analysis represents a redundant
representation problem, i.e., there are different wavelet models that can replicate the same market price
movement. The accuracy of these representations is limited by the constant governed by the uncertainty
principle underlying the multi scale analysis. Therefore, there is no analytic solution to the identifications
of the exact representations problem, which can be formulated as the optimization problem. This is a
less addressed and important literature gap in the application of wavelet analysis in the forecasting field.

As an important information quantification measure, entropy serves as the potential tool to guide
the optimization process. The entropy theory has been used to analyze the information content of
the wavelet decomposed multiscale data structure in the other engineering literature. Wavelet entropy,
relative wavelet entropy, and many other variants have been proposed in the literature to calculate the
entropy of the energy distribution in the typical wavelet decomposition, as well as the cost function for
the best basis algorithm to choose the optimal basis for wavelet packet transform [25,26]. For example,
Pascoal and Monteiro [27] and Kim et al. [28] used the entropy measure and the wavelet analysis to
analyze the degree of market efficiency and the dynamic correlations in the market respectively [27,28].
Xu et al. [29] used the modified wavelet entropy measure to differentiate between the normal
and hypertension states [29]. Samui and Samantaray [30] incorporated the wavelet entropy
measure in constructing the measuring index for islanding detection in distributed generation [30].
Wang et al. [31] used best basis based wavelet packet entropy to extract feature in the decomposed
structure for the follow-up classification algorithm, which performs well in EEG analysis for patient
classification [31]. Recently we have identified some recent research endeavors in the financial literature
to model the multiscal data structure using the multiscale entropy theory. For example, in the energy
economics literature, Martina et al. [32] introduced the entropy concept to analyze the efficiency of
the crude oil markets [32]. Ortiz-Cruz et al. [33] introduced multiscale entropy theory to analyze the
multiscale data structure in the crude oil market [33]. In the stock market, Niu and Wang [34] introduced
a modified multiscale entorpy algorithm and showed its effectiveness in reducing the estimation error
in Chinese stock markets [34]. Yin and Shang [35] introduced the weighted multiscale permutation
entropy method to quantify the amplitude information of both US and Chinese stock markets, to
analyze their difference and similarity [35]. However, the research attempts are limited to this extent
so far. In the literature very few research has been identified to explore and tackle various research
issues in the modeling and forecasting of the multiscale crude oil data structure using the multiscale
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entropy framework. Different research issues such as the determination of the appropriate model
specifications in the multiscale anlaysis affect the accuracy and generalizability of the multiscale analysis
and forecasting models.

The wavelet denoising and multiscale sample projection serves as the valuable tools to reveal and
model the hidden multiscale data structure in the multiscale domain. These constituent data structures
correspond to various main influencing factors for the crude oil price movement, such as basic supply
and demand for crude oil, the macroeconomic factors, and major events in the market.

In this paper, we are motivated by the fact that the market has a heterogeneous underlying structure,
where investors have different investment concerns and strategies. During the modeling process some
of the components are more important as the main driving forces while other components have less
significant impacts and can be classified as the noises. The separation and modeling of these constituent
data structure are critical to more accurate modeling and forecasting of the crude oil price movement.
Thus, in this paper, we assume the crude oil price is dominated by one component at one scale. We
introduce the wavelet entropy theory to identify it and use it as the main driving factors to forecast the
future movement of the crude oil price.

In this paper, we propose the wavelet entropy theory to identify the multiscale model structure and
construct the effective forecasting algorithm. The wavelet entropy theory as well as entropy measure
are introduced to measure the information energy distribution using the historical data and construct a
two stage model selection procedure. Empirical studies in the benchmark crude oil markets confirm the
statistically significant performance improvement from using the more appropriate multi scale model
specification with the proposed wavelet entropy method.

