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Abstract: We extend Onsager’s minimum dissipation principle to stationary states that are
only subject to local equilibrium constraints, even when the transport coefficients depend
on the thermodynamic forces. Crucial to this generalization is a decomposition of the
thermodynamic forces into those that are held fixed by the boundary conditions and the
subspace that is orthogonal with respect to the metric defined by the transport coefficients.
We are then able to apply Onsager and Machlup’s proof to the second set of forces. As
an example, we consider two-dimensional nonlinear diffusion coupled to two reservoirs at
different temperatures. Our extension differs from that of Bertini et al. in that we assume
microscopic irreversibility, and we allow a nonlinear dependence of the fluxes on the forces.
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1. Introduction

Equilibrium statistical thermodynamics is able to estimate the macroscopic quantities and their
fluctuations without solving the equation of motion. However, an analysis of the dynamical properties
of the systems is essential if we are interested in determining the macroscopic behavior of the systems
relaxing to non-equilibrium steady states or in obtaining the probability distributions of fluctuations. In
such cases, the Gibbs distribution has to be replaced by a suitable distribution of fluctuations valid for
the microscopic dynamics. This theory should be based on the extension of the Boltzmann–Einstein
equilibrium fluctuation theory combined with dynamics. One example of is the macroscopic fluctuation
theory of [1]. This theory has been used for studying some microscopic models, and it leads to
various interesting predictions [2–5]. In this paper, they develop a theory for non-equilibrium steady
states mainly based on the Boltzmann–Einstein theory. Crucial in our approach is the decomposition
of the thermodynamic forces that are held fixed by the boundary conditions (fixed thermodynamic
forces) into those that have no external interactions (free thermodynamic forces). We shall show that,
without explicit knowledge of the entire invariant distribution function for the microscopic dynamics,
the Onsager–Machlup functional, restricted only to the free thermodynamic forces, approximates the
probability of a particular relaxation to a stationary state. We also provide an estimation of the error.

The Boltzmann–Einstein theory received a rigorous mathematical formulation in classical equilibrium
statistical mechanics via the so-called large deviation theory (LDT) [6]. The LDT has also been applied
to hydrodynamic evolutions of stochastic interacting particle systems [7] and extended to the nonlinear
hydrodynamic regime [8]. A general theory of large deviations for irreversible processes, i.e., when the
detailed balance does not hold, has been successively formulated in 2002 by Bertini et al. [9–11]. Several
examples of LDT are provided by thermodynamic systems driven towards non-equilibrium steady states
by the boundary conditions. This is the case, for example, of a fluid in contact within two thermal
reservoirs where a flow of matter, or heat, through the system is established. Bertini et al. showed that the
spontaneous fluctuations of the process are described by the time reversed dynamics [9]. In [9] it is shown
that the violation of the Onsager–Machlup symmetry observed, for example, in stochastically-perturbed
reversible electronic devices [12] is also connected to the time-reversed dynamics.

When the thermodynamic forces, indicated with Xµ, are nonzero, entropy S is produced according
to the balance equation. We use the same notations as I. Prigogine in [13,14]).

dS = deS + dIS (1)

with deS denoting the flow of entropy and dIS being the contribution due to changes inside the system,
respectively. Note that dIS = 0 for reversible processes and, for the second law of thermodynamics,
dIS > 0 for irreversible processes. Let us consider now a system characterized by n degrees of
variables A1, A2, · · ·An. The (local) equilibrium values are A0

1, A
0
2, · · ·A0

n. Denoting by αµ = Aµ−A0
µ

(i = 1 · · ·n) the n deviations of the thermodynamic quantities from their equilibrium value (fluctuations),
Prigogine proposed that the probability distribution of finding a state in which the values αµ lie between
αµ and αµ + dαµ is given, up to a normalization constant, by [13,14]:

F ∝ exp
(
−∆IS

kB

)
(2)
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with kB denoting Boltzmann’s constant and ∆IS a finite variation of the entropy due to changes inside
the system. The negative sign in Equation (2) is due to the fact that, during the processes, −∆IS ≤ 0.
Indeed, if −∆IS were positive, the transformation αi → α′i would be a spontaneous irreversible
change and, thus, be incompatible with the assumption that the initial state is a (local) equilibrium
state [13,14]. The Prigogine theory generalizes the Boltzmann–Einstein theory [15,16], which applies
only to equilibrium thermodynamic fluctuations or to adiabatic transformations [13,14,17,18]. The
thermodynamic forces, Xµ, and the conjugate fluxes, Jµ, are related to thermodynamic fluctuations
by [19]:

Xµ =
∂∆IS

∂αµ
; Jµ = α̇µ (3)

where, for shortness, the "dot" over the variables stands for the total time derivative (d/dt).
An equilibrium state is stable if a perturbation in the densities αµ leads to a restoring force Xµ.

