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Abstract: The fact that the equations of motion for matter remain invariant when a constant
is added to the Lagrangian suggests postulating that the field equations of gravity should
also respect this symmetry. This principle implies that: (1) the metric cannot be varied in
any extremum principle to obtain the field equations; and (2) the stress-tensor of matter
should appear in the variational principle through the combination Tabn

anb where na is
an auxiliary null vector field, which could be varied to get the field equations. This
procedure uniquely selects the Lanczos–Lovelock models of gravity in D-dimensions and
Einstein’s theory in D = 4. Identifying na with the normals to the null surfaces in the
spacetime in the macroscopic limit leads to a thermodynamic interpretation for gravity.
Several geometrical variables and the equation describing the spacetime evolution acquire
a thermodynamic interpretation. Extending these ideas one level deeper, we can obtain this
variational principle from a distribution function for the “atoms of spacetime”, which counts
the number of microscopic degrees of freedom of the geometry. This is based on the curious
fact that the renormalized spacetime endows each event with zero volume, but finite area!
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1. Gravity: An Emergent Phenomenon

While the difference between a hot body and a cold one was known even to the cavemen, physicists
struggled for centuries to understand the nature of heat [1]. It was known to them that a macroscopic
system like, for example, a gas can be studied by introducing several thermodynamic variables (like
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temperature, entropy, etc.), but for a very long time, they did not know what these variables really
meant. The breakthrough came with the work of Boltzmann, who essentially said: “If you can heat it,
it has microscopic degrees of freedom”. Before this idea was accepted, a gas or a fluid was thought of
as a continuum all the way down to the smallest scales, and the notion of heat and temperature were
superimposed on it, in a rather ad hoc manner. Boltzmann introduced a paradigm shift in which matter
was treated as discrete at small scales and the thermal phenomena were related to the (suitably averaged)
mechanical attributes of these discrete degrees of freedom.

This paradigm shift is profound. It stresses that the existence of microscopic degrees of freedom
leaves a tell-tale signature even at the largest macroscopic scales, in the form of temperature and heat.
One could have guessed that a glass of water must be made of discrete microscopic degrees of freedom
just from the fact that it can be heated, without probing it at Angstrom scales, even though it actually took
centuries for physicists to recognize that temperature and heat provide a direct link between microscopic
and macroscopic phenomena. In fact, a relation likeNkB = E/[(1/2)T ] directly counts the microscopic
degrees of freedom, N , in terms of macroscopic variables E and T !

Mathematically, one key variable in thermodynamics, which was absent in the Newtonian mechanics
of point particles, is the heat content TS of the matter, which is the difference (F −E) between the free
energy and the internal energy of the system. In terms of densities, the heat density is Ts = P +ρ, where
s is the entropy density, ρ is the energy density and P is the pressure (this is the Gibbs–Duhem relation
for systems with zero chemical potential in which we will be interested).

Proceed now from normal matter to spacetime. Work done in the last several decades [2–9] shows
that spacetimes, due to the existence of null surfaces, which block information from a certain class of
observers, also possess a heat density Ts. The emergent gravity paradigm [10,11] builds upon this fact
and treats the gravitational field equations as analogous to the equations of fluid dynamics or elasticity.
There is a considerable amount of internal evidence in the structure of gravitational theories, much more
general [12,13] than Einstein’s theory, to indicate that this is a correct and useful approach to pursue.
This review explores several aspects of this approach.

2. Scope, Structure and Features of this Review

As will become clear soon, it is possible to associate a temperature and entropy density with every
event in spacetime just as one could have done so for a glass of water.

On the other hand, one traditionally described the dynamics of spacetime through some field equation
for gravity, because Einstein told us that gravity is nothing but the curvature of spacetime. If we take both
of these results seriously, we are led to the following conclusions and results described in this review:

1. The Boltzmann principle suggests that if spacetime can be hot, it must have a microstructure. What
is more, we should be able to count the atoms of spacetime without having the technology to do
Planck-scale experiments, just as Boltzmann could guess the existence of atoms of matter without
doing Angstrom-scale experiments. We would then expect a relation like NkB = E/[(1/2)T ] to
exist for the spacetime. We will see in Section 4.1 that this is indeed the case.

2. If the spacetime is analogous to a fluid made of atoms, the gravitational field equations must have
the same conceptual status as the equations describing fluid mechanics. Hence, we should be able



Entropy 2015, 17 7422

to derive them from a purely-thermodynamic variational principle. Just as in the case of matter,
such a variational principle [14,15] will be a phenomenological input when we approach it from
the macroscopic side.
Further, we should be able to write the field equation in a purely thermodynamic language
rather than in the (conventional) geometrical language [16–19]. Consequently, we would expect
several variables, which are usually considered geometrical, to have an underlying thermodynamic
interpretation. We will describe these features in Sections 3.2 and 4.

3. The discreteness of normal matter is usually taken into account in the kinetic theory by introducing
a distribution function f(xi, pi), such that dN = f(xi, pi)d

3xd3p counts the number of atoms in
a phase volume. Such a description recognizes the discreteness, but works at scales such that the
volume d3x is large enough to, say, contain a sufficient number of atoms. We can develop (see
Sections 5 and 7) a similar concept for the spacetime that recognizes the discreteness at the Planck
scale and yet allows the use of continuum mathematics to describe the phenomena. This provides
a deeper level of description of spacetime, such that the thermodynamic variational principle,
mentioned in Item (2) above, can be obtained from it.

4. Such a reformulation of spacetime dynamics as thermodynamics should provide us with insights
into some of the problems of the standard formulation, like for example, the cosmological constant,
spacetime singularities, etc. This goes beyond describing what is known in a new language and
should lead to new results [20,21]. I will describe in Sections 7 and 8 how this approach leads to
a new perspective on cosmology and allows us to predict the numerical value of the cosmological
constant!

There exists a fair amount of previous work (cited above) that shows that the emergent gravity
paradigm does achieve 1, 2 and 4 above. In Sections 3 and 4, we will review these developments,
highlighting some recent results. The main thrust of this article, however, will be to describe
(Sections 5–8) the first glimpses of a viable microscopic model, related to Item (4) above, and to explain
how one could possibly recover spacetime thermodynamics as a limit of the statistical mechanics of the
atoms of spacetime (Notation: The signature is (−,+,+,+, ...). The Latin letters run over all of the
spacetime indices (0, 1, 2, ....d − 1); the Greek letters over the spatial indices (1, 2, ....d − 1); and the
uppercase Latin letters, A,B,C, . . ., run over a co-dimension two surface when appropriate. We set
~ = 1, c = 1 and 16πG = 1 for the most part of our discussion (occasionally, when we use the G = 1

units, it will be mentioned specifically). Einstein’s field equations will then take the form 2Gab = Tab.)

3. Building Gravity: Brick by Brick

I will begin by describing the logical structure behind a first-principle approach, which obtains the
spacetime dynamics as an emergent phenomenon, working from the macroscopic side.

To do this, it is convenient to separate the kinematic (“how gravity makes the matter move”) and
dynamic (“how matter makes the spacetime curve”) aspects of the gravitational theories. This is
important, because there is some amount of emotional resistance in the community to tinkering with
general relativity, given its elegance and beauty. However, what is not often recognized (or stressed in
the text books) is that all of the elegance of general relativity is confined to its kinematic part, which
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describes gravity as being due to the curvature of spacetime. The dynamics, encoded in the gravitational
field equations, has no real elegance and, in fact, does not follow from any beautiful principle analogous
to, for example, the principle of equivalence.

The emergent gravity paradigm retains all of the elegance of general relativity by keeping its kinematic
structure intact; further, it provides a nice thermodynamic underpinning to describe the dynamics.

In Sections 3.1 and 3.2, I will describe how this comes about.

3.1. The Elegance of Gravitational Kinematics

Judicious use of the principle of equivalence tells us that gravity is geometry and can be described by a
metric gab of the curved spacetime. Further, the principle of general covariance insists on the democratic
treatment of all observers in the spacetime. By abandoning any special form of the pre-geometric metric
(like the ηab of special relativity), we accept the fact that one can no longer think of a part of gab as
arising due to acceleration (i.e., coordinate choice) and a part as arising due to genuine curvature. These
principles also provide us with a procedure to describe the influence of spacetime geometry on matter
fields: we invoke the standard laws of special relativity (SR) in a freely-falling frame (FFF), rewrite them
in a generally covariant language valid in arbitrary curvilinear coordinates and postulate that the same
form should hold, even in a curved spacetime. As a consequence, the energy momentum tensor T ab for
the matter (known from SR) will satisfy the equation:

∇aT
a
b = 0 (1)

in curvilinear coordinates in SR and, hence, should also hold in arbitrary curved geometry. Generically,
this equation will give the equations of motion for matter in the presence of gravity (in our approach, the
matter sector will be described by a T ab , which satisfies Equation (1), rather than by an action, etc.).

It is also straightforward to conclude from Equation (1), applied to the light rays, that they will bend
in the presence of gravity; hence the causal structure of the spacetime will now be determined by the
gravitational field. In particular, it is easy to construct observers (i.e., timelike congruences) in any
spacetime such that part of the spacetime will be inaccessible to them. (I stress that (a) this is a purely
kinematic feature and (b) it is always observer dependent. For example, (i) such observers exist even
in flat spacetime and (ii) in the case of, say, a black hole spacetime, an observer freely falling into the
black hole and the one who is stationary outside, will access different regions of spacetime.) A generic
example of such observers is provided by the local Rindler observers [22] constructed as follows:

In a region around any event P , introduce the FFF with coordinates (T,X). Boost from the FFF to
a local Rindler frame (LRF) with coordinates (t,x) constructed using some acceleration a, through the
transformations: X = x cosh(at), T = x sinh(at). There will be a null surface passing though P , which
gets mapped to the X = T surface in the FFF; this null surface will now act as a patch of horizon to the
x = constant Rindler observers.

This construction leads to the most beautiful result [6,7] we have obtained so far by combining
the principles of general relativity and quantum field theory: the local vacuum state, defined by the
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freely-falling observers around an event, will appear as a thermal state to the local Rindler observer with
the temperature:

kBT =

(
~
c

)( a
2π

)
(2)

where a is the acceleration of the local Rindler observer, which can be related to other geometrical
variables of the spacetime in different contexts.

This Davies–Unruh temperature tells us that around any event, in any spacetime, there exists a class
of observers who will perceive the spacetime as hot. This fact will play a crucial role in our discussion.