The main contribution of this paper is the introduction of wavelet entropy based two stage model
selection procedure to identify the appropriate model specification. This approach is built on the
information theoretic approach other than the traditional MSE minimization. At the macro level, we
use the wavelet entropy theory to measure the information energy distribution of the entire wavelet
coefficients based on different wavelet families. At the micro level, the entropy is used to measure
the information distribution of wavelet coefficients of wavelet decomposed data for different wavelet
families at different scales. To the best of our knowledge, the work in this paper represents the first
attempt to introduce wavelet entropy for the model specification identification for the construction of
effective wavelet based forecasting algorithm.

The rest of this paper is organized as follows. Section 2 proposes the wavelet entropy based approach
for estimating VaR. We conducted empirical studies in the benchmark crude oil markets and reported the
results in Section 3. Finally, some concluding remarks are drawn in Section 4.

2. Methodology

2.1. Entropy and Wavelet Entropy Theory

To measure quantitatively the randomness of data, the entropy can be defined statistically for a
stochastic time series system. Given random variables X ∈ Rn generated with unknown parameters,
the entropy is defined as in Equation (1) [36].
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S =

∫ ∞
0

−(p)log(p)dx (1)

where p(.) refers to the probability density function (PDF). The value of entropy lies between 0 and 1.
The higher the entropy is, the higher the level of disorder and uncertainty are.

If the data contain mixture of data features, the entropy may be biased in estimating the uncertainty
and disorder levels in the data, potentially underestimating the randomness in data. The Wavelet Entropy
offers an important alternative. It calculated the entropy value of the probability density function of the
energy distribution of the wavelet coefficients in the wavelet transformed domain, as in (2) [37].

WE =
M∑
j=1

PjlnPjPj =
Ej∑M
j=1Ej

=

∑
t=1 n(fj(t))

2∑Mi

j=1(
∑n

t=1(fj(t))
2)
,Mi = 1, . . . . . . . . .M (2)

The smaller the wavelet entropy value is, the more organized the data are. The higher the wavelet
entropy value is, the more disordered and uncertain the data are. However, different from the case
of the entropy value, the wavelet entropy value size reflects not the total probability density of the
data, but the average level of probability density of the data across different scales. For example,
the significant cyclical information at smaller set of scales may be disputed by the noise information.
The calculated entropy value may biased towards lower value, ignoring the frequency and cyclical data
pretend at particular scales. The wavelet entropy value would take into account the structural distribution
of randomness across scales and recognize the preserved of data at different scales.

2.2. Wavelet Entropy based Multiscale Forecasting Methodology

To model the crude oil price movement, we make some simplifying assumptions as follows:

(1) Data Generating Processes can be classified into several main groups with unique features and
particular patterns, etc.

(2) Different Data Generating Processes are mutually independent across different scales.

(3) Different Data Generating Processes (DGPs) follow the same stochastic processes with different
parameters.

With these assumptions, the data structure can be approximated with the combination and mixture
of data generating processes at different scales. However, since there are different models of the
underlying DGPs, for the observed market price movement, this represents an identification problem
of the redundant representation during the modeling process. One approach is to resort to the traditional
forecasting error as the criteria to identify the appropriate model specifications, which assumes that the
small error corresponds to the maximum level of information or patterns extracted from the historical
data. This was traditionally done using the error minimization, as evidenced in the recent researches.

Since the determination of the exact decomposition structure has the bounding limits governed by
the uncertainty principle in the multi scale analysis, we would not expect the traditional approaches,
such as the Minimization of MSE, to identify the optimal data structure among redundant representations.
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In practice, the optimal data structure may be the combinations of decomposition structure with different
wavelet families at different scales.

Thus in this paper we resort to the wavelet entropy and the entropy theory in this paper. The entropy
value, as the measurement of the disorder in data, is introduced to analyze the historical data at two
levels, i.e., both microscope and macroscope. At the macro scale level, the wavelet entropy is used to
measure the randomness of the data, taking into account the distribution of randomness across different
scales. The measurement calculated with wavelet entropy would more accurately reflect the contribution
of some orderly DGPs at some scales revealed in the particular wavelet families. When the wavelet
entropy is calculated with different wavelet families at the same maximum scale, the wavelet family with
the lowest wavelet entropy valued is retained as it implies the data with the most orderly organization.
At the microscale level, the entropy of the individual coefficients at different scales is calculated and
used to quantify the information content at different scales and compare their randomness directly.
At each scale, the wavelet family with the lowest entropy value is retained as it is assume to contain
the most orderly information and is the most suitable for ARMA modeling.

