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Abstract: Mutualistic networks in nature are widespread and play a key role in
generating the diversity of life on Earth. They constitute an interdisciplinary field where
physicists, biologists and computer scientists work together. Plant-pollinator mutualisms in
particular form complex networks of interdependence between often hundreds of species.
Understanding the architecture of these networks is of paramount importance for assessing
the robustness of the corresponding communities to global change and management
strategies. Advances in this problem are currently limited mainly due to the lack of
methodological tools to deal with the intrinsic complexity of mutualisms, as well as the
scarcity and incompleteness of available empirical data. One way to uncover the structure
underlying complex networks is to employ information theoretical statistical inference
methods, such as the expectation maximization (EM) algorithm. In particular, such an
approach can be used to cluster the nodes of a network based on the similarity of their
node neighborhoods. Here, we show how to connect network theory with the classical
ecological niche theory for mutualistic plant-pollinator webs by using the EM algorithm.
We apply EM to classify the nodes of an extensive collection of mutualistic plant-pollinator
networks according to their connection similarity. We find that EM recovers largely the
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same clustering of the species as an alternative recently proposed method based on resource
overlap, where one considers each party as a consuming resource for the other party (plants
providing food to animals, while animals assist the reproduction of plants). Furthermore,
using the EM algorithm, we can obtain a sequence of successfully-refined classifications
that enables us to identify the fine-structure of the ecological network and understand better
the niche distribution both for plants and animals. This is an example of how information
theoretical methods help to systematize and unify work in ecology.

Keywords: mutualistic networks; expectation maximization algorithm; niche theory

1. Introduction

Mutualisms, i.e., interactions between two species in which both benefit from the association, have
been essential in the evolutionary diversification of life and are fundamental to preserve nature’s
biodiversity [1,2]. Without mutualism, the biosphere would be entirely different. For instance,
approximately 90% of flowering plants are pollinated by animals [3], mainly by pollinator insects. In this
mutualistic relationship, the pollinator obtains food (nectar), inadvertently picks up pollen and moves on
to the next flower, allowing plants to reproduce.

However, the study of mutualisms as a non-trivial biological phenomena is a recent development
in biology relative to the mainstream or Newtonian ecology [1], based on antagonistic interspecific
interactions (e.g., competition, predation). Antagonistic interactions have received much more attention
than mutualistic ones, because mutualistic interactions were initially viewed merely as insignificant
oddities that in no way challenge the Darwinian natural selection paradigm based on competition.
Still, even Darwin recognized that cooperative relationships might provide organisms with a competitive
advantage; however, it was assumed that such phenomena were relatively rare. For these reasons, single
trophic-level ecological communities have virtually been synonymous with the study of interspecific
competition [4,5] and approached via the Lotka–Volterra equations of competition [6,7], and similarly,
the dominant interspecific interaction in food webs involving different trophic levels is predator-prey [5].
However, during the past three decades, a dramatic change has occurred, and there has been an upsurge
of interest in mutualism among ecologists and, in particular, to the application of cooperative versions
of the well-known Lotka–Volterra equations [5,8]. In fact, mutualism still lacks a formal conceptual
treatment at a depth comparable to that of antagonistic interactions [8] in such a way as to include all in
a single comprehensive ecological framework.

In the case of plant-pollinator mutualism, interactions among plants and pollinators in general form
large and complex mutualistic networks. These networks are bipartite, i.e., plants and pollinators are
the nodes, and the pollination interactions form the links between these nodes, including only links
connecting nodes from the plant community to nodes from the animal community. Several authors have
analyzed pollination networks [9–18] with respect to their nestedness (the extent to which specialist
species interact with subsets of the species with which generalist species interact) and modularity
(defined as the tendency of species to interact within and not between groups). The main findings are that
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these networks tend to exhibit high nestedness (see also [17] for a measure of nestedness that takes into
account qualitative network properties, as well, resulting in low nestedness) and a correlation between
modularity and nestedness that depends on the size and connectance of the network [15,16]. Here,
connectance is the the ratio of actual links over the total number of possible links in the network.

An important limitation in the study of mutualistic plant-pollinator networks is the scarcity and
incompleteness of empirical available data. For most of these networks, there are only qualitative data
in the form of qualitative interaction matrices (also called adjacency matrices) Iap with binary elements:
1(0) if the pair formed for animal in row a and plant in column p interacts or not. Less coarse information,
like quantitative interaction matrices qap specifying the number of observed visits of each animal species
a to each plant species p, only exist for a small subset of pollination networks.