There are a couple of related results that we will use later on, which are worth recalling at this
stage. The first is the relation between Euclidean spacetime and the temperature introduced above.
The mapping, from the FFF to the LRF, X = x cosh at, T = x sinh at, has the Euclidean continuation
(under iT = TE, it = tE) given by X = x cos atE, TE = x sin atE . This, in turn, maps a pair of null
surfaces X2 − T 2 = 0 to the single point in the Euclidean origin given by X2 + T 2

E = 0. Approaching
the origin of the Euclidean sector, therefore, corresponds to approaching the null surface in the original
spacetime as a limit. We will make use of this fact later on.

The second result [22] is related to the energy flow associated with the matter that crosses the null
surface, as viewed from the FFF. A local Rindler observer will see that the matter takes a very long time
to cross the local Rindler horizon, thereby allowing for thermalization to take place; (this is similar to
the fact that, as seen by the outside observer, matter takes infinite time to cross the black hole horizon).
Since the local Rindler observer attributes a temperature T to the horizon, she will interpret the energy
associated with the matter that crosses the null surface (asymptotically) as some amount of energy ∆E

being dumped on a hot surface, thereby contributing a heat content ∆Q = ∆E. This quantity can be
computed as follows.

We choose an FFF around any given spacetime event P and construct an LRF. The LRF provides us
with an approximate Killing vector field ξa, generating boosts, which coincides with the null normal `a

at the null surface. The heat current arises from the boost energy current Tabξb of matter. Therefore, the
total heat energy dumped on the null surface will be:

Qm =

∫ (
Tabξ

b
)
dΣa =

∫
Tabξ

b`a
√
γd2xdλ =

∫
Tab`

b`a
√
γd2xdλ (3)

where we have used the fact that ξa → `a on the null surface.
Since the parameter λ (defined through `a = dxa/dλ) is similar to a time coordinate, we can also

define a heating rate:
dQm

dλ
=

∫
Tab`

b`a
√
γd2x (4)

and a heating rate density per unit proper area of the surface:

Hm[`a] ≡
dQm√
γd2xdλ

= Tab`
a`b (5)

so that the heat transferred by matter is obtained by integrating Hm with the integration measure
√
γd2xdλ over the null surface generated by the null congruence `a, parametrized by λ.
We will simply call Hm the heat density (energy per unit area per unit time) of the null surface,

contributed by matter crossing a local Rindler horizon, as interpreted by the local Rindler observer.
There are two features that are noteworthy regarding this heat density.



Entropy 2015, 17 7425

• If we add a constant to the matter Lagrangian (i.e., Lm → Lm+ constant), the T ab changes by
T ab → T ab + (constant) δab . The heat density, defined by Equation (5) remains invariant under this
transformation.
• The heat density vanishes if T ab ∝ δab . Therefore, the cosmological constant has zero heat density,

though it has non-zero energy density.
(In fact, for an ideal, comoving fluid, Tab`a`b = (ρ+P ), and hence, the heat density vanishes only
for the cosmological constant with equation of state ρ = −P .)

We will have occasion to use these facts later on.

3.2. Restoring Elegance to Gravitational Dynamics

The next task is to obtain the field equations describing the evolution of spacetime geometry. In
the conventional approach, there is no simple guiding principle that will allows us to do this, and it
ultimately reduces to certain assumptions of simplicity. I will now show how it is possible to approach
gravitational dynamics using a guiding principle, which turns out to be as powerful as the principle of
equivalence [11,16].

Recall that the equations of motion for matter, obtained from an action principle, remain invariant if
we add a constant to the matter Lagrangian, i.e., under Lm → Lm+ constant. (To be precise, there is
some subtlety if supersymmetry is an unbroken symmetry; since we have no evidence for supersymmetry
anyway, I will not discuss this issue.) Mathematically, this is a trivial consequence of the fact that the
Euler equations only care about the derivatives of the Lagrangian. Physically, this encodes the principle
that the zero level of energy density does not affect dynamics. It seems reasonable to postulate that the
gravitational field equations should not break this symmetry, which is already present in the matter sector.
Since Tab is the most natural source for gravity (as can be argued from the principle of equivalence and
considerations of the Newtonian limit), we demand that:

I The variational principle that determines the dynamics of spacetime must be invariant under the
change T ab → T ab + (constant) δab .

This principle immediately rules out the possibility of varying the metric tensor gab in a covariant,
local, action principle to obtain the field equations! It can be easily proven [23] that if (i) the action
is obtained from a local, covariant Lagrangian integrated over a region of spacetime with the standard
measure

√
−g d4x and (ii) the dynamical equations are obtained by the unrestricted variation of the

metric in the action, then the field equations cannot remain invariant under T ab → T ab + (constant) δab .
(The second condition rules out unimodular [24–26] theories and their cousins, in which one varies the
metric keeping

√
−g fixed; I do not think we have good physical motivation for this approach.) In fact,

Lm → Lm+ constant is no longer a symmetry of the action if the metric is treated as the dynamical
variable. Therefore, any variational principle we want to work with cannot use gab as a dynamical
variable.

This immediately raises two issues:
(1) Normally, you will vary some variables qA in an action to obtain equations of motion for the same

variables qA. We, of course, want the dynamical equation to still describe the evolution of gab, but we
have just concluded that we cannot vary gab in any variational principle! How is this possible?
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(2) In the conventional approach, we vary the metric in the matter Lagrangian to obtain Tab as the
source. Since we are not varying gab, but still want Tab to be the source, it is necessary to have Tab
explicitly included in the variational principle. Therefore, we want the variational principle to depend on
Tab and, yet, be invariant under T ab → T ab + (constant) δab ! How can this be done?

The answers to these two questions are closely related. The combination Tabn
anb, where na is

any null vector, is obviously invariant under the shift T ab → T ab + (constant) δab . Therefore, if the
variational principle depends on Tab only through the combination Tabnanb, the requirement in (2) above
is automatically satisfied. (We want to introduce a minimum number of auxiliary variables. The null
vector with (d−1) degrees of freedom is the minimum. In contrast, if we use, say, a combination T abVab
with a symmetric traceless tensor Vab, to maintain the invariance under T ab → T ab + (constant) δab , then
we would have introduced (1/2)d(d+ 1)− 1 degrees of freedom; in d = 4, this introduces nine degrees
of freedom, equivalent to introducing three null vectors rather than one.)

This suggests using a variational principle that extremizes a functional defined by:

Qtot ≡
∫
dV (Hm +Hg); Hm[na] ≡ Tabn

anb (6)

where Hg is the corresponding contribution from gravity, which is yet to be determined, and dV is
the proper measure for integration over a suitable region of spacetime, which is also currently left
unspecified. This approach introduces an arbitrary null vector na into the variational principle, which at
this stage, is just an auxiliary field. However, since no null vector is special, the extremum should hold
for all null vectors, which requires us to vary na in Equation (6) and demand that the resulting equations
hold for all na at a given event. This should lead to a constraint on the background metric gab, which will
determine the dynamics of spacetime.

If we can find such aHg, we would have taken care of the issue raised in (1) above, as well.
Therefore, we need to find a suitable functional Hg[na, gab] of na(x), gab(x), such that the extremum

condition δQtot/δna = 0, for all null vectors na at a given event P , leads to sensible equations for the
evolution of gab. Since Qtot is invariant under T ab → T ab + (constant) δab , the source that appears in the
field equation must respect this symmetry. Therefore, we would expect the equations of motion to be
algebraically equivalent to:

2Ea
b = T ab + Λδab (7)

Here, Λ is an undetermined integration constant, which will allow us to absorb the constant in the
shift T ab → T ab + (constant) δab , while Ea

b is constructed from gab and its derivatives and must satisfy
∇aE

a
b = 0 identically for consistency.

By very construction, the cosmological constant (for which T
(Λ)
ab n

anb = 0) cannot appear in the
variational principle. At the same time, it arises as an integration constant in Equation (7), and we need
a further principle to fix its value once and for all.

Therefore, the microscopic theory, viz. the statistical mechanics of atoms of spacetime, should lead to:

• The explicit form ofHg[na, gab] in the thermodynamic limit.
• A procedure to determine the value of the cosmological constant in our universe.
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I will describe later on (see Section 6) how one could attempt to model such a microscopic theory
that will satisfy both of these criteria, but first, I will show how one can obtain the form of Hg[na, gab]

working downward from the macroscopic description.
Everything works out fine [14,15] if we takeHg to be a quadratic in∇anb of the form:

Hg = −
(

1

16πL2
P

)
(4P ab

cd∇an
c∇bn

d) (8)

where L2
P is an arbitrary constant at this stage, with the dimensions of area (this givesHg the dimension

L−4 as required).
Demanding that δQtot/δna = 0 for all null vectors na at a given event should lead to an equation for

background geometry allows us to fix the form of P ab
cd .

We find that:
P ab
cd ∝ δaba2b2...ambmcdc2d2...cmdm

Rc2d2
a2b2

. . . Rcmdm
ambm

(9)

where δaba2b2...ambmcdc2d2...cmdm
is the totally-antisymmetric m-dimensional determinant tensor.

If we now extremize Qtot in Equation (6), using this P ab
cd in the expression forHg in Equation (8), we

get the field equations of (what is known as) the Lanczos–Lovelock model [12,14,15], given by:

Ea
b ≡ P ai

jkR
jk
bi −

1

2
δabR = (8πL2

P )T ab + Λδab (10)

where Ea
b and mR ≡ P ab

cdR
cd
ab are the generalizations of the Einstein tensor and the Ricci scalar. (It is

possible to prove that Eab is symmetric [27] and∇aE
a
b = 0, so that everything is consistent. Further, the

variational principle works when dV in Equation (6) is the integration measure on the spacetime or on a
suitable null surface with na as the normal.)

These models [28–30] have the curious, and unique, feature that, even though the Lagrangians
describing them, in the conventional approach, are m-th degree polynomials in the curvature tensor,
the resulting field equations are still second order in gab!