The numerical procedure for the wavelet entropy based forecasting algorithm is laid out as follows.
Firstly we use the wavelet algorithm to decompose the in-sample training data into different sub-data

series at different scales up to the maximum scales J , using different wavelet families.

rt = rAJ ,t +
J∑
j=1

rDj ,t (3)

Wavelet analysis possesses the ability to project data into time-scale domain and to conduct multiscale
analysis [38]. This capability stems from the high energy concentration over a short interval of time in
wavelets functions used, which is in direct contrast to the globally time invariant sinusoid functions used
in more traditional spectrum analysis tools such as Fourier analysis [39]. Mathematically, wavelets are
continuous functions that satisfy admissibility conditions as in Equation (4).

Cψ =

∫ ∞
0

|Ψ(f)|
f

df <∞↔
∫ ∞
−∞

ψ(t)dt = 0 (4)

And unit energy condition as in Equation (5):∫ ∞
−∞
|ψ(t)|2dt = 1 (5)

where Ψ is the Fourier transform of ψ. Together these two conditions guarantee that the wavelets
functions have zero vanishing moments and improved localization in time scale domain during
the analysis.

There are different families of wavelets designed, each with their own special characteristics [39].
The Haar wavelet is the simplest symmetric discontinuous wavelet that has characteristics of
orthogonality and compact support. It is defined mathematically as in Equation (6):

ψ(t) =


+1 if 0≤t≤0.5

−1 if 0.5≤t≤1

0 otherwise

(6)
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Daubechies wavelets are generalizable beyond the Haar wavelets. They are continuous orthogonal
wavelets with compact support. Symlet wavelets are continuous orthogonal wavelets with compact
support and are designed to be nearly symmetric. Coiflets are also designed to be nearly
symmetric wavelets.

The wavelets can be translated over time and dilated by scales as in Equation (7):

ψu,s =
1√
s
ψ(
t− u
s

) (7)

where s ∈ R and u ∈ R. Unlike sinusoids used in Fourier transform, wavelets are characterized by
two parameters: location u and scale s. Thus, wavelets of different shapes and lengths are formed by
adjusting these two parameters.

The original signal can be projected into time scale domain by means of convolving the translated
or dilated wavelets to the original signal [39]. Thus, the wavelet transform is a function of these two
variables as in Equation (8):

W (u, s) =

∫ ∞
−∞

x(t)ψu,s(t)dt (8)

The inverse operation could also be performed as in Equation (9):

x(t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

W (u, s)ψu,s(t)du
ds

s2
(9)

Since the original signal can be decomposed by wavelet analysis and reconstructed perfectly by
wavelet synthesis, together they form the basis for multi-resolution analysis as in Equation (10):

f(t) ≈ SJ(t) +DJ(t) +DJ−1(t) + ...+D1(t) (10)

where SJ(t) refers to smooth signals and equals
∑

k sj,kφj,k(t). Di(t)(i = 1...J) refers to detail signals
and equals

∑
k dj,kψj,k(t). The multi-resolution analysis decomposes the complicated data structure into

the underlying influencing factors by applying wavelet analysis.
Secondly, we calculate the entropy of the coefficients at different scales with different families.

We group them at different scales. For each scale, we select one wavelet family with the lowest entropy
value. In the end, we determine wavelet family WFn for n scale. The entropy is calculated as follows.
For a stochastic time series system, given random variablesX ∈ Rn generated with unknown parameters,
the shannon entropy is defined as in Equation (11) [36].

S =

∫ ∞
0

−(p)log(p)dx (11)

where p(.) refers to the PDF. The value of entropy lies between 0 and 1. The higher the entropy value is,
the higher the level of disorder and uncertainty is.