The restoring force creates a current Jµ = α̇µ, which cancels the perturbation. Near equilibrium,
Onsager [20] has extended a theorem of Lord Rayleigh [21] that this process is completely characterized
by the minimization of a dissipation functional with respect to a variation of the currents. In this note,
we will extend Onsager and Machlup’s stochastic derivation of this result [22] to more general processes
in which the system is connected to multiple reservoirs at which certain intensive variables are held
fixed. These reservoirs prevent the system from arriving at equilibrium, as there will be a flux of the
corresponding extensive quantities through the system from one reservoir to another. However the
system will nonetheless, under certain conditions, arrive at a stationary state that is locally in equilibrium,
and we will extend Onsager and Machlup’s argument to demonstrate that this relaxation process is
characterized by the minimization of only those parts of the dissipation functional corresponding to
an orthogonal subset of the forces to the residual current. To make this story quantitative, one needs
to know the forces Xµ as a function of the extensive variables αµ and the currents Jµ as a function of
the forces Xµ. While the system is no longer in equilibrium, we will assume that locally, it is still in
equilibrium, and so, one may locally define the total entropy density s. In general, the thermodynamic
fluxes are functions of the forces. At the thermodynamical equilibrium, the thermodynamic forces are
zero, and the fluxes vanish, as well. The transport equations (i.e., the flux-force relation) may be brought
into the form:

Jµ = gµν(X)Xν (4)

where Xµ denotes the thermodynamic forces per unit volume and the elements of the matrix gµν are
identified with the transport coefficients. In Equation (4), as well as in the sequel, Einstein’s summation
convention on the repeated indexes is implicitly understood. Given the function gµν and a configuration
αµ, one may calculate α̇µ and, so, determine the entire future evolution of the system. When the
forces are small, corresponding to small deviations from equilibrium, one may approximate gµν to be
independent of Xµ, corresponding to fluxes Jµ, which are linear in Xµ. We refer to this region as the
linear Onsager region. In this region, Onsager noted that the phenomenological linear relation (4), which
gives α̇µ as a function of αµ, maximizes the functional:

M =

∫
Ω

ṠV dx−
1

2

∫
Ω

xµα̇µdx (5)
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varied with respect to α̇µ everywhere except for the boundaries. Here, SV and dx denote the total entropy
per unit volume and a spatial volume element, respectively. The integration is over the entire space Ω

occupied by the system. In Equation (5) we have introduced the thermodynamic forces per unit volume

xµ ≡ ∂∆ISV
∂αµ

(6)

In a dynamical context, one may ask what is the most probable trajectory followed by the system in
the spontaneous emergence of a fluctuation or during the relaxation towards equilibrium. Under the
assumption of time reversibility and by using a stochastic argument, Onsager and Machlup demonstrate
that the most probable trajectory is obtained by minimizing the quantity M in the situation of a linear
macroscopic equation (i.e., very close to equilibrium) [22,23]. One may now extend the question by
asking, for example, what is the most probable trajectory followed by the system in the relaxation to the
boundary-driven stationary non-equilibrium states. In their paper, Bertini et al. formulated a dynamical
fluctuation theory for non-equilibrium steady states, which is based on the time-reversed dynamics [9].

In the present work, we shall modify the Onsager–Machlup theory for stationary non-equilibrium
states to include cases with a nonlinear macroscopic equation. We shall generalize the minimum
dissipation principle to relaxation processes to steady states that are only locally in equilibrium. The
hypothesis of local equilibrium guarantees the existence of the local entropy functional, as well as the
reversibility of the microscopic physics. However, we do not assume that the transport coefficient gµν’s
are independent of the forces Xµ, and so, we are not restricted to the linear Onsager region. Our systems
will be prevented from reaching equilibrium by being coupled to several reservoirs held at distinct values
of the intensive variables, so that the corresponding forces will be non-vanishing in our system. These
forces will yield fluxes via (4), which will transport some of the quantities αµ between the reservoirs.
The steady state satisfies the relation [13,14]:

JµẊ
µ = α̇µẊ

µ = 0 (7)