The expression for P ab
cd determines the entropy of horizons (called the Wald entropy) in the resulting

theory through the expression [9,12]:

s = −1

8

√
γP abcdεabεcd (11)

(where εab is the binormal to the horizon surface) which, of course, reduces to
√
γ/4 if we choose

P ab
cd = (1/2)(δac δ

b
d − δbcδad), corresponding to Einstein gravity. Thus, the specification of horizon entropy

specifies the P ab
cd and selects the corresponding Lanczos–Lovelock model. In the case of normal matter,

we know that two different objects, say, a glass of water and a metal rod, can be kept at the same
temperature; so, the temperature of a material is purely kinematic and contains no structural information.
On the other hand, the entropy function S(E, V ) will be completely different for water and the metal rod
at the same temperature; specifying it will allow us to describe the structure of the material. Similarly,
the temperature of the spacetime, as we saw before, is purely kinematic, but specifying the form of
horizon entropy in Equation (11), specifies the dynamics of the theory.

In d = 4 dimensions, P ab
cd reduces to the determinant tensor given by P ab

cd = (1/2)(δac δ
b
d − δbcδad).
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The resulting equation for gab is identical to Einstein’s equations with an undetermined
cosmological constant:

Ga
b = (8πL2

P )T ab + Λδab (12)

which has the structure in Equation (7), as expected.
So far, we have not specified the physical nature of null vector field na nor the physical interpretation

ofHg orHm. We, however, know from Equations (3) and (5) that the combination Tabnanb has a physical
interpretation (of the heat density contributed by matter to a null surface), if we identify na = `a, the
tangent vector to a null congruence defining a null surface, and choose dV =

√
γ d2xdλ, which is the

natural integration measure on the null surface.
The identifications, na → `a with Hm[n] → Hm[l], in turn, imply that Hg[`a] should be interpreted

as the corresponding quantity, viz. the heat density contributed by gravity to the null surface. Thus, our
guiding principle, that the field equations should be invariant under T ab → T ab + constant δab , tells us
that the variational principle extremizes the total heat density (since we know what is Hm for matter!),
thereby leading to a direct thermodynamic interpretation to the variational principle based on:

Qtot ≡
∫
√
γ d2xdλ (Hg[`] +Hm[`]) (13)

Since P ab
cd is related to the entropy of the horizons in the resulting theory, it is no surprise that the

on-shell value of Qtot is closely related to the entropy of null surfaces. We can show in general relativity,
for example, that the on-shell value is:

Q
(on−shell)
tot = Q(λ2)−Q(λ1) (14)

with:

Q(λ) =

∫ √
γ d2x

4L2
P

kBTloc =

∫
d2x(Tloc s) (15)

where Tloc is the Davies–Unruh temperature attributed to the null surface by appropriate local Rindler
observers and s = (

√
γ/4L2

P ) is the entropy density in Equation (11) for general relativity (the
interpretation in Equation (14) works for all Lanczos–Lovelock models if we use the s in Equation (11)).

It is also possible to provide a direct physical meaning to L2
P . This is most easily found from rewriting

Equation (14) as:
2Q

(on−shell)
tot = Esur(λ2)− Esur(λ1) (16)

with:

Esur(λ) =

∫ √
γ d2x

L2
P

(
1

2
kBTloc

)
=

1

2
Nsur(kBTavg) (17)

where Tavg is the average of Tloc over the surface and Nsur = (Asur/L
2
P ) is the number of surface degrees

of freedom if we attribute one degree of freedom to each cell of area L2
P .

This provides the physical meaning of the fundamental constant L2
P we have introduced as a quantum

of area; viz. the number of microscopic degrees of freedom associated with an area A is A/L2
P (one can,

of course, rescale (1/2)kBT → (ν/2)kBT,Nsur → Asur/νL
2
P without changing the result; we have

chosen ν = 1).
Therefore, the Qtot used in our variational principle has a clear physical meaning through its on-shell

value (The relative factor two in the left-hand sides of Equations (16) and (14) is not ad hoc and, in fact,
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helps to solve a long-standing problem in general relativity related to a factor two in the definition of
Komar mass; see, e.g., [31]; I will not discuss it here).

The following point, however, needs to be stressed. Eventually, one would like to obtain such a
thermodynamic variational principle from a deeper, microscopic consideration. All that we require in
such a derivation is that some auxiliary null vector field na should arise in the microscopic theory and
should lead to Hg[na] with the correct structure. If we identify this na with the normals to the null
surfaces, we get the correct field equations in the macroscopic limit. However, at a fundamental level,
the auxiliary vector field na (which could arise in the microscopic physics) and the `a (associated with
the null surfaces in the macroscopic limit) are conceptually distinct. I will discuss this in greater detail
in Sections 5 and 6.

The fact that the thermodynamic description transcends general relativity in a unified manner is a
feather in the cap for this approach. In fact, virtually every result in the emergent gravity paradigm
obtained for general relativity also holds [12,13,19,32] for the Lanczos–Lovelock models. At the same
time, the paradigm is quite selective; while it works for the Lanczos–Lovelock models, there is no
natural generalization to obtain, say, the f(R) models of gravity. The fact that the Lanczos–Lovelock
models are the only ones that have field equations that are second order in gab seems to be encoded in
the emergent paradigm.

For most of the remaining part of the review, I will work with d = 4 and general relativity.
The form ofHg is, of course, not unique, and we can add to it any scalar function f(x), possibly built

from the metric and other background variables; this will not change the result, because we are varying
`a and not gab.

One can also add to it any total derivative of the form dF/
√
γdλ, where F can depend on `a; such a

term will contribute only at the end points λ = λ1, λ2, where, as usual, we will keep `a fixed (we can
also add a two-divergence DAv

A in the transverse space, which integrates to zero on
√
γd2x integration,

but this is not of much significance). Therefore, a more general form is:

Hg = f(x)−
(

1

16πL2
P

)
(4P ab

cd∇a`
c∇b`

d) +
1
√
γ

dF

dλ
(18)

This possibility of adding a (1/
√
γ)(dF/dλ) allows us to rewriteHg in a simpler form, which makes

the final result obvious. It also helps to separate the contributions that arise even (in, say, a Rindler
frame) in flat spacetime from the effects of curvature; in fact, we would expect Hg to become a total
divergence in flat spacetime. I will get back to these aspects later in Section 5.

There is an important insight we can obtain from this exercise as regards gravity, in spite of the fact
that the field equations are the same.

In the Newtonian limit, the gravitational force is now given by:

F =

(
c3L2

P

~

)(m1m2

r2

)
(19)

in terms of the three constants that we have introduced: c, ~, L2
P . You should resist the temptation to

write (c3L2
P/~) as GN , thereby making GN independent of ~! Equation (19) tells us that gravity has no

classical limit [33], and the force diverges when ~ → 0 at finite L2
P , just as all matter collapses when

~→ 0, because no stable atom can exist. Gravity is quantum mechanical at all scales.
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To summarize, we have succeeded in obtaining the equations for spacetime evolution, such that:
(1) The variational principle remains invariant under the shift T ab → T ab + (constant) δab .
(2) The variational principle is thermodynamic in character and extremizes the heat content of the

null surfaces in the spacetime.
(3) The cosmological constant arises as an integration constant to the equations (and its value needs

to be fixed by some further microscopic principle once and for all). The really significant result is:

I The most natural way of incorporating the fact that gravity is immune to the zero-level of energy
implies an emergent, thermodynamic, interpretation for gravity!

This connects what used to be thought of as completely separate ideas!

4. Geometry in the Thermodynamic Language

We have found the dynamical equations for the spacetime, but, as we said earlier (see Item 2 in
Section 1), it does not make much sense to use the geometrical language to describe the spacetime
evolution if the field equations have the same status as those in other emergent phenomena!

We saw that the thermodynamic interpretation of geometry relates L2
P to the degrees of freedom and

entropy of null surfaces. This idea will be reinforced when we express the dynamical equations in a
thermodynamic language. This has been described in several previous works in this subject cited earlier.
For the sake of completeness, I shall review some of the key results, amplifying the conceptual aspects.

One way to do this is to introduce [34] a conserved vector current Ja[v], which can be defined in
terms of an arbitrary vector field va in the spacetime (we will define it in the context of general relativity,
but it can be generalized for the Lanczos–Lovelock models). This current, when computed for the time
evolution vector field va = ξa in the spacetime, will have direct thermodynamic significance.

From any arbitrary vector field va, we can construct a conserved current Ja = ∇bJ
ab where the

antisymmetric tensor Jab is defined as: (16πL2
P )Jab = ∇avb − ∇bva. (The normalization of this

current is arbitrary; the introduction of the area L2
P in the proportionality constant gives it the correct

dimension and makes the later results transparent and simple. We will usually work in units with
16πL2

P = 1 and reintroduce it in the final formulas.) This happens to be the off-shell version of the
standard Noether current; but, the conventional way of deriving it using diffeomorphism invariance of
the gravitational action is misleading, because it suggests that Ja[v] has something to do with the action
and its symmetries. As we see here, it has nothing to do with either, and its conservation is a rather trivial
identity. We will continue to call it the Noether current, but its conservation does not require the nice
theorems Emmy Noether proved! Elementary algebra now leads to the alternative expression:

√
−g Ja(v) = 2

√
−g Ra

bv
b + f bc£vN

a
bc (20)

where:

fab ≡
√
−ggab; N c

ab ≡ −Γcab +
1

2

(
δcaΓ

d
db + δcbΓ

d
ad

)
(21)

The individual terms in Equation (20) are generally covariant, because the Lie derivative of the
connection £vΓ

c
ab, given by £vΓ

a
bc = ∇b∇cv

a +Ra
cmbv

m, is generally covariant.
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The set (fab, N c
ab) contains the same amount of information as (gab,Γ

c
ab), but has a more direct

thermodynamic interpretation [18]. Let H be a null surface, which is perceived as a horizon by local
Rindler observers who attribute to it a temperature T and entropy density s =

√
γ/4.

Then, one can show that:

• The combination N c
abf

ab, integrated over H with the usual measure d3Σc = `c
√
γd2xdλ, gives its

heat content; that is:
1

16πL2
P

∫
d3Σc(N

c
abf

ab) =

∫
dλ d2x Ts (22)

• Consider the metric variations δf that preserve the null surface. Remarkably enough, the
combinations fδN and Nδf correspond to the variations sδT and Tδs, when integrated over
the null surface. That is:

1

16πL2
P

∫
d3Σc(N

c
abδf

ab) =

∫
dλ d2x Tδs; (23)

1

16πL2
P

∫
d3Σc(f

abδN c
ab) =

∫
dλ d2x sδT (24)

Therefore, the variations (Nδf, fδN ) exhibit thermodynamic conjugacy similar to that in the
corresponding variations (Tδs, sδT ).