Thirdly we calculate the wavelet entropy for all the chosen wavelet families WFn at the maximum
scales J . Among them, we choose the one particular wavelet family WFWE at the scale jWE , that
has the minimum wavelet entropy value. The decomposed data component rWE at the scale jWE using
the wavelet family WFWE are supposed to represent the main underlying DGP for the original crude
oil data.
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Fourthly the decomposed data component rWE is assumed to follow ARMA processes. We estimate
the conditional means using the ARMA models.

µ̂t,s = a0,s +
m∑
i=1

ai,srt−i,s +
n∑
j=1

bj,sεt−j,s (12)

Fifthly as the main underlying DGP of the crude oil dynamics, there is very strong correlation between
the estimated DGP and the original crude oil data estimated. The variance of the decomposed data
component rWE is assumed to contribute to the total variance off the original data r. Thus we use the
linear regression model to determine the intercept and coefficients with the model tuning data set.

Sixthly with the calculated parameters, we repeat step 1 to step 5 to calculate the forecasts.

3. Empirical Studies

Data Collection

Empirical studies are conducted using the observations of the daily closing prices in both US West
Taxes Intermediate (WTI) crude oil market and UK Brent crude oil markets. The data set covers the
period from 2 January 2002 to 3 August 2015. Following the machine learning literature, we design
the experiment to evaluate the model performance using out-of-sample data. We divide the dataset into
three parts, the training set, the model tuning set and the test set. The training set is used to estimate the
model parameters. The model tuning set is used to estimate the appropriate model specifications, more
specifically, the use of the proposed wavelet entropy based algorithm to determine the specifications for
the wavelet model such as the decomposition level. The test set is reserved for the out-of-sample test
to evaluate the performance of the proposed model. It needs to be sufficiently large in size to ensure
that the test results are statistically valid. The proportion based on which the data set is divided is
60%. The proportion of training set, model tuning set and test set is 36-24-40. One step ahead forecast
using rolling-window method is performed. Since Autocorrelation and Partial Autocorrelation function
analysis indicates that the original data include trend factors, it is log differenced at the first order as
rt = ln( Pt

Pt1
) to remove trend factors when the data set is constructed. The returns are transformed

to be scale free, which correspond to percentage changes in financial positions and have more attractive
statistical properties such as stationarity, etc. For the investment size, we assume one dollar equal holding
position for initial investment in each market. We also assume one day holding period.

Firstly we calculated some routine descriptive statistics and statistical tests. To determine whether
simple linear models suffice for the data being analyzed and whether nonlinear models are necessary,
tests for nonlinearity data characteristics are employed, which include Brock-Dechert-Scheinkman
(BDS) test [40,41], Bispectrum test [42], and Bicorrelation test [43], etc. Among them, the BDS
test, since its introduction by Brock, Dechert, and Scheinkman, has become the standard for testing
independence in the data. The null hypothesis for the test is that elements of the time series are
independently and identically distributed (IID). Experiment results using the in-sample crude oil data
are listed in Table 1.
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Table 1. Descriptive statistics and statistical tests using the training set data.

Statistics Mean Standard Deviation Skewness Kurtosis pJB pBDS

rWTI 0.0011 0.0239 –0.5162 4.9198 0.0001 0.0043
rBrent 0.001 0.0223 –0.0872 4.5961 0.0001 0.6195