Hence, in a stationary state, some of the currents J̃µ = ˙̃αµ ≡ β̇µ will vanish, those orthogonal to the
non-vanishing forces using the metric gµν evaluated at the stationary value of the forces. We shall show
that if only this second class of quantities α̃µ ≡ βµ is perturbed from their stationary state, then their
relaxation will extremize M varied over only this second class of currents. Note that the nonlinear
dynamics is nontrivial, because the subspace of the currents that is varied is the orthogonal compliment
of the forces between the reservoirs, and this compliment depends on the full force-dependent metric gµν .
The extension of the minimum dissipation principle to the nonlinear regime is part of the generalized
thermodynamical program reviewed in [24]. In particular, a geometric analogue, known as the minimum
rate of dissipation principle, was introduced in [25,26]. A different generalization of the minimum
dissipation principle to non-equilibrium steady states has appeared in [27]. They continue to work in
the linear region, but they relax the local equilibrium condition, so that the microscopic dynamics is
not necessarily reversible. This leads to a correction to the flux terms in the quantity M , subtracting
out the irreversible part. Instead of basing their proof on a stochastic process, which would be difficult
away from local equilibrium, they use the Hamilton–Jacobi equations of [9,28], which describe the most
probable trajectory by which a fluctuation is created.
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In Section 4, we show that even in the nonlinear case, the minimum dissipation principle determines
the evolution of the quantities that relax to equilibrium, and then, we adapt the Onsager–Machlup
derivation of the minimum dissipation principle to the nonlinear case. To avoid misunderstandings,
the minimum dissipation principle herein expressed should be understood as an approximate variational
principle in nonlinear transport for systems out of equilibrium and not as a variational principle, which
is rigorously satisfied for systems out of the linear (Onsager) region. A discussion about an estimation
of the error can be found in Subsection 4.2. Then, in Section 5, an example is provided, which is
a nonlinear version of that of [9]. We shall consider a two-dimensional, boundary-driven, nonlinear
zero-range diffusion in which there are only reservoirs on two opposite faces. We shall see that the
minimum dissipation principle is obeyed for diffusion along a direction, which depends on the full
nonlinear metric.

1.1. Equilibrium and Boltzmann’s Principle

Consider a closed system that is macroscopically characterized by a vector of extrinsic quantities αµ.
Motivated by Boltzmann’s kinetic theory of gases [15], Planck has defined the corresponding entropy
S(α) to be, up to a constant shift, proportional to the logarithm of the number of microstates in the
microcanonical ensemble, which yield the macrostate described by αµ [29]. In a classical system, the
number of microstates is infinite, but he suggests that they be coarse grained into discrete quantities,
which can then be counted. This has the advantage that it allows him to accurately describe black body
radiation, but also that the discretization procedure allows him to define a notion of probability (and in
particular, a measure) in an apparently deterministic system. More precisely, he recasts Boltzmann’s
principle as the ergodicity assumption that, for some choice of discretization, the probability of each
allowed microstate will be equal.

In a very large system, to which one may apply the thermodynamic approximation, there will be a
small region in the space of values of α, peaked about some value α(0)

µ , for which the entropy is much
larger than even the integral over the rest of α-space. As α(0)

µ is a maximum of the entropy function,
it satisfies:

∂∆S(α)

∂αµ
|
α
(0)
µ

= 0. (8)

Boltzmann’s principle then states that, given no other information about the system, in the
thermodynamic limit of a large number of microstates, the system will certainly be found in the
macrostate α(0)

µ , which is referred to as the equilibrium state.

1.2. Relaxation in the Onsager Region

If, on the other hand, one begins with an initial condition α
(1)
µ 6= α

(0)
µ , at time t = 0, then the

probability that the state is in a given state α′ at time t is given by a conditional probability, in contrast
to the absolute probability in equilibrium. However, due to the ergodicity assumption, if one waits an
infinite amount of time, then the information about the original state α(1)

µ is erased, and so again, the
measured state will be the equilibrium state α(0)

µ with probability one. If the conditional probabilities can
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be calculated, then one can determine not only the final state, but also the full time-dependent trajectory
followed by the macrostate from α

(1)
µ to α(0)

µ .
How does such a calculation proceed? The tendency of the system to seek equilibrium is measured

by the thermodynamic forces Xµ:

Xµ(α) =
∂∆IS(α)

∂αµ
|
α
(1)
µ
6= 0. (9)

where we have introduced the entropy production ∆IS and the fact that at αµ = α
(1)
µ , the system is not at

the local equilibrium state. The fluxes (of matter, heat, electricity) are measured by the time derivatives
of the α’s: Jµ(α) = α̇µ. As αµ in general is a vector, so is Xµ(α). α̇µ depends on Xµ such that when
Xµ vanishes, so does α̇µ = Jµ. The essential physical assumption about the irreversible processes is that
the fluxes depend on the forces through the transport coefficients gµν(X(α), α):