4.1. The Avogadro Number of the Spacetime and the Spacetime Evolution

A crucial relation in the study of, say, gases is the equipartition law E = (1/2)NkBT , which should
be more appropriately written as:

NkB =
E

(1/2)T
(25)

Here, both the variables in the right-hand side, E and T , have valid interpretations in the continuum,
thermodynamic limit, but the N in the left-hand side has no meaning in the same limit. The N actually
counts the microscopic degrees of freedom or, more figuratively, the number of atoms, the very existence
of which is not recognized in thermodynamics! An equation like this directly relates the macroscopic
and microscopic descriptions. Can we obtain a similar relation for spacetime? Can we count the number
of atoms of spacetime?

It turns out that indeed we can [35,36], and the current Ja[ξ], where ξa is the time evolution vector
related to the (1 + 3) foliation, shows the way. Consider a section of a spacelike surface V with boundary
∂V corresponding to N = constant. In any static spacetime, one can show that the gravitating (Komar)
energy EKomar of this bulk is equal to the equipartition heat energy of the surface we encountered earlier
in Equation (17):

EKomar ≡
∫
d3x
√
h 2NT̄abu

aub =

∫ √
γ d2x

L2
P

(
1

2
kBTloc

)
=

1

2
Nsur(kBTavg) (26)

where T̄ab ≡ Tab − (1/2)gabT .
Therefore, there is a correspondence between the bulk and boundary energies, as well as equipartition,

which I will call holographic equipartition.
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It gets better. When we consider the most general spacetime (rather than static spacetimes), we would
expect the above relation to break down and the difference between the two energies to drive the evolution
of the spacetime. This is precisely what happens. One can associate with the bulk energy EKomar the
number Nbulk, defined as the number of degrees of freedom in a bulk volume if the (Komar) energy
EKomar contained in the bulk is at equipartition at the temperature Tavg. That is:

Nbulk ≡
1

(1/2)Tavg

∫
d3x
√
h 2NT̄abu

aub =
|EKomar|
(1/2)Tavg

(27)

(We do not, of course, assume that the equipartition is actually realized; this is just a dimensionless
measure of the Komar energy in terms of the average boundary temperature.)

One can then show [16] that the time evolution of spacetime geometry in a bulk region, bounded
by the N = constant surface, is driven by the suitably-defined bulk and boundary degrees of
freedom. Specifically:

1

8π

∫
d3x
√
huag

ij£ξN
a
ij =

1

2
Tavg (Nsur −Nbulk) (28)

with ξa = Nua being the time evolution vector, where ua is the velocity of the observers moving
normal to the foliation. (The Lie variation term in Equation (28) is closely connected with the
canonical structure [16] of general relativity in the conventional approach, though the relation√
huag

ij£ξN
a
ij = −hab£ξp

ab, where pab =
√
h(Khab −Kab) is the momentum conjugate to hab in the

standard approach). This result shows that it is the difference between the surface and the bulk degrees
of freedom that drives the time evolution of the spacetime!

(A very similar result holds [34] for a null surface, as well, in terms of corresponding variables.)
A simple, but remarkable corollary is that in all static [35,36] spacetimes, we have holographic

equipartition, leading to the equality of the number of degrees of freedom in the bulk and boundary:

Nsur = Nbulk; (holographic equipartition) (29)

which, of course, is a restatement of Equation (26).

4.2. The Fluid Mechanics of the Null Surfaces

From the Ja[v], one can define another vector field P a[v], which can be thought of as the gravitational
momentum attributed to spacetime [37], by an observer with velocity va. It is defined as:

P a[v] ≡ 2Ga
bv

b − Ja[v] = −Rva − gij£vN
a
ij (30)

The physical meaning of P a[v] arises from the following fact: the conservation of total momentum
(P a +Ma) for all observers will lead to [37] the field equations of general relativity; the introduction of
P a(v) restores the conservation of momentum in the presence of gravity!

When evaluated for the time evolution vector in for the Gaussian null coordinates (GNC) associated
with a given null surface, P a[ξ] reveals its thermodynamic significance in two contexts. (The GNC
system generalizes the notion of the local Rindler frame associated with an arbitrary null surface;
see [38–40] for more details. We define the time development vector as ξa = Nua, where ua is the
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velocity of observers at rest in GNC. One can show that ξa will reduce to the timelike Killing vector
corresponding to the Rindler time coordinate if we rewrite the standard Rindler metric in the GNC
form. Therefore, ξa is a natural generalization of the time evolution vector, corresponding to the local
Rindler-like observers in the GNC, though, of course, in the general case, ξa will not be a Killing vector
in a general spacetime.)

First, we can show that the variational principle used to obtain the field equations has a simple
interpretation [34] in terms of P a[ξ] in GNC.

Second, the projection of P a[ξ] along `a, ka and qab associated with a null surface leads to three sets
of equations, all of which have a direct thermodynamic interpretation.

Let us start with the variational principle, which was based on Equation (6). The Qtot has a simple
expression in terms of the total momentum flux through the null surfaces. We can show [34] that:

Qtot = −
∫
d2xdλ

√
γ `a P

a
tot(ξ) = −

∫
d2xdλ

√
γ `a [P a(ξ) +Ma(ξ)] (31)

where the expressions in the integrand can be thought of as the limit of ξaP a
tot(ξ) as we approach the null

surface, and we have ignored the end point contributions. Clearly, the total energy density associated
with the total momentum P a

tot, by the local Rindler observer, is what contributes to the Qtot of the
null surface. The variational principle thus has a clear physical significance even off-shell, unlike, for
example, the action principle for gravity in the conventional approach.

The second feature about the gravitational momentum P a(ξ) is somewhat more technical, and hence,
I will only mention its physical content.

Given the thermodynamic properties of the null surfaces, one would expect the flow of gravitational
momentum vis-à-vis any null surface to be of primary importance. To explore this, we construct the GNC
associated with the given null surface and the P a(ξ) using the corresponding time evolution vector. The
natural basis vectors associated with the null surface are given by the set of vectors (`a, ka, eaA) where
eaA spans the two transverse directions. The gravitational momentum can be decomposed using this
basis as: P a = A`a + Bka + CAeaA; and the components A,B and CA can be recovered from the
projections of P a given by A = −P a(ξ)ka, B = −P a(ξ)`a and CA = P a(ξ)eAa . Therefore, the
following combinations, qabP

b(ξ), kaP
a(ξ) and `aP a(ξ), will give the complete information about the

flow of gravitational momentum vis-à-vis the given null surface. Each of them leads to an interesting
thermodynamic interpretation. However, since the calculations are somewhat involved, I will skip the
algebraic details (which can be found in [34]) and summarize the results:

• The component qbaP
a(ξ) allows us to rewrite the relevant component of the field equations in a

form identical to the Navier–Stokes equation for fluid dynamics [41,42] (for a variable that can be
interpreted as drift velocity on the horizons). This is probably the most direct link between the field
equations and the fluid mechanics of atoms of spacetime. This result generalizes the corresponding
result, known previously for black hole spacetimes [43,44], to any null surface in any spacetime.
• The projection kaP

a(ξ), evaluated on an arbitrary null surface, can be [45] rewritten in the
form: TdS = dE + PdV , i.e., as a thermodynamic identity. Here, all of the variables have
the conventional meanings, and differentials are interpreted as changes in the relevant variables
when we make an infinitesimal virtual displacement of the null surface in the direction of ka.
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This generalizes the corresponding results, previously known for spacetimes with some symmetry
(see, e.g., [32,46–49]), and the null surface in question is a horizon and also allows us to associate
the notion of energy with an arbitrary null surface [50,51].
• Finally, the component `aP a(ξ) gives [34] the evolution of null surface, in terms of its heating rate

involving both ds/dλ and dT/dλ, where s is the entropy density, T is the temperature associated
with the null surface and λ is the parameter along the null generator `a.

5. A Closer Look at the Atoms of Spacetime

The results described so far suggest that the dynamics of spacetime is the thermodynamic limit
of the statistical mechanics of microscopic degrees of freedom, which we shall call the atoms of
spacetime. Our next task is to obtain the heat density Hg, used in the variational principle based
on Equation (6), from a reasonable model for microscopic degrees of freedom. Given the enormous
conceptual complications in any such attempt, we will approach the problem in a step-by-step manner,
proceeding by analogy with more familiar situations.

Let us start by recalling certain features in the description of a normal fluid made of atoms. The
macroscopic, thermodynamic description ignores the existence of discrete structures and describes the
fluid as a continuum using variables, like density ρ(t,x), pressure p(t,x), mean velocity V(t,x), etc.
The price we pay for ignoring the discrete structures is that we need to add certain variables (like
temperature) purely phenomenologically, say through the equation of state P = P (ρ, T ), for this
description to work properly. The next layer of description for a fluid, used in physical kinetics, is
in terms of the distribution function f(t,x,v).

(In a relativistic case, we will use f(xi, pj) with pipi = m2, which reduces again to f(t,x,v) with a
suitable Jacobian).

This description recognizes the fact that the fluid is made of atoms. However, it works at a scale
sufficiently large compared to the inter-atomic distance, so that we can interpret dN = f(t,x,v)d3xd3v

as the number of atoms in a phase volume d3xd3v. The key assumption is that we can introduce a volume
element d3x, which is sufficiently small to be treated as ‘practically’ infinitesimal and yet large enough
to contain a sufficiently large number of atoms of the fluid.

The main difference between the descriptions in these two layers (thermodynamics vs. physical
kinetics) lies in the fact that the latter allows us to handle the dispersion in the microscopic variables.
For example, f(t,x,v) tells us that, at a given location x, there could be several atoms moving in
different directions with different speeds, thereby leading to velocity dispersion. One could therefore
compute both the mean velocity and the velocity dispersion using f(t,x,v) by:

V(t,x) ≡
∫

vf(t,x,v)d3v; σ2
v(t,x) ≡

∫
(v −V)2f(t,x,v)d3v (32)

and relate σ2
v to the temperature by, say, kBT = (1/2)mσ2

v . In contrast, the thermodynamic description
only has the notion of the mean velocity V(t,x) of the fluid at an event, but not that of any velocity
dispersion, since no discrete structure is recognized. As a result, we have to introduce the temperature
(and other variables) in an ad hoc manner in such a description. Clearly, the description in terms of a
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distribution function, recognizing the existence of atoms with different velocities at a given point, is one
level closer to reality and is the first step in incorporating the discreteness at the microscopic level.