In Table 1, we have found the indication of the nonlinear and nonnormal characteristics. Four
statistical moments indicate the significant deviation from the normal distribution, where the skewness
deviates from 0 and kurtosis deviates from 3. The rejection of the null hypothesis of Jarque-Bera test
of normality confirms the deviation from the normal distribution. The rejection of the BDS test in WTI
suggests that the market contains nonlinear dynamics. This is consistent with the observations that both
crude oil markets are subject to frequent shocks constantly and major extreme events are prevalent in
these markets. For example, Hamilton [44] summarized several major events affecting the crude oil
markets [44]. Two most important shocks during the period from 2002 to 2015 are Venezuelan unrest
and the second persian Gulf war in 2003 as well as the growing demand and stagnant supply partially due
to the financial crisis between 2007 and 2008. Group [45] suggested that oil price plunge between 2003
and 2004 qualifies as another recent significant event [45]. There are numerous occasional minor shocks
across the markets. Interestingly, it can be observed that the distribution of these shocks may deviate
significantly from the normal distribution. Thus the Gaussian assumptions of noises underlying majority
of denoising algorithm underestimate the noise level, resulting in less well behaved data to be modeled.
In Brent market, the null hypothesis of BDS test can not be rejected at the statistically significant level,
but its p value is not large enough to indicate the linear dependence in the data. Between two markets,
Brent market has higher level of efficiency than that in the WTI market. But neither of them is efficient
enough to rule out the potential patterns exploitable for improving the forecasting accuracy. These results
are consistent with results in Zhang et al. [46] in the literature.

Recently there have been numerous researches on the use of wavelet analysis combined with
other advanced models such as neural network models, etc. It has been shown that they achieved
superior performance than the ARMA, ARIMA and random walk models using the sample data. More
sophisticated models certainly are more appealing and usually demonstrate the superior performance
with the tested data, but their performance are usually sensitive to the data window and choices of initial
parameters, as well as risk overfitting the data. Thus in this paper the Random Walk (RW) model and
ARIMA model are chosen as the benchmark models because they demonstrate the most robust and
consistent performance in the literature. The widespread use of both models as benchmark models has
been witnessed in numerous works in the literature such as Alquist and Kilian [5], Yu et al. [7].

Following the literature on the model performance evaluation, we adopt Mean Square Error (MSE)
as well as the Clark West test of predictive accuracy. We conducted experiments using comprehensive
set of wavelet families widely used in the literature, including Daubechies (Db2, Db3, Db4, Db5, Db 6),
Coiflet (Coiflet1, Coiflet2, Coiflet3, Coiflet4, Coiflet5), Biorthogonal (Bior11,Bior22, Bior31, Bior39),
Reverse Biorthogonal (Rbio11, Rbio22, Rbio31, Rbio39) wavelet families.
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Secondly, we calculated the entropy value for the wavelet coefficients based on different wavelet
families at different scales, as well as MSE of the proposed algorithm using different wavelet families at
different scales. Results are listed in Table 2.

Table 2. Performance comparisons of different models using in-sample training data set.

s1 s2 s3 s4 s5 s6 a

Entropy(MIN,WTI) 2.6419 1.1803 0.6232 0.3036 0.1632 0.0813 0.0509
WF(MIN,WTI) sym2 coif5 sym2 bior39 coif3 sym2 coif5
WEMIN,WTI 1.2757 1.2737 1.2757 1.2819 1.2759 1.2757 1.2737

Entropy(MIN,Brent) 2.3730 1.0827 0.6130 0.3318 0.1971 0.1270 0.0591
WF(MIN,Brent) Sym2 db5 db4 db3 db4 rbio39 dmey
WEMIN,Brent 1.4004 1.3547 1.3441 1.3493 1.3441 1.3353 1.3454

Where Si, i = 1, 2, . . . , 7 refers to the scale i, WF(MIN,i), i ∈ {WTI,Brent} refers to the chosen
wavelet family using the entropy minimization principle in market i. It can be seen from Table 2 that the
entropy values vary significantly across different parameters domain. This implies that there are different
energy distribution of wavelet coefficients using different wavelet families across scales. Based on the
entropy minimization principle for each scale, the optimal wavelet families with their entropy value is
listed in Table 2. Based on the wavelet entropy minimization principle, the Coiflet5 at scale 7 is chosen
for WTI market while the rbio39 at scale 7 is chosen for the Brent market. This is an interesting result.
For WTI market, the chosen Coiflet wavelet family is symmetric in shape. The 5 vanishing moment
is chosen for Coiflet wavelet family. This implies that the investment strategy for investors is more
symmetrical in WTI market. For Brent market, the chosen reverse biorthogonal 39 wavelet family is not
orthogonal and is asymmetric in shape. The vanishing moment for decomposition and reconstruction is
3 and 9. This implies that the investment strategy for investors is more asymmetric in Brent market.