Jµ(α) =
dαµ
dt

= gµν(X(α), α)Xν(α). (10)

where, here and in the sequel, the summation convention on the repeated indices is understood. The
conditional probabilities can be used to calculate the transport coefficients, which then reduce the
relaxation of the system to the solution of the system of coupled, nonlinear, first order differential
Equations (10). The entropy production is a function of the α’s: ∆IS = ∆IS(α1, · · · , αn). Hence,

d∆IS

dt
=
∂∆IS

∂αµ

dαµ
dt

= XµJµ. (11)

In general, it is difficult or impossible to determine these conditional probabilities, and so, this approach
is of limited use. However, near thermodynamic equilibrium, the entropy production is near its extreme
value, and it can be expanded about α(0)

µ :

∆IS(α) ∼ ∆IS0 − sµναµαν ; Xµ(α) = −2sµναν (12)

where sµν is a constant matrix. In this case, using the fact that Xµ(α(0)) = 0, one may approximate the
current to be:

dαµ
dt

= gµν(X(α), α)Xν(α) ∼ −2gµν(0, α
(0))sνκακ. (13)

This is a system of linear differential equations depending on two constant matrices.

1.3. Onsager Machlup Principle

In [20], Onsager has generalized a theorem of Lord Rayleigh [21], that relaxation to equilibrium can
be derived from a variational principle. They found that Equation (10) can be derived as an extremum of
the quantity with respect to the currents Jµ:

M = XµJµ −
1

2
gµνJµJν (14)

where gµν is the inverse matrix of the transport coefficients. We get

0 =
∂M

∂Jµ
= Xµ − gµνJν . (15)
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More than 20 years later, an interpretation of this formula, near thermodynamic equilibrium, was
demonstrated. In [22], Onsager and Machlup provided a stochastic demonstration that, close to
equilibrium, the probability f of relaxing from α1 to α0 along a path α(t) is proportional to the
exponential of M , or more precisely:

f ∝ exp
(

1

2kB

∫
dt (XµJµ −

1

2
gµνJµJν −

1

2
gµνX

µXν)

)
. (16)

Thus, just as Boltzmann’s principle provides a formula for the absolute probability of realizing a certain
microstate at a fixed time, Onsager and Machlup found a formula for the probability of following a
succession of events during relaxation to equilibrium.

How did Onsager and Machlup demonstrate that (16) indeed provides the probability of any given
sequence of configurations? Their demonstration rested upon three assumptions. First, the sequence of
events is Markovian. This means that given some set of data at time t0, which in [22] is the vector α,
but the entire approach can be generalized to include their time derivatives in systems with inertia [23],
the conditional probability of a configuration at any future time t1 is independent of any knowledge of
the state at times before t0. Thus, while the theory remains nondeterministic because the configuration
at t0 does not determine that at t1, nonetheless, it does not contain any hidden variables at t0 that might
affect t1. In this sense, the α provides a complete set of states. The Markovian property implies that
to determine the probability of a trajectory, one only needs the conditional probability of one state
given another.

The second assumption is that the entropy production function is quadratic, as in Equation (12). This
is only a technical assumption to allow a calculation of a path integral in closed form. Given a form of
the entropy that is not quadratic, perturbation theory could be applied to the path integral to yield a result
as an asymptotic series, as was already known at the time of Onsager and Machlup’s paper.

Finally, they assumed that each extrinsic variable is a sum of local, uncorrelated variables. As a
result, steps in the evolution of these variables, while random, will obey a Gaussian distribution in
the thermodynamic limit. This Gaussian distribution is evident in the fact that (16) is expressed as an
exponent of squares.

2. Relaxation to a Steady State

For more than half a century, there have been attempts to generalize Onsager and Machlup’s
variational principle to the process of relaxation not to equilibrium, but to a stationary state. A stationary
state is a state satisfying the condition JµδX

µ = 0 [13]. This equation is satisfied when, given n

independent thermodynamic forces Xµ (with µ = 1, · · · , n), some of them, say k of them with k < n,
are kept constant and the complementary fluxes vanish i.e., Jk+1 = · · · = Jn = 0 [13,18]. Glansdorff and
Prigogine have argued that relaxation to a stationary state is not described by an extremization problem
in [18]. Indeed, in [30], Šilhavý states that in a stationary state, the thermodynamic quantities themselves
are ambiguous.

The basic problem is that the microscopic state is no longer simply an unknown element of the
microcanonical ensemble. Information about the microstate is constantly destroyed by the interaction
with the outside of the system. Thus, instead of being characterized only by the internal degrees of
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freedom, the evolution of a microscopic state also depends on external degrees of freedom. Furthermore,
some of the information about the internal degrees of freedom ceases to be measurable on the inside, as
they are transferred to the outside, where no measurements occur. Thus, the starting point of this analysis,
a definition of the entropy as a sum of the number of microstates, is already ill-defined.