What we seek is a similar description, for the atoms of spacetime, so that we are led to the correct
form of the heat density. Working from the macroscopic scales, we know that the auxiliary vector field
na plays a crucial role.

However, the discussion in Section 3.2 shows that one can obtain the field equations with any null
vector na. In the macroscopic limit, if we identify na with `a, corresponding to a null congruence, then
Tab`

a`b has a thermodynamic interpretation. This does not immediately suggest a unique microscopic
origin for this vector field na. There are two natural interpretations one could explore.

The first one is to think of na as representing something analogous to the velocity v of the atoms that
appear in the distribution function. The fact that na is null implies that the atoms of spacetime have no
mass scale associated with them, which makes sense. However, in that case, one would have expected
the kinetic energy contribution to the gravitational heat density to be of the form:

Kg =
1

2
Mabn

anb (33)

rather than a quadratic in the derivatives of na.
The second possibility is to think of na(x) as analogous to the mean velocity field V(t,x), which

appears at the thermodynamic description. Then, one can relate a quadratic term in ∇anb to some kind
of viscous heat generation (as indicated by the correspondence with the Navier–Stokes equations [41,42]
mentioned earlier) contributing to the heat density. In the description of normal fluids, these two are
completely different constructs. However, in the description of spacetime, we have only one kind of
vector field, na, and it should somehow play roles analogous to both v and V(t,x) simultaneously!

Then, both of the descriptions will be valid, and we will have a natural interpretation of the heat
density, both from microscopic and macroscopic scales.

Mathematically, this requires that we should be able to express the heat density Hg in Equation (8)
in an equivalent form as a quadratic in na (like Equation (33)) without any derivatives. This is a very
nontrivial constraint; but again, everything works out fine! Let me explain how this comes about in some
detail.

To do this, let us begin by asking the question:
How come the variation of a quadratic in ∇anb, in Equation (8), did not lead to second derivatives

of na in the Euler–Lagrange equations? Algebraically, this is due to the occurrence of the commutator
of covariant derivatives [∇i,∇j]nk, which, as we know, is linear in nm and does not contain any second
derivatives. There is, however, a nicer way to see this result [16], which is based on the following
identity:

2P ab
cd∇an

c∇bn
d = Rabn

anb +
1
√
γ

d

dλ
(
√
γΘ) (34)

where ni is the affinely parameterized congruence with λ being the affine parameter and Θ = ∇in
i =

(d/dλ)(ln
√
γ). Therefore, Hg and Rabn

anb differ by a total derivative term that does not contribute to
the variation, and we can write:

Qtot =

∫
√
γ d2xdλ

[
− Rab

8πL2
P

+ Tab

]
nanb − 1

8πL2
P

∫
d2x
√
γΘ

∣∣∣∣∣
λ2

λ1

(35)
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Ignoring the second term, since it contributes only at the end points λ = (λ1, λ2), our variational
principle reduces to working with (−Rab/8πL

2
P + Tab)n

anb. Imposing the n2 = 0 condition by a
Lagrange multiplier and varying this expression with respect to na will lead to Ra

b = (8πL2
P )T ab +

f(x)δab . Taking the divergence and using the Bianchi identities, as well as ∇aT
a
b = 0, we find that

f(x) = (1/2)R + constant, thereby leading to Einstein’s equations with the cosmological constant
appearing as an integration constant.

Equation (34) also shows that Hg reduces to a total divergence term in flat spacetime (expressed
in, say, the Rindler coordinates) and isolates the contribution due to spacetime curvature, which is
contained in:

Kg ≡ −
1

8πL2
P

Rabn
anb (36)

Everything would have worked out fine even if we had used an expression for the gravitational heat
density given by Equation (36). (A conceptually unsatisfactory feature of the standard approach to
dynamics is that it equates a purely geometrical object Ga

b to a matter variable T ab . It is unclear what
is common to the two sides of this equation. Our approach shows clearly what is common to both
sides of Einstein’s equations, if we write it as (8πL2

P )−1Rab`
a`b = Tab`

a`b. They both represent the
heat densities, of spacetime and matter! Moreover, all of these results generalize to Lanczos–Lovelock
models with Ra

b replaced by Ea
b , etc.)

The result in Equation (36) has exactly the same structure seen in Equation (33), which is what we
wanted. Therefore, we could have thought of our na as analogous to: (i) the macroscopic, mean velocity
field V(t,x) and interpreted Hg in Equation (8) as the heat density arising from something analogous
to viscous dissipation; or (ii) the microscopic velocity field v, which can be interpreted as analogous to
the velocity of the atoms themselves. It is very gratifying that the same heat density allows both of the
descriptions. The corresponding heating rate, made dimensionless for future convenience, is given by:

d(Qg/EP )

d(λ/LP )
= L2

P

dQg

dλ
= L2

P

∫
√
γd2x Kg = −

∫ √
γd2x

L2
P

(
L2
P

8π
Rabn

anb
)

(37)

In fact, one can also work with a variational principle based on (dQg/dλ) (rather than Qg), if we use
this expression in Equation (35). Therefore, the variational principle can be thought of as an extremum
condition on the heating rate.

It is possible to make some more progress with the expression in Equation (36) by recognizing that
one could limit oneself to affinely parameterized null vectors na = ∇aσ, which are pure gradients. In
that case, the gravitational heat density in Equation (36) takes the form:

Kg ≡ −
1

8πL2
P

Rab∇aσ∇bσ (38)

If we use this expression in Equation (6) and vary ∇aσ, imposing the constraint that ∇aσ is null, we
will again get the correct field equations. As we mentioned earlier on, we really have no idea what is the
extra degree of freedom qA on which our extremum principle will depend, when we approach it from the
microscopic scales; an na of the form∇aσ is adequate.

Therefore, our task now reduces to coming up with a microscopic model, which will have the
following features:
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• The key new ingredient in our approach is the introduction of a vector field na = ∇aσ into a
variational principle. It is not a priori clear how the auxiliary variable, like σ or na, arises from a
microscopic description and why we need to vary it in an extremum principle. The microscopic
description should lead to the vector field na = ∇aσ, as well as σ itself. This is probably the most
important task.
• There should be a fundamental reason why null vectors, closely associated with local Rindler

horizons, play such an important role. This should emerge from the microscopic description.
• Finally, we need to obtain the explicit form of the heat density in Equation (38) in a natural manner

from the microscopic description.

These might appear to be fairly formidable tasks, but I will show that it is possible to come up with a
microscopic description that satisfies all of these criteria!

It turns out that σ, as well as the combination Rab∇aσ∇bσ have a very natural interpretation, which I
will now describe.

To do this, I want to introduce an alternate way of describing the standard Riemannian geometry using
what is known [52–55] as Synge’s world function σ2(x, x′), instead of the metric tensor gab(x). The
world function σ2(x, x′) is defined as the geodesic interval between any two events x and x′, which are
sufficiently close that a unique geodesic exists. Since the knowledge of all geodesic distances (locally)
is equivalent to the knowledge of the metric, anything one can do with the metric tensor can be done
using σ2(x, x′). The information contained in the ten functions gab(x), which depends on the choice of
the coordinate system, is more efficiently encoded in the single biscalar σ2(x, x′) (of course, one could
summarize the information of ten functions in a single function only because σ2 is nonlocal and depends
on two events x and x′). Mathematically, this arises from the expansion:

1

2
∇a∇bσ

2 = gab −
λ2

3
Eab +

λ2

12
ni∇iEab +O(λ4) (39)

where λ is the affine distance along the geodesic connecting x and x′, Eab ≡ Rakbjn
knj and:

na =
1

2
√
|σ2|
∇aσ

2 = ∇aσ (40)

(The second equality follows from the fact that σ satisfies the Hamilton–Jacobi equation leading to
gab∇aσ

2∇bσ
2 = 4σ2; we will assume σ2 > 0 for simplicity when it will not cause any problems.)

Equation (39) shows that the coincidence limit (x→ x′) of (1/2)∇a∇′bσ2 gives the metric tensor gab.
Given the geodesic distance σ2(x, x′), we can obtain gab at any event and, hence, can calculate any other
geometrical quantity. Therefore, all of gravitational dynamics can be done, in principle, with σ2(x, x′)

instead of with the metric.
The expansion in Equation (39) shows that the second order term contains the combination Eab, the

trace of which is given by:
E = Rabnanb = Rab∇aσ∇bσ (41)

This has an algebraic structure identical to the heat density in Equation (38)! This suggests that if we
work with σ2(x, x′) (rather than with the metric), then some natural variables in the microscopic theory
could possibly be related to the heat density in Equation (38).
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Let me illustrate how E occurs in several geometrical variables in a natural fashion [56].
To do this, we will switch from the Lorentzian spacetime to Euclidean spacetime around an event P ′,

so that:
(i) σ2(P ′, P ) treated as a function of P (with fixed P ′) is positive.
(ii) The local Rindler horizon gets mapped to the Euclidean origin, which we take to be P ′.
(iii) The coincidence limit of P → P ′, approaching the origin, corresponds to approaching the local

Rindler horizon in the original spacetime.
(The coincidence limit σ2 → 0 corresponds to all of the events P in the original spacetime connected

to the origin P ′ by a null ray.)
In the Euclidean spacetime, it is convenient to introduce the notion of an equi-geodesic surface

that corresponds to all events at the same geodesic distance from the origin [57–60]. To describe
such a surface, it is convenient to work with a natural coordinate system (σ, θ1, θ2, θ3) where σ (the
geodesic distance from the origin) is the “radial” coordinates and θα are the angular coordinates on the
equi-geodesic surfaces corresponding to σ = constant [61].

The metric can then be reduced to the form:

ds2
E = dσ2 + hαβdx

αdxβ (42)

where hαβ is the induced metric on the equi-geodesic surface with σ = constant (this is the analogue of
the synchronous frame in Minkowski spacetime, with xα chosen to be angular coordinates).

The most primitive quantities one can introduce in such a spacetime are the volume element
√
g d4x

and the area element of the equi-geodesic surface,
√
h d3x. For the metric in Equation (42), we, of

course, have
√
g =

√
h, and hence, both the volume and area measures are identical. It is possible to

show [56] that in the limit of σ → 0, this measure is given by:

√
h =
√
g = σ3

(
1− 1

6
Eσ2

)√
hΩ (43)

where
√
hΩ arises from the standard metric determinant of the angular part of a unit sphere. This is the

simplest example of the appearance of E in a primitive geometrical variable. It gives the correction to the
area of (or the volume enclosed by) an equi-geodesic surface. This is a very standard result in differential
geometry and is often mentioned as a measure of curvature around any event.