From the adjacency matrices, it is possible to obtain useful insights into the architecture of the
ecological communities for developing quantitative methods for mutualistic networks. Quantitative
methods in turn are crucial to assess the degree to which mutualisms determine the relative species
abundances, recognized as a fundamental question that, if answered, would substantially advance
population and community ecology [19]. For example, a method was recently proposed to approach
bi-partite plant-pollinator communities by considering each party as a resource for the other party [20]:
plants provide food to animals, while animals facilitate the reproduction of plants. Since different
species of pollinators often visit the same species, there is resource overlapping. In a similar manner,
resource overlap also occurs between plants, since different species of plants share the same pollinator
resource. Resource overlapping implies that plants and pollinators compete for resources (pollinators
and plants, respectively). For interspecific competition, the classical community ecology theoretical
approach is niche theory [5]. The concept of resource utilization niche, introduced by MacArthur and
Levins [21], focuses on how species use consumable resources and is a central element of the classical
theory of community ecology. In fact, niche theory was essentially a group of theoretical models
designed to address the problem of how many and how similar coexisting species could be within a
given community [21,22]. According to niche theory, differences among species in their niches are
important in determining the outcome of species interactions, as might be revealed in their distributions
and/or abundances, as well as in their biodiversity and their functional role in ecosystems. The relative
utilization of resources along a resource spectrum or niche axis can be described as a frequency
distribution. Species are thus characterized in terms of their similarity in resource use or their niche
overlap. According to niche theory, there is a strong correspondence between the degree of niche overlap
between two species and the intensity of their competition for shared resources [21]. An important
property of the species closely connected with their niche overlap is the degree of generalization D [14].
For a species s of one of the two mutualistic network partitions, Ds is defined as the number of species
of the other network partition with which this species interacts, i.e., for an animal (plant) species, Da

(Dp) is given by the number of ones in a row (column) of Iap. The lower (higher) the degree D is, the
more specialist (generalist) the species is and the narrower (wider) its niche. It turns out that for a large
set of plant-pollinator networks, covering a wide geographical range, the resource overlap intensity for
pollinator species exhibits a pattern of clusters of generalists separated by clusters of specialists [20].
A similar relationship between D and niche position x emerges from the application of the resource
overlap (RO) method when applied to plant species (see Supplementary Material in [20]).
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The purpose of this paper is to connect network theory with classical ecological niche theory for
mutualistic plant-pollinator webs by using the expectation maximization (EM) algorithm, a versatile
statistical inference method [23–26]. One feature that makes EM particularly useful is that it can uncover
a very broad range of types of structures in networks, using only the patterns of connections between the
nodes (the information contained in Iap) and without prior knowledge of what one is looking for [24].
Here, we consider a set of 20 plant-pollinator networks obtained from the supplementary dataset of
Rezende et al. [27] and the on-line interaction web database (IWDB) [28]. We apply the RO and EM
methods to each partition of these bi-partite networks, i.e., plants and pollinators. We find that the
clustering of nodes, representing species of plants or animals, classified according to their connection
similarity by EM, is highly compatible with the ordering of these species on a linear niche axis produced
by the RO method used in [20]. The classes uncovered by the EM method are a collection of nodes with
a similar connection pattern. From an ecological point of view, we can therefore regard these classes as
collections of species that play a similar role in the network. The identification of such classes/roles is
useful, since it allows for a description of the ecological network at the level of aggregated nodes, i.e.,
compartments [29,30].

This article is organized as follows: in the Methods Section, we describe our dataset and review the
RO and EM methods. We present our results in Section 3, followed by a discussion of our results in
Section 4 and provide conclusions in Section 5.

2. Methods

In this section, we present the dataset that we analyzed and next review the RO and EM methods,
which are both based on qualitative data about the mutualistic interactions. The reader is referred to the
references provided in the subsections for further details. Network figures were drawn using the graphics
tool Pajek [31]. We apply the RO and EM methods on the unipartite pollinator-pollinator and plant-plant
networks. These networks are obtained from the bi-partite plant pollinator networks by a one-mode
projection as follows: given any two pollinators i and j, we draw an edge between them, if there exists
at least one plant species that both pollinate. The plant-plant network is obtained in a similar manner by
drawing an edge between any pair of plants if they are pollinated by at least one common pollinator.

2.1. Dataset

Table 1 shows the plant-pollinator networks that we have analyzed. For each plant-pollinator network,
we also provide the source reference. Four-letter network abbreviations follow the naming convention
used in the supplement of main source [27].
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Table 1. The 20 plant-pollinator networks forming the dataset of this study.