In this note, we will claim that nonetheless, a subset of the system’s information is approximately
determined by an extremization principle. We will provide a criterion that describes when this
approximation is reliable.

3. Example: A Partially-Ionized Plasma

Consider a closed system containing weakly-ionized hydrogen gas in a sealed container with perfectly
reflective walls. The system contains NH neutral hydrogen atoms, Ne = Ni free electrons and protons,
as well as a number of free photons, which we will call Nγ , making the crude approximation that the
energy of each photon is equal to the binding energy of an electron in hydrogen. Similarly, we will assert
that all of the bound electrons are in a 1s orbital. Collisions and photon absorption cause the hydrogen to
ionize, but also electrons and protons, and recombine into a hydrogen atom and a photon. This photon
is just at the right energy to ionize another hydrogen, although usually it needs to bounce off of the
perfectly reflecting walls a few times first.

The microstates correspond to the discretized positions and velocities of the various particles.
Summing over these positions, one can calculate the independent macroscopic variables NH , Ne and
Nγ . These are components of the vector α. Given some information, like the size of the system and the
total energy, one can in principle calculate the number of microstates corresponding to each value of α
and, so, determine the functional form of the entropy. Maximizing this entropy, one can find the state α0

that yields, for example, the ionization fraction of the hydrogen in equilibrium. It will be approximately
given by the Saha equation.

A short burst with a laser can ionize some atomic hydrogen, taking the system out of the old
equilibrium. A slight expansion of the cavity can remove this additional energy from the system. Now,
Ne will be higher than its equilibrium value, and Ni will be lower. One can understand the relaxation
of this excited state to the new equilibrium using the analysis of Onsager and Machlup described above.
The excess of free protons and free electrons corresponds to a nonvanishing gradient of the entropy
function, which is a thermodynamic force. This force causes a current, which, in this case, is just an
increase in NH at the expense of Ni. The total energy is conserved; this change occurs because there are
simply more states available with α at its equilibrium level α0 than at the excited level.

How can a nonequilibrium steady state be constructed in this example? Imagine that the laser is
permanently turned on, but that the plasma is allowed to transfer some kinetic energy to the walls of
the container. For simplicity, we will assume that these collisions are sufficiently elastic that they do
not affect the rates of ionization and recombination. As a result, the time derivative of the number of
photonsNγ will not be determined entirely by the thermodynamic forces; there will also be a contribution
from the external current. However, after waiting for a sufficiently long time, the plasma will heat to a
temperature at which α̇ = 0.
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What can Onsager’s formalism tell us about this situation? Certainly, it cannot tell us the photon
current ṄH , which has an external contribution. However, the numbers NH and Ne of hydrogen atoms
and free electrons are determined entirely by the internal physics. This consists of the same equations as
in the case of a closed system, as the recombination and ionization processes are unaffected. All that has
changed is the number of photons Nγ . However, near the steady state, Nγ , lies close to a known value.

In particular, the number of classical states available at a given moment S(α) is still well defined.
These are no Hamiltonian eigenstates of a quantum theory that require an infinite amount of time to be
manifested; they are coarse-grained positions and velocities that exist instantaneously. The ergodicity
assumption means that the interactions, in this case recombination and ionization, will act so as to
increase this number of states S. After all, the rates of ionization and recombination are independent
of whether the photon arrived from an external source or was always there bouncing off of the walls.
Thus, not only the energy, but also the thermodynamic forces X and the transport coefficients are given
by the same formulas as in the case of relaxation to equilibrium.

The only step in the logical sequence that differs is then the current itself. The time derivative of Nγ

has an external contribution. However, the other currents are unaffected and, so, continue to be given by
Equation (10).

4. The Generalization

4.1. A Functional for the Internal Quantities

Now what happens if we perturb the system from a stationary state and try to follow Onsager and
Machlup’s stochastic derivation of the probabilities of various relaxation processes?
The first problem that arises is that in a stationary state, ∆SI is not extremized. By definition the time
derivatives α̇µ vanish at a stationary state. However this no longer implies that the forces vanish. We
can project the vector αµ into two vectors βµ and γµ. Here γµ represents the quantities which are subject
to external sources, and βµ, as in a closed system, are absolutely conserved. In the plasma example,
βµ contains Nh and Ne and γµ contains Nγ . It is not difficult to show that for any given configuration
αµ we can choose a basis of the γµ orthogonal to all of the βµ with respect to the transport coefficients
gµν . For systems subject to boundary conditions, it is convenient to write the dynamical equations
for fluctuations αµ by separating the contribution due to the thermodynamic forces held fixed by the
boundary conditions. As previously mentioned, at the non-equilibrium steady state, some of the forces
are kept constant [13,17,18]. We now isolate the contribution of the fluxes at the steady state (J (st.state)