It seems natural to assume that the number of atoms of spacetime (i.e., the microscopic degrees of
freedom, contributing to the heat density) at P should be proportional to either the ‘area or volume
associated with the event P ’. This is because we would expect the number of atoms of spacetime to
scale with either area or volume (based on the earlier result Nsur = A/L2

P = Nbulk in equipartition, we
would expect a scaling with

√
h, which is the “area” element of σ = constant surface, but it is important

to derive this and understand why volume scaling does not arise in the microscopic description). To give
precise meaning to the phrase, “area or volume associated with the event P ”, we can proceed as follows:
(i) we construct an equi-geodesic surface S centered on P with “radius” σ; (ii) we compute the volume
enclosed by S and the surface area of S; and (iii) we take the limit of σ → 0 to determine the area or
volume associated with P .
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However, as we can see from Equation (43), these measures identically vanish in the limit of P → P ′,
which corresponds to σ → 0. Therefore, while the required combination E = Rab∇aσ∇bσ does exist in
the volume and area measures, it does not contribute in the appropriate limit.

A little thought shows that this is certainly to be expected. As we saw from the macroscopic approach,
the entropy requires a quantum of area L2

P for its proper description. Classical differential geometry,
which is what we have used so far, knows nothing about a quantum of area and, hence, cannot give us
the correct heat density. To obtain the heat density from the above considerations, we need to ask how
the geodesic interval gets modified in a quantum description of spacetime and whether such a modified
description will have a

√
h (or

√
g) leading to the correct heat density. The last miracle I will describe is

how this comes about.

6. The Renormalized Spacetime

The essential idea was to recognize that a primary effect of quantum gravity will be to introduce into
the spacetime a zero-point length [62–67], by modifying the geodesic interval σ2(x, x′) between any two
events x and x′ (in a Euclidean spacetime) to a form like σ2 → σ2 +L2

0 where L0 is a length scale of the
order of the Planck length.

More generally, such a modification can take the form of σ2 → S(σ2), where the function S(σ2)

satisfies the constraint S(0) = L2
0 with S ′(0) finite (our results are happily insensitive to the explicit

functional form of such S(σ2); so, for the sake of explicit illustration, we will use S(σ2) = σ2 + L2
0).

The theoretical evidence for the existence of such a zero point length is described in several previous
works [62–67] and will not be repeated here. While we may not know how quantum gravity modifies the
classical metric, we do have an indirect handle on it if quantum gravity introduces a zero point length to
the spacetime in the manner described above.

Since the original σ2 can be obtained from the original metric gab (and vice versa), it will be nice
if we can obtain the quantum gravity-corrected geodesic interval S(σ2) from a corresponding quantum
gravity-corrected metric [57], which we will call the q-metric qab. Obviously, no such local, non-singular
qab can exist because, for any such qab, the resulting geodesic interval will vanish in the coincidence limit,
almost by definition. Therefore, we expect qab(x, x′) to be a bitensor, which is singular at all events in
the coincidence limit.

One can now determine [58,59] the form of such a qab(x, x
′) for a given gab(x) by using

two conditions:
(i) It should lead to a geodesic interval S(σ2) with a zero point length and;
(ii) The Green function describing small metric perturbations should have a non-singular coincidence

limit. It can be shown [59] that these conditions determine qab uniquely in terms of gab (and its associated
geodesic interval σ2). We get:

qab = Ahab +Bnanb; qab =
1

A
hab +

1

B
nanb (44)

where:

B =
σ2

σ2 + L2
0

; A =

(
∆

∆S

)2/D1 σ2 + L2
0

σ2
; na = ∇aσ (45)
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and ∆ is the Van Vleck determinant related to the geodesic interval σ2 by:

∆(x, x′) =
1

2

1√
g(x)g(x′)

det
{
∇x
a∇x′

b σ
2(x, x′)

}
(46)

The ∆S is the corresponding quantity computed with σ2 replaced by S(σ2) in the above definition.
Before proceeding further, I want to introduce the notion of a renormalized (‘dressed’) spacetime [68]

and interpret qab as the renormalized spacetime metric, which incorporates some of the non-perturbative
effects of quantum gravity at Planck scales. While this is not essential for what follows, it provides a
possible back drop for understanding the origin of qab.

An important effect of the interactions in quantum field theory is to replace the bare variables in a
Lagrangian by physical variables, which incorporate (some) effects of the interactions. We know that,
in general, such a renormalization changes not only the constants, which appear in the Lagrangian, but
also the field variables. For example, consider the usual λφ4 theory of a scalar field in D = 4, described
by a Lagrangian L(φB;mB, λB) in terms of the bare variables. The perturbation theory (carried up to
the two-loop level) tells us that we need to renormalize not only λB and mB to their physical values
λ and m, but also change the bare field φB to the physical field φ if the theory is to make sense. A
similar effect arises in QED, as well, which requires field renormalization. Though these results are
usually obtained in perturbation theory, the requirement of renormalization by itself is a non-perturbative
feature. In the Wilsonian interpretation of the field theory, integrating out the high energy modes will
lead to the renormalization of the low energy effective Lagrangian, which is a feature that transcends
perturbation theory.

It seems, therefore, natural to assume that a similar effect will arise in the case of gravity, as well. The
bare Lagrangian for gravity, L(gBab, GB,ΛB) ∝ G−1

B [R(gBab)−2ΛB]
√
−gB should be interpreted as being

expressed in terms of not only the bare coupling constants (GB and ΛB), but also the bare metric tensor
gBab. We would then expect quantum gravitational processes at the Planck scale to replace (gab, GB,ΛB)
by their renormalized, physical, counterparts (gRab, G,Λ). We can then compute all other renormalized
geometrical variables (e.g., the curvature tensor) by using the gRab in the place of gBab in the relevant
expressions. This procedure is necessarily approximate, compared to a fully rigorous non-perturbative
quantum gravitational approach, which we do not have, but will surely capture some of the effects at the
intermediate (“mesoscopic”) scales between the Planck scale and the long wavelength limit at which the
classical metric is adequate.

Of course, we cannot use perturbation techniques to directly compute gRab for a given classical
geometry described by a gab, and we would expect gRab to be non-local and singular at any given event (we
drop the superscript B in gBab hereafter). However, since the same quantum gravity effects that replace
gab by qab are expected to replace σ2 by S(σ2), we can identify gRab = qab in Equation (44). Therefore,
we have an indirect way of determining the renormalized spacetime gRab = qab by this procedure.

Let us get back to qab. As shown in previous work [57,60], the q-metric has several interesting
properties, which I will now list:

(1) The qab(x, x′), unlike gab(x), is a bitensor depending on two events through σ2(x, x′). As we
said before, this non-locality is essential if spacetime has to acquire a zero-point length. Any local,
nonsingular metric will lead to a σ2(x, x′), which vanishes in the limit of x→ x′.
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(2) The qab reduces to the background metric gab in the limit of L2
0 → 0, as it should. In the opposite

limit of (σ2/L2
0) → 0, the qab is singular, which is again natural if we interpret qab as the metric of the

renormalized spacetime; it is not expected to be well defined at any localized event and will require some
kind of smearing over Planck scales.

(3) When gab = δab, the qab is also locally flat in the sense that there exists a coordinate transformation,
which will reduce qabdxadxb to ηabdx

adxb in the synchronous frame (this is, however, rather subtle
because the coordinate transformation removes a region of sizeLP from the spacetime around all events).

(4) Let Φ[gab(x)] be some scalar or scalar density (like, for example, the Ricci scalar R[gab(x)])
constructed from the background metric and its derivatives.

We can compute the corresponding (bi)scalar Φ[qab(x, x
′);L2

0] for the renormalized spacetime by
replacing gab by qab in Φ[gab(x)] and evaluating all of the derivatives at x keeping x′ fixed. The
renormalized value of Φ[qab(x, x

′);L2
0] is obtained by taking the limit x→ x′ in this expression keeping

L2
0 non-zero. Several useful scalars like R, K, etc., remain finite [57,59,60] and local in this limit, even

though the q-metric itself is singular when x → x′ with non-zero L2
0. The algebraic reason for this

result [57] is that the following two limits do not commute:

lim
L2
0→0

lim
x→x′

Φ[qab(x, x
′);L2

0] 6= lim
x→x′

lim
L2
0→0

Φ[qab(x, x
′);L2

0] (47)

All of the computations involving the qab are most easily performed [61] by choosing a synchronous
frame for the background metric, given in Equation (42), which can always be done in a local region.

7. A Point Has Zero Volume but Finite Area!

We will now re-evaluate the area element of an equi-geodesic surface and the volume element for
the region enclosed by it using the renormalized q-metric. This will involve

√
q d4x and

√
h d3x as the

respective integration measures, where h now stands for the determinant of the induced metric on the
equi-geodesic surface, corresponding to qab (for the q-metric in Equation (44), calculated for the gab in
Equation (42), these two measures will not be equal, because q00 6= 1).

If our ideas are correct,
√
h should lead to the correct density of the atoms of spacetime in the

coincidence limit. Further, there must be a valid mathematical reason to prefer the area element
√
h

over the volume element
√
q. I will show that these hopes are indeed realized!

It is straightforward to compute these quantities using the q-metric, and we find that (with
S(σ2) = σ2 + L2

0 chosen for illustration, though the final results [61] hold in the more general case,
as well as in d dimensions):

√
q = σ

(
σ2 + L2

0

) [
1− 1

6
E
(
σ2 + L2

0

)]√
hΩ (48)

and:

√
h =

(
σ2 + L2

0

)3/2
[
1− 1

6
E
(
σ2 + L2

0

)]√
hΩ (49)

When L2
0 → 0, we recover the result in Equation (43), as we should. However, as explained in

Item (4) above, our interest is in the limit σ2 → 0 at finite LP .
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Something remarkable happens when we do this. The volume measure
√
q vanishes (just as in the

case of the original metric), showing that it cannot lead to anything nontrivial. The zero point length
does not lead to a residual volume measure.

However, in the limit of σ2 → 0, we find that
√
h has a non-zero limit! It is given by:

√
h = L3

0

[
1− 1

6
EL2

0

]√
hΩ (50)

As the title to this section indicates, the q-metric (which we interpret as representing the renormalized
spacetime) attributes to every point in the spacetime a finite area measure, but a zero volume measure!