Then we use the model tuning data set to calculate the adjustment ratio. We adopt the robust regression
method to reduce the negative impacts of outliers on the estimate parameter accuracy. As for the
regression coefficients, the calculated intercept and slope coefficients are −0.00017812 and 0.0723 for
WTI market, as well as −0.00020989 and 0.0343 for Brent market.

With the chosen set of parameters, we further conducted experiments using the out-of-sample data
set to evaluate the performance of the proposed algorithm, against the benchmark models. The lag
order for the ARMA model used to fit the denoised data from the previous stage is determined using
the Information Criteria minimization principle. In this paper, we adopt the AIC and BIC information
criteria. We further adopt the Clark West test of equal predictive accuracy to test for the statistical
significance of the out-of-sample performance gap between the proposed model and the benchmark
models [47,48].

The MSE is the simple statistics measuring the deviation of forecasts from actual observations, as
defined in Equation (13).
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MSE =
1

N

N∑
i=1

[f̂i(x)− fi(x)]2 (13)

where N is the number of observations, f̂i(x) refers to the forecasted value and fi(x) refers to the
true value.

The Clark-West (CW) test was proposed to adjust Diebold Mariano (DM) statistics since the originally
proposed test statistics were upward biased heavily if models tested were nested. The test statistics is
defined in Equation (14).

CW =
d

P
√
V̂

(14)

d =
1

P

T∑
t=R+h

d∗t , d
∗
t = e21t − e22t + (ŷ1t − ŷ2t)2

V̂ =
1

P

T∑
t=R+h

(dt − d)+
2

P

m∑
j=1

ω(j,m)
T∑

t=j+r+h

(dt − d)(dt−j − d)

where d is sample mean while P is the sample size.
The null hypothesis for the test is: H0 : Ed∗t = 0, i.e., equal predictive accuracy for Mean Square

Percentage Error (MSPE). The test statistics have an asymptotically normal distribution.
Results are listed in Table 3.

Table 3. Performance comparisons of different models using out-of-sample test data set.

Market MSE×10−4,RandomWalk MSE×10−4,ARMA MSE×10−4,WE pCW,RandomWalk pCW,ARMA

WTI 7.5435 3.5717 3.5566 0 0.0657
Brent 4.8724 2.6157 2.6020 0 0.0238

Results in Table 3 show that the proposed wavelet entropy based forecasting algorithm has achieved
the improved forecasting accuracy in both markets, with lower MSE values. The superior performance
of the proposed model is statistically significant against the ARMA model at 95% confidence compared
to the benchmark models in both markets. When the performance is compared to the ARMA model,
the superior performance is statistically significant at 95% confidence level in Brent market and 93%
confidence level in WTI market.

The out-of-sample performance improvement is attributed to more optimal model specification and
parameters identified by the proposed wavelet entropy technique. The experiment results show that the
proposed model has good level of generalizability. The out-of-sample performance of the proposed
model improves as a result of incorporating this important data feature. The proposed model can
adapt to different data characteristics in WTI and Brent markets. We have determined different optimal
model with different optimal wavelet families and decomposition levels. The wavelet families and the
decomposition levels determined reflect different market characteristics.

These results can offer some important lessons to note and have some further implications. Firstly
our results provide the empirical evidence that both WTI and Brent markets have multi scale market
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structure. We have learned that the multiscale data feature is unignorable during the modeling process.
It significantly affects the forecasting performance and can contribute significantly to the performance
improvement. We learn that different data features should be incorporated with the model assumptions
to be relaxed further. Secondly our results show that the performance of the multiscale model critically
depends on the specifications and parameters determined. The multiscale models can be misspecifed
so that the following-up analysis results derived can not be trusted. There is an important lesson to
learn here for the future multiscale models. Our results show that wavelet entropy serves as a nontrivial
tool for determining the optimal model specifications and parameters for multiscale analysis, such as
wavelet analysis and empirical mode decomposition. There are redundant representation of the data
in the multiscale analysis, which corresponds to the fact that wavelet based model using different
wavelet families and decomposition level may have the same level of out-of-sample forecasting accuracy.
Wavelet transformed data using the arbitrarily chosen wavelet families and decomposition level may risk
twisting the underlying structure and provide the significantly biased estimate. Our results provide the
initial evidence that the wavelet entropy is an essential tool to help with the model optimization in the
multiscale analysis.