µ )

Jµ = gµνX
ν = gµνX̄

ν + gµνX
ν(st.state) = gµνX̄

ν + J (st.state)
µ (17)

where J (st.state)
µ ≡ gµνX

ν(st.state) and X̄µ = ∂∆IS/∂αµ. If the boundary conditions are not subject to
fluctuations

Jµ ' α̇µ (18)

Hence, the dynamical equations for fluctuations reads

dαµ
dt

= gµν
∂∆IS

∂αν
+ J (st.state)

µ = gµν
∂∆IS

∂αν
+ gµκM

κ
ν Y

ν(st.state) (19)
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Here, Mµ
κY

κ(st.state) ≡ Xν(st.state) and Mµ
ν is a matrix, which may depend on the thermodynamic forces,

but not on the fluctuations αµ. Finally, Equation (19) tells us that the time evolution of fluctuations is
given by the sum of two contributions: the fluxes at the steady state and the terms due to fluctuations.
Due to approximation (18), Equation (19) should be considered as an ansatz.
At the steady state, the entropy production reads σ(st.state) = J

(st.state)
µ Xµ(st.state) =

gµκM
κ
ηM

η
ν Y

µ(st.state)Y ν(st.state). The greek indices µ, ν, κ, and so on run over 1, · · · , n. The vector
αµ may be projected into two fluctuating vectors βµ and γµ by introducing two matrices Aµν and Bµ

ν ,
which are orthogonal with respect to the metric defined by the transport coefficients. In particular, we
define

βµ ≡ Aνµαν ; γµ ≡ Bν
µαν (20)

Hence, fluctuations βµ and γµ are completely determined through the knowledge of the matrices Aµν
and Bµ

ν . The orthogonal conditions determine univocally these matrices. Indeed, matrix Mη
ν (linked to

J
(st.state)
µ ) determines univocally matrix Aµν that, in its turn, determines (univocally) matrix Bµ

ν according
to the following (orthogonal) conditions

AκµgκηM
η
ν = 0 and AκµgκηB

η
ν = 0 (21)

Observe that matrices Aµν and Bµ
ν are related to their inverse matrices through the relations

gµηAκηgκτA
τ
ν = AµκAκν = δµν and gµηBκ

η gκτB
τ
ν = BµκBκν = δµν (22)

with δµν denoting Kronecker’s delta and the metric tensor gµν is used for raising and/or lowering the
indexes. Note that from Equation (22) we get the useful relations

AκµgκηA
η
ν = gµν and Bκ

µgκηB
η
ν = gµν (23)

By taking into account Equations (20) and (23), the symmetry relation gµν = gνµ, and the identity

∂∆IS

∂αµ
= Aµν

∂∆IS

∂βν
+Bµ

ν

∂∆IS

∂γν
(24)

it is easily checked that in the basis βµ and γµ, the evolution equations (19) factorize

dβµ
dt

= gµν
∂∆IS

∂βν
;

dγµ
dt

= gµν
∂∆IS

∂γν
+Bν

µJ
(st.state)
ν (25)

As the evolution of γµ is affected by external forces, it cannot be determined even statistically by a
thermodynamic argument of the system itself [18]. The most naive approach would be to simply apply
Onsager’s formalism to βµ, ignoring the γµ. After all the evolution of βµ in a relaxation to a steady
state is described by equations which look like those describing the evolution of αµ in a relaxation to
equilibrium.
Recall that Onsager and Machlup’s derivation rested upon three pillars. The third, that the extrinsic
variables are sums of uncorrelated variables, is unaffected. The definitions of these variables do not
depend upon the external forces.
However there is one critical difference between the equations describing αµ and βµ. In the later case,
the entropy production ∆IS(βµ, γµ) is a function not just of βµ, but also of γµ. This is a problem for
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the first two pillars. The βµ are no longer a complete set, and so the first pillar, the Markovian property
featured in Onsager and Machlup’s derivation is lost. The γµ are hidden variables and they create a
systematic bias not only in the statistical fluctuations, but also in the mean evolution of the βµ. What
about the second pillar? The entropy still extremizes βµ, and in a stationary solution γµ is fixed to some
value γ0

µ. Setting γµ = γ0
µ, the action may still be expanded in βµ and it will be quadratic. However γ

will change during the relaxation process, and likely during the excitation away from the steady state.
Thus there will be corrections to the entropy which depend upon γµ − γ0

µ.
Both of these problems have the same cause. The evolution of γµ during the relaxation is unknown. It
depends not only on the internal physics, but also on the external source. As the entropy couples βµ
and γµ, this causes a finite error in an estimate of the trajectory of the βµ’s alone using Onsager and
Machlup’s functional.