Before we explore the consequences of this result, let me stress that it is algebraically subtle. One
might think that the expression in Equation (49) (which is actually

√
h = A3/2√g) might arise from the

standard result in differential geometry, Equation (43), by the replacement σ2 → (σ2 + L2
0). However,

note that this trick does not work for the expression in Equation (48) (which is
√
q =
√
BA3/2√g) due

to the
√
B = σ(σ2 + L2

0)−1/2 factor that has the limiting form
√
B ≈ σ/L0 when σ → 0. This is the

key reason why the event has zero volume, but finite area. A possible insight into this, rather intriguing,
feature is provided by the following fact:

The leading order dependence of
√
qdσ ≈ σdσ makes the volumes scale as σ2 (while the area

measure is finite). This, in turn, is related to the fact [68] that the effective dimension of the renormalized
spacetime becomesD = 2 close to Planck scales, a result that has been noticed by several people [69–72]
in different, but specific, models of quantum gravity. Our approach seems to give this result in a
model-independent manner, which, in turn, is the root cause of the result that events have zero volume,
but finite area.

Since L3
0

√
hΩ is the volume measure of the σ = L0 surface, the dimensionless density of the atoms

of spacetime, contributing to the gravitational heat, can be taken to be:

f(xi, na) ≡
√
h

L3
0

√
hΩ

= 1− 1

6
EL2

0 = 1− 1

6
L2

0Rabn
anb (51)

How can we interpret this expression for the “number of atoms of spacetime”?
Our intention all along has been to define the analogue of a distribution function f(xi, na) that gives

the number of atoms of spacetime at a given event. We expected f(xi, na) to depend on an auxiliary
vector field na, as well as on the location xi. Just as in the usual kinetic theory, we no longer think of this
location as a mathematical point, but imagine a region that contains a sufficiently large number of atoms
of spacetime to make the description in terms of f(xi, na) valid (to think of spacetime being filled with
atoms is no stranger than thinking of matter being filled with atoms; both descriptions work at scales
larger than the inter-atomic spacing, but recognize the existence of discrete structures). The dependence
on xi can have a universal part (which could exist even in the flat spacetime limit), as well as a part that
depends on (what we call in macroscopic physics) the spacetime curvature. Since we want f(xi, na) to
arise from the most basic of the geometrical properties of the space, it seems reasonable to explore areas
and volumes. We know from classical differential geometry that areas and volumes of a region of size
r do have a flat space contribution, which is corrected by curvature-dependent terms. However, now,
we want the area (

√
hd3x) and volume (

√
gd4x) measures to be defined at a point, which will require

taking the limit r → 0. In a classical spacetime, both the measures vanish in this limit, as to be expected.
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When we consider the renormalized spacetime incorporating a zero point length, one might have naively
expected both of them to be finite at a given event. Remarkably enough, the volume measure (

√
qd4x)

still vanishes when the region collapses to a point, but the area measure does not. (One likes to think of
the number of atoms per unit spatial volume, rather than unit spacetime volume, whether it is atoms of a
gas or a spacetime; this is what we get from

√
h d3x).

Briefly stated, quantum gravity endows each event in spacetime with a finite area, but zero volume. It
is this area measure that we compute to obtain a natural estimate for f(xi, na).

The desirable, but intriguing feature of this result is that a vector field na = ∇aσ has survived in the
final expression. At any given event (to which the coincidence limit has been taken), this vector field
can point in all directions, because the geodesics emanating from that event can point in all directions.
Therefore, the function f(xi, na) depends on the choice of the vector field na at a given event. This is,
again, very reminiscent of the distribution function f(xi, pj) for a bunch of relativistic particles, which
gives the number of particles at an event xi with momentum pj . As I have emphasized earlier, the
coexistence of several particles, with different momenta, at a given event is the characteristic feature
of the description in physical kinetics. This assumes that one can consider a volume d3x that is small
enough to be treated as infinitesimal, but large enough to contain several particles. In the same spirit,
we should think of f(xi, na) as the number of atoms of spacetime, or less figuratively, the number
of microscopic degrees of freedom, at an event xi with an extra attribute na, which is analogous to the
momentum that appears in the distribution function in physical kinetics. (Incidentally, a field redefinition
gab → gab − (L2

0/6)Rab in gab∇aσ∇bσ will lead to Equation (51); similar field redefinitions have been
used (see, e.g., [73]) in quantum gravity, but the connection with our approach is unclear).

It is also easy to see how null surfaces and null vectors are singled out in this approach. This is
because the coincidence limit P ′ → P in the Euclidean sector (with the event P taken to be the
origin) corresponds to approaching the null horizon in the Minkowski sector. In all calculations, we
will eventually take the limit σ2 → 0 in the Euclidean sector.

However, this limit, σ2 → 0, will translate into a null surface in the Minkowski spacetime. (The
local Rindler observers who live on the hyperboloid r2 − t2 = σ2 see the null cone r2 − t2 = 0 as the
horizon. In the Euclidean sector, the hyperboloid becomes the sphere r2 + t2E = σ2

E , and approaching
the Euclidean origin, σE → 0, translates to approaching the light cone in the Minkowski space.) The
normal vector ni = ∇iσ (which occurs in the q-metric and all of the resulting constructs) will pick out
the null vector, which is the normal to the null surface. More generally, σ2(x, x′)→ 0 selects out events
that are connected by a null geodesic, and hence, na will correspond to a null vector in the Minkowski
spacetime.

This is how a null vector field ni is introduced in the description from a microscopic point of view.
It is also understandable that we should extremize the expressions with respect to this variable,

which is, in some sense, the relic from quantum gravity. In fact, the extremum condition is equivalent
to demanding that Qg should not depend on this arbitrary vector field na, which is another way of
interpreting the variational principle.

Let us complete the analysis by connecting up with the macroscopic limit.
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The contribution to the gravitational heat in any volume is obtained by integrating f(xi, nj) over
the volume. Therefore, the expression for the heating rate, in dimensionless form (corresponding to
Equation (37)), is given by:

L2
P

dQg

dλ
=

∫ √
γd2x

L2
P

f(xi, nj) =

∫ √
γd2x

L2
P

[
1− 1

6
L2

0(Rabn
anb)

]
(52)

which gives the the correct expression in Equation (37), with the crucial minus sign, plus a constant
if we set L2

0 = (3/4π)L2
P . (If we had used, say, µLP , rather than LP in Equation (52) to obtain the

dimensionless result here (and retained LP in Equation (37)), the constant term will become µ−4, and
we will get L2

0 = (3/4π)µ4L2
P ; we choose µ = 1 to get the unit degree of freedom as the constant term).

Thus, the consistency of the macroscopic and microscopic descriptions also allows us to determine the
value of the zero point length in terms of LP (which we know observationally from the Newtonian limit).

Therefore, one can indeed interpret the gravitational heat density from the area measure of the
renormalized spacetime.

While the second term gives what we want for the variational principle, the first term is important for
two reasons:

• It tells us that there is a zero-point contribution to the degrees of freedom in spacetime, which, in
dimensionless form, is just unity. Therefore, it makes sense to ascribe A/L2

P degrees of freedom
to an area A, which is consistent with what we saw in the macroscopic description.
• The result tells us that a two sphere of radius LP has 4πL2

P/L
2
P = 4π degrees of freedom.

This was the crucial input that was used in a previous work to determine the numerical
value of the cosmological constant for our universe. Thus, the microscopic description does
allow us to determine [20,21] the value of the cosmological constant, which appeared as an
integration constant.

Let me elaborate a bit on the last point, since it can provide a solution to what is usually considered
the most challenging problem of theoretical physics today.

Observations indicate that our universe is characterized by three distinct phases: (i) an inflationary
phase with approximately constant density ρinf ; (ii) a phase dominated by radiation and matter, with
ρ = ρeq[x

−4 + x−3], where x(t) ≡ a(t)/aeq, the ρeq is a (second) constant and aeq is the epoch at
which the matter and radiation densities were equal; and (iii) an accelerated phase of expansion at late
times driven by the energy density ρΛ of the cosmological constant. Values of these three constants
[ρinf , ρeq, ρΛ] will completely specify the dynamics of our universe. Standard high energy physics can,
in principle, determine ρinf and ρeq, but we need a new principle to fix the value of ρΛ, which is related
to the integration constant that appears in our approach to field equations.

It turns out that such a universe with these three phases has a new conserved quantity, viz. the
number N of length scales, which cross the Hubble radius during any of these phases [20,21]. Any
physical principle that determines the value of N during the radiation-matter dominated phase, say,
will determine ρΛ in terms of [ρinf , ρeq]. The emergent paradigm shows that the value of this conserved
quantityN can be fixed at the Planck scale as the degrees of freedom in a two-sphere of radius LP , giving
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N = 4πL2
P/L

2
P = 4π. This, in turn, leads to the remarkable prediction relating the three

densities [20,21]:

ρΛ ≈
4

27

ρ
3/2
inf

ρ
1/2
eq

exp(−36π2) (53)

From cosmological observations, we find that ρ1/4
eq = (0.86 ± 0.09) eV; if we take the range of the

inflationary energy scale as ρ1/4
inf = (1.084−1.241)×1015 GeV, we get ρΛL

4
P = (1.204−1.500)×10−123,

which is consistent with observations!
This novel approach for solving the cosmological constant problem provides a unified view of cosmic

evolution, connecting all three phases through Equation (53); this is to be contrasted with standard
cosmology in which the three phases are put together in an unrelated, ad hoc manner.

Further, this approach to the cosmological constant problem makes a falsifiable prediction, unlike
any other approach I know of. From the observed values of ρΛ and ρeq, we can constrain the energy
scale of inflation to a very narrow band, to within a factor of about five, if we consider the ambiguities
in re-heating. If future observations show that inflation took place at energy scales outside the band of
(1− 5)× 1015 GeV, this model for explaining the value of cosmological constant is ruled out.