In Figures 1 and 2, we further plot the original crude oil return, the forecasts of the Random Walk
model, the forecasts of the ARMA model and the forecasts of the proposed model to analyze the
performance off different models.
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Figure 1. Return forecasts movement of different models.
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Figure 2. Return forecasts movement of different models

Where r refers to the log differenced price and forecasts, n is the number of the observations. In
general the crude oil market is very volatile and is subject to frequent shocks. The forecasting accuracy
of the traditional ARMA model is sensitive to the disruptions of many transient and extreme events. The
proposed model is more conservative and more effective in suppressing the influence of many transient
and extreme events, which take different shapes and have different impacts on different markets across
countries. Using Coiflet5 and Reverse Biorthogonal 39 wavelet as the effective filters in both US and
UK market, we more effectively separate the transient and extreme events and obtain the denoised crude
oil price. More specifically from Figures 1 and 2, it can be seen that forecasts from different models
have different level of volatility and forecasting accuracy. Among different forecasts, random walk
model tracks very closely the return movement and is the most sensitive to different shocks from the
transient and extreme events. The fact that it achieves the lowest performance confirms the transient and
temporal nature of these major events, which disrupts the smoothness and robustness of the forecasts.
The forecasts from the ARMA model have lower level of fluctuation, suppressing some outliers and
extreme events, and achieving the improved forecasting accuracy. The forecasts from the proposed
model have the lowest level of fluctuations and volatility among forecasts from different models. It also
suppresses majority of transient and extreme events and results in more smooth forecasts. This indicates
that during the modeling process, the proposed model more effectively suppresses the short term impacts
of transient and extreme events and retains the long term influences of basic macroeconomic factors.
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We can also see from Figures 1 and 2 that disruptions from major oil plunges have been kept at
the minimum in the forecast from the proposed model. For example, the influence from the oil plunge
between 2003 and 2004 has been largely suppressed. This indicates that the major events during this
period are transient and temporal in nature. They may have huge impact over a very short period of
time, but their influence quickly vanishes outside that period. The forecasts from the proposed model
are also much smoother, indicating that the influence from those minor disruptions are reduced to the
minimum. Another interesting observation is that in WTI market, the impact of disruptions from those
extreme and transient major events takes the symmetric shape, as illustrated by Coiflet wavelet used in
WTI market. In Brent market, the impact of disruptions from those extreme and transient major events
takes the asymmetric shape, illustrated by Reverse Biorthogonal wavelet used in Brent market.

4. Conclusions

In this paper, we propose wavelet entropy and entropy theory to identify the multiscale model
specifications and construct an effective forecasting algorithm for the crude oil price movement.
The superior performance of the wavelet entropy based forecasting model is supported by the
performance evaluation with the empirical studies using the major crude oil markets data.

The proposed wavelet entropy based model in this paper has far-reaching implications in both
theoretical and methodological aspects of multi scale based economic and financial data analysis and
modeling such as the wavelet based approach. Firstly, we found that the wavelet parameters have critical
impacts on the model performance and accuracy. Due to the inherent constraints on the accuracy of the
time and frequency information during the wavelet analysis, there is redundant representations of these
parameters. New innovative techniques need to be introduced to determine the best approximation to
these parameters. Secondly, the entropy and the wavelet entropy measures, as important information
quantification measures, can be used to design suitable criteria to guide the parameter determination
during the multi scale analysis. However, the design should take into account the multi scale distribution
and structure of there underlying information. The design of appropriate criteria aim at selecting the
most generalizable model specifications.
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