4.2. Estimating the Error

Just how big is this error? When must it be considered? Of course, this depends on just how much γ
deviates from its stationary value γ0, which depends on a physical choice. We are interested in a system
that is excited from a steady state and then decays. In the case of our partially-ionized plasma subjected
to a constant laser, for example, the laser may be turned off for a moment, taking the system out of its
steady state. There will momentarily be some additional recombination, and the temperature will drop.
However, eventually, as less kinetic energy will be transferred to the walls, the system will relax to its
steady state.

In this case, the dependence on the unknown physics of the external photon injection is essential. The
perturbation from the steady state itself changes the photon number Nγ , which is γ in this example. It
is essential to know just how γ returns to γ0. This restoration depends strongly on the physics of the
photon injection into the system. It cannot, to any approximation, be described by the internal physics
of the system. Therefore, an application of the Onsager–Machlup to the evolution in this case appears
to be at best difficult, as the information from the functional needs to be supplemented by information
about the laser.

On the other hand, one can also consider a perturbation from a steady state in which one only
changes β, leaving γ = γ0. If γ continues to be equal to γ0 during the entire relaxation process, then
the Onsager–Machlup functional applied to β will function as well as in a relaxation to equilibrium.
Of course, γ will not be equal to γ0 throughout the relaxation, even if it is equal at the beginning
and the end. It is this transitory deviation of γ from γ0 that contributes an unavoidable error to the
Onsager–Machlup functional for the probability of a given relaxation to a steady state.

We can estimate the error by expanding the entropy to leading order about the steady state values of
β and γ, which for simplicity, we will set to β0 = γ0 = 0. The entropy production is:

∆IS = βaβ + γbβ + γcγ. (26)

Now, we will perturb β to β1. This will exert a force:

X =
∂∆IS

∂γ
= bβ1 + 2cγ. (27)
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The force vanishes when:
γ = −1

2
c−1bβ1. (28)

However, γ̇ is also affected by an external force, which compensates for this effect, and, so, generically,
can cause an appreciable shift in γ from the value in Equation (28). However, while this shift can
easily be smaller than or comparable to the value in (28) itself, without fine tuning, it will not be much
greater. Therefore, Equation (28) provides a rough upper limit on the γ, which can be expected during
the relaxation. This will be sufficient for our estimation.

Now, during the relaxation, γ will shift and so will the action for β itself. This back-reaction of γ
upon β is the obstruction to a variational principle describing the relaxation to a steady state. To estimate
it, we can simply insert Equation (28) into Equation (26):

∆IS = ∆IS
b + δ∆IS ; ∆IS

b = βaβ ; δ∆IS = βbc−1bβ. (29)

Here, ∆IS
b is the contribution that, using the stochastic derivation of [22], would lead to a probability

for each relaxation. The term δ∆IS is the correction due to the coupling with γ. The correction is
comparable to the unperturbed effect when ac ∼ b2. Recall that a and c are the diagonal transport
coefficients and b are the off-diagonal coefficients, relating β and γ. Therefore, this is a condition on
how close the transport coefficients are to a block diagonal form. Herefor, we have learned that:

The Onsager–Machlup functional, restricted to the quantities β, which have no external interactions,
approximates the probability of a particular relation to a stationary state up to corrections, which
are suppressed by the square of those transport coefficients that mix the quantities with and without
external interactions.

In light of the above, the minimum dissipation principle herein expressed should be understood as
an approximate variational principle in nonlinear transport for systems out of equilibrium. The main
advantage of this principle is that it may greatly simplify calculations. This turns out to be clear by
considering concrete cases, as we shall see in the example analyzed in the next section.

5. Example: Nonlinear Diffusion

As an example of the minimum dissipation principle at work, consider diffusion in an anisotropic box
extending from x = 0 to x = L in the x direction and in some small interval along the y direction.
On both boundaries of the x coordinate, couple the system to a reservoir. Let the temperature of the
reservoir on the right be A units hotter than that of the reservoir on the left. As a result, there will be
a flux of heat from right to left across our anisotropic medium. For simplicity, let A be much smaller
than either of the two temperatures; on the y boundaries an insulator. This configuration is depicted in
Figure 1.
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Figure 1. A rectangular anisotropic medium is placed between two reservoirs at different,
but similar temperatures. The other two walls are insulating. Heat flows between the two
reservoirs, establishing a temperature gradient in the x direction. The transport coefficients
are non-diagonal in the x− y basis, and so, there is also a gradient in the y direction. Due to
the nonlinearity of the flux-force relation in this example, the angle of the isothermal lines
depends on the difference between the temperatures of the reservoirs.