8. Discussion and Outlook

The paradigm described here has two logically distinct parts. The first part (Sections 1–4) is
mathematically rigorous and paints an alternative picture about the nature of gravity. It is based on
the desire to have a strong physical principle to describe the dynamics of gravity, viz. that the field
equations should be invariant under the shift T ab → T ab + (constant) δab . This principle is powerful
enough to rule out the metric as a dynamical variable and suggests that any variational principle that we
use should depend on the matter sector through the combination T ab `a`

b where `a is a null vector. This
combination is interpreted by the local Rindler observers as the heat density contributed to a null surface
by the matter crossing it. This, in turn, suggests looking for a corresponding heat densityHg contributed
by gravity, such that extremizing the total heat density will lead to the relevant field equations. As we
saw, it is indeed possible to construct such a thermodynamic variational principle not only for general
relativity, but also for all Lanczos–Lovelock models. The construction is based on the tensor P ab

cd , which
determines the entropy of horizons in the appropriate theory. Thus, one has a completely self-consistent
thermodynamic variational principle for a large class of gravitational theories.

This approach also suggests that the standard geometrical variables must have a thermodynamic
interpretation, and we should be able to recast the field equations themselves into a thermodynamic
language. We illustrated these features in Section 4. One finds that the time evolution of the spacetime
metric is driven by the difference (Nsur − Nbulk) between the appropriately-defined surface and bulk
degrees of freedom. Static spacetimes obey holographic equipartition in which Nsur = Nbulk, thereby
leading to the equality of the number of degrees of freedom in the surface and bulk. All of these ideas
work both on a spacelike surface and on a null surface. In the case of the latter, the field equations can
also be re-written as a Navier–Stokes equation, which is probably the most direct connection between
gravity and fluid dynamics. Further, just as in the case of normal matter, the equipartition condition
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allows us to identify the number density of microscopic degrees of freedom. We found that there are
A/L2

P degrees of freedom, which can be associated with an area A.
The second part of the review (Sections 5 and 6) takes this analysis one level deeper. The challenge

is to obtain the expression for Hg from more fundamental considerations. We find that if we switch
to the description of the differential geometry in terms of the geodesic interval σ2(x, x′) rather than the
metric, then the combinationRabn

anb where na = ∇aσ occurs rather ubiquitously in several geometrical
expressions. The most primitive of these are the volume (

√
gd4x) and area measures (

√
hd3x) related

to an equi-geodesic surface. In classical differential geometry, these measures
√
g and

√
h vanish when

the equi-geodesic surface shrinks to a point. Therefore, even though the expressions for
√
g and

√
h

contain the combination Rabn
anb, it does not contribute in the appropriate limit and prevents us from

‘associating’ an area or volume with an event.
This is, of course, just an indication that the degrees of freedom of spacetime will arise only when we

introduce a quantum of area L2
P . There is a fair amount of evidence that suggests that one of the effects

of quantum gravity is to introduce a zero-point length L0 in the spacetime, by modifying σ2 → σ2 +L2
0.

When this idea is developed further, in terms of a renormalized spacetime metric, which we called
the q-metric, something remarkable happens. The volume measure corresponding to the renormalized
metric still vanishes when the equi-geodesic surface collapses to a point; but the area measure remains
finite and contains the correct expression for the heat density when we take L2

0 = (3/4π)L2
P . Thus, this

approach allows us to count the number density of atoms of spacetime, and, by comparing the result with
the macroscopic theory, determines the value of L0. We also have a fundamental reason as to why the
area measures are more relevant than the volume measures, a feature that has been repeatedly noticed in
the thermodynamics of horizons.

The description at this layer is more speculative than in the previous part, but, of course, the rewards
are also significantly higher. One can compare this layer of description with the kinetic theory of
gases, which recognizes the existence of atoms, but yet, works at scales where a continuum description
is possible.

The central quantity in such a description, in the case of a gas, will be the distribution function
f(xi, pj), which will give the number of atoms of gas at an event xi with momentum pj . The
corresponding quantity for the spacetime is a function f(xi, nj) where nj = ∇jσ is the tangent vector
to the null geodesic at the event xi. Since several null geodesics can emanate from a given event,
this is analogous to the distribution function for a gas, which describes several particles with different
momenta coexisting at a single event. In neither case can the spacetime event be truly infinitesimal, and
one assumes the existence of some intermediate scales, so that a sufficiently large number of atoms (of
either gas or spacetime) can be collectively described by a distribution function. In the case of normal
matter, one can think of f(xi, pj) as counting the number of (i) atoms, or (ii) microscopic degrees of
freedom, or (iii) microstates available to the discrete entities, since they all differ only by a numerical
factor. In the case of spacetime, it seems appropriate to think of f(xi, nj) as counting the number of
microstates of geometry at xi with an internal degree of freedom described (at some suitable limit) by a
null vector nj (the broad picture is somewhat reminiscent of Wheeler’s spacetime foam idea [74], but it
is difficult to make a connection in general with only macroscopic inputs; the few computations based
on spacetime foam (e.g., [75]) that exist are model dependent).
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There are several open questions that this description raises, and their investigation will prove to be
fruitful in taking the ideas further.

The most crucial question (which has not been tackled so far in the emergent gravity paradigm) is
the role of normal matter, which has been introduced through a conserved energy momentum tensor
T ab . While the macroscopic physics did provide an interpretation of T ab `a`

b, which we used to develop
the ideas further, this term lacks a microscopic description at present. In fact, it is rather ironic that, in
our approach, we get the gravitational sector as a relic from quantum gravity, but have no quantum or
semi-classical description of matter! An analogy with a gaseous system is the following: think of a gas
described by a distribution function f(x,p) giving the number density of atoms. If the gas is confined to
a box with a piston, one could compute the pressure exerted on the piston, as well as fluctuations in the
pressure using f(x,v), recognizing the existence of atoms in the gas. Even though both the piston and
the gas are made of atoms and interact with each other, we are taking into account the discrete nature of
the gas, but not of the piston. The situation in which we recognize the discrete nature of spacetime, but
borrow Tab from classical theory, is roughly analogous.)

This is one issue in which the thermodynamic variational principle lags behind the usual action
principle; in the latter, one has a uniform description in terms of the sum of the actions, Agrav + Amatt,
and the extremum principle for the action is sanctioned by the quantum theory. The thermodynamic
variational principles for normal systems, for, e.g., the one for entropy S(qA), however, do not come
from any path integral amplitude, but instead from the fact that the probability for a configuration is
proportional to expS(qA). This would suggest that the gravitational sector of the variational principle
should have a similar probabilistic interpretation.

If we interpret f(xi, nj) as related to number of microscopic states available to quantum geometry,
then in the suitable limit, one can introduce a probability P (xi, na) for na at each event xi and the
partition function:

eS(xi) ∝
∫
DniP (xi, na) exp[µL4

PTabn
anb] (54)

where µ is a numerical factor of order unity. If we take:

P (xi, na) ∝ exp[µf(xi, na)] ∝ exp

(
−µL

2
P

8π
Rabn

anb
)

(55)

then the steepest-descent evaluation of Equation (54) will pick out the geometry determined by Einstein’s
equation with an arbitrary cosmological constant (further, the choice µ = 1/4 will allow P to be
interpreted as the number of microstates). More simply, one can think of P (xi, na) to be such that it
gives the correlator: 〈nanb〉 ≈ (4π/µL2

P )R−1
ab which facilitates writing the field equations in the form:

2µL4
P 〈Tabnanb〉 ≈ 2µL4

P 〈Tab〉〈nanb〉 = 1 (56)

where 〈· · · 〉 now indicates both expectation values for the quantum operator Tab, as well as a probabilistic
averaging of nanb.

Equation (56) has a clear Machian flavor. We cannot set 〈Tab〉 = 0 everywhere and study the
resulting spacetime, since it will lead to 0 = 1! Matter and geometry must emerge and co-exist together,
suggesting a new perspective on cosmology.
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If Equation (54) could be obtained from a systematic approach, we will have a nice way of describing
the effect of the source on the geometry.

This will also throw light on the avoidance of classical singularities in quantum gravity, which is
definitely indicated in any spacetime with a zero-point length.

In all such approaches, one would consider f(xi, na) as a fundamental (pre-geometric) object; from
this point of view, it would be interesting to study the evolution equation for f(xi, na) in terms of, say,
nj∇jf(xi, na).

The choice of
√
h as a measure of the density of the atoms of spacetime seems reasonable, but one

cannot ignore the fact that many other geometrical variables in the renormalized spacetime have [60]
finite limits, containing the combination Rabn

anb, which is, in fact, rather ubiquitous. We have made the
most basic choice, but it would be nice if one could explore other possibilities, as well. One possibility,
for example, is the following: We know that in the local Rindler frame, A⊥/4 is interpreted as entropy.
We can compute the corrections to A⊥ due to the curvature in the Euclidean sector, by computing the
corresponding quantity over a small circle in the TE, X plane (this is not quite an equi-geodesic surface,
as we have defined it, but a cross-section of it on the TE, X plane; however, the idea still works).
Classically we find that the correction does have the factor [1 − (σ2/6)(Rabn

anb)] where na is now
confined to the TE, X plane, which, of course, does not contribute in the σ → 0 limit. Working out the
same with the q-metric (now with gab corresponding to a Riemann normal coordinate system boosted
to a local Rindler frame), we will get the correct result. Therefore, one can also interpret the entropy
density (Rabn

anb) as corrections to A⊥/4 in flat spacetime. One can also do a similar exercise [60] with
the integral of the extrinsic curvature K/8π over a stretched horizon in local Rindler frame, which we
know gives its heat content κA⊥/8π in flat spacetime, but in this case, one needs to make some ad hoc
choices for the numerical factors to get the result.

Such attempts, viz. interpreting our extra terms as curvature corrections to the standard expressions for
entropy (which works only after adding the zero-point length), are rather unsatisfactory as first-principles
approaches.

There is another natural geometrical quantity that contains (Rabn
anb). The expression for f(xi, na)

comes from the term in square brackets in Equation (50) which, in turn and rather surprisingly, arises
from the ratio of Van Vleck determinants in Equation (45), which has the leading order behavior:

∆

∆S

= f(xi, na) = 1− 1

6
L2

0Rabn
anb (57)

so one could have used this as an alternative definition for f(xi, na). This might be better for the
probabilistic interpretation of f in Equation (55).

Finally, it will be interesting to ask how these ideas generalize to Lanczos–Lovelock models (for
some related ideas, see [76]). The renormalization of a Lanczos–Lovelock theory will, of course, lead to
a different expression for qab, the corresponding S(σ2) and, consequently, a different expression for

√
h.

However, for consistency, we know that the final f(xi, na) must be the same with Rab replaced by Rab.
It will be interesting to explore whether these notions work out for Lanczos–Lovelock models, as well.
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