This two-dimensional heat conduction problem involves two thermodynamic forces, the gradients:

Xx =
∂

∂x

1

T
Xy =

∂

∂y

1

T
(30)

and two currents, which are the heat fluxes Jx and Jy in the x and y directions. Consider the asymmetric
nonlinear transport equations:

Jx = λxxT
2Xx Jy = λyxLT

3X2
x + λyyT

2Xy. (31)

Hence, the transport coefficients read:

gxx = λxxT
2, gxy = 0 gyx = λyxLT

3Xx, gyy = λyyT
2 (32)

Here, the nonlinearity comes from the off-diagonal λyx term, which creates a temperature flux along
the y direction as heat flows between the reservoirs. Let λyx be large, so that the nonlinear effects will not
be drown out at big T . As the temperature difference between the reservoirs is small with respect to the
temperature, there will be a stationary state when the temperature gradient in the x direction is constant:

Xx = − A

LT 2
. (33)

Now, the heat flux in the y direction is:

Jy =
A2λyx
LT

+ λyyT
2Xy. (34)
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As we are interested in boundary conditions in which no heat can escape from the boundaries in the y
directions, one may impose Jy = 0, and so:

Xy = − A2λyx
LT 3λyy

= − 1

T 2

∂T

∂y
(35)

and so, the temperature gradient along the y direction is:

∂T

∂y
=
A2λyx
LTλyy

. (36)

As there is no current along the y direction and as the current in the x direction is constant, the divergence
of the current vanishes, and so, this is a steady state. Explicitly, one finds:

∂T

∂t
= −∇ · J =

∂

∂x

(Aλxx
L

)
− ∂

∂y
0 = 0 (37)

While the forces in both the x and y directions are non-vanishing at the steady state, the force in
the direction:

ŷ = Ty − Aλyx
λyy

x (38)

is zero. The temperature in this direction is roughly constant. Notice, however, that unlike the linear
situation, the direction ŷ itself depends on the boundary conditions A. In this case, we can factorize
the problem into two one-dimensional problems, one in the x direction and one in the ŷ direction.
The ŷ problem is just that of Onsager and Machlup, but to the aforementioned effects that come from
interactions with the other system if one perturbs too far away from the stationary state. Therefore,
for sufficiently small perturbations of the ŷ profile, the one-dimensional relaxation obeys the minimum
dissipation principle. More precisely, the relaxation of a perturbation that depends only on ŷ extremizes
M varied with respect to temperature fluxes along ŷ. In this case, we were very fortunate, because the
two-dimensional problem is globally factorized into two one-dimensional problems. This is because the
integral curves of the ŷ vector form a linear subspace as ŷ is the same direction everywhere. In general,
the direction ŷ will depend on the x coordinate. In this case, one may still factorize the problem, but
the integral curves whose tangent vectors are ŷ will no longer be straight lines, as the ŷ direction will
be position dependent. Thus, this factorization only applies locally, but this is sufficient, as we have
assumed local equilibrium. Things become even more complicated above two dimensions, if the number
of directions along which one varies is at least equal to two. In this case, the vanishing fluxes define
a set of vectors at each point, but this set of vectors does not necessarily form the tangent space to
any foliation of our space, and so, if some integrability condition is not satisfied, the problem cannot
be globally factorized into a near-equilibrium problem and a constant problem. However, locally, this
factorization is always possible, and the principle of minimal dissipation follows.

6. Conclusions

We have generalized Onsager’s minimum dissipation principle to relaxations to steady states, which
are only locally in equilibrium. We have used Onsager and Machlup’s stochastic method to demonstrate
this generalization of the principle, but we were only able to demonstrate it for variations with respect to
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a subset of the variables for which fluxes are not driven by the boundary conditions. However, it appears
that the full reciprocal relations are consistent with the vanishing of variations with respect to all of the
fluxes. It should be noted that we have not determined quantitatively to which order in the size of the
variation the principle holds.

Our generalization differs from that of [27] in that we allow nonlinear flux-force relations, while they
allow microscopic irreversibility. It would be interesting to see if one may formulate a generalization
that incorporates both theories. This is impeded by the fact that our stochastic approach is difficult to
generalize to the irreversible case, while their Hamilton–Jacobi approach assumes linearity in a number
of places, such as the constancy of their diffusion matrices and their quadratic ansatz for the Lagrangian
density. The next step is to incorporate this principle into the geometrical thermodynamic field theory
of [24]. To do this, it would be useful to relate M to the length of the system’s trajectory in some space,
so that the minimum dissipation principle becomes the shortest path.
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