Network Abbreviation Data Reference Plants Pollinators Interactions

ARR3 [27] 36 25 81
DISH [27] 16 36 85
DUPO [27] 11 38 106
EOLZ [27] 31 76 456
ESKI [27] 14 13 52

HOCK [27] 29 81 179
LLAO [32,33] 9 27 39
MED2 [27] 23 72 125

MEMM [27] 25 79 2183
MOMA [27] 11 18 38
MULL [27] 105 54 204
OFLO [27] 10 12 30
OFST [27] 8 42 79
OLAU [27] 29 55 145
OLLE [27] 9 56 103
PERC [27] 61 36 178
PRCA [27] 41 139 374
SAAG [34] 51 25 190
SCHE [35] 7 32 59
STAN [36] 25 111 231

2.2. Construction of the Niche Axis from Resource Overlap

As remarked before, the idea of the RO method is to regard plants (animals) as a one-dimensional
discrete resource spectrum [22] for animals (plants), and the position of species along the niche axis will
be obtained from their niche overlap [21]. Our choice of a one-dimensional niche-axis is for simplicity,
i.e., following the principle of parsimony, we introduce the minimal and sufficient complexity to achieve
the desired goal. Furthermore, higher dimensional niches do not introduce dramatic changes (see, for
example, [37]). We choose integer niche variables rather than real variables, because we do not have
information on relevant niche variables. For example, had we data on trait sizes for pollinator species,
we could use these as real-valued niche variables. Ours is therefore a reverse engineering problem: we
determine the RO between all pairs of species (i, j), where i and j are arbitrary integers, and we sort
these in such a way that all species with large RO become grouped together.

We quantify the resource overlap between species i and j by the Jaccard similarity index [38], which
can be readily obtained from Iap and is given by [38]:

Jij =
P 11
ij

P 01
ij + P 10

ij + P 11
ij

(1)

where P 11
ij represents the number of species of one party (plants or animals) that interacts with both

species, i and j, of the other party (animals or plants, respectively) and P 10
ij (P 01

ij ) the number of
mutualistic species that interact only with i (j). Notice that if the two species share all of the mutualistic
species, i.e., when P 10

ij = P 01
ij = 0), then Jij = 1. This situation of full overlap in general occurs between
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maximum specialists with D = 1 and is less likely to occur between species with intermediate values of
D. To construct the niche axis for each party, it is necessary to group together all species, either plants
or animals, that exhibit a large resource overlap, reordering them from degree-order to niche-order,
by assigning to each species an integer x between 1 and N (NA animal species or NP plant species)
that denotes its niche “position”. To accomplish this, we use a “simulated annealing” algorithm [39].
This algorithm favors the proximity of interacting species by minimizing a cost function or “energy” E,
assigned to each ordering, given by:

E =
N∑
i=1

N∑
j=1

dij {|Jij − Ji+1j|+ |Jij − Ji−1j|+ |Jij − Jij+1|+ |Jij − Jij−1|} (2)

where i and j are integers, | . . . | stands for the positive value of the difference of the Jaccard similarity
indices for neighboring positions and dij = |i − j| is the distance from the “site” (i, j) to the diagonal.
First, the absolute values of the differences between the Jaccard coefficient of a focal species Jij and
each of its four nearest neighbors penalizes large differences between neighbor species and attempts
to group together all species with large RO. Second, diagonal terms always have maximum RO, i.e.,
Jij = 1 (because the RO of one species with itself is by definition = 1). Weighting terms proportional
to the distance dij accelerate the convergence of the algorithm, but this is not required. Starting with
a decreasing D-ordered list of species and its corresponding interaction matrix with energy E0, the
algorithm proceeds by randomly choosing a pair of species and swapping their positions on the ordering.
A new Jaccard matrix is produced for this new ordering, and its cost is recalculated using Equation (2).
If the cost decreases, the change is accepted. If the cost is increased by ∆E, the change is accepted with
probability exp(−∆E/T ), where T is a virtual temperature. We started with T = 5E0, and every 50 of
these simulated annealing steps (SAS), the temperature is lowered to 5% of its previous value. A SAS
comprises a number of random choices equal to N . When changes are not accepted, they are discarded,
and a new pair of species is chosen to repeat the process. This procedure is repeated until the calculated
value of cost is stabilized for a configuration in which sites (i, j) far from the diagonal, or equivalently
very different positions along the niche axis, correspond to pairs of species that have a small overlap.

2.3. Applying Statistical Inference Methods to Extract the Structure Underlying A Network

It is plausible to assume that similar pollinators pollinate similar plants. In terms of the network
of plant-pollinator interactions, such an assumption implies that the node neighborhoods of two such
pollinators will be similar, so that the set of (plant) nodes that each of these pollinators connect to has
a strong overlap. Nodes whose node-neighborhood is identical are called structurally equivalent [40].
Thus, the extent to which two nodes are structurally equivalent can provide information for assessing
their similarity. We therefore ask: given a network and making the assumption that the connection
between nodes arise as a result of some inherent, not necessarily readily-observable property of the
nodes, can we cluster the nodes based on the similarity with respect to such a property? It turns out
that a statistical inference method based on expectation maximization (EM), introduced for networks
by Newman and Leicht [24], is highly suitable to extract such information [25]. In this approach, it is
assumed that each node belongs to one of a finite number Nc of distinct classes (so that nodes belonging
to the same class have the same properties). In the EM implementation of Newman and Leicht, the
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class membership of each node is treated as unobserved, or missing information [23], meaning that
this information is not a priori available to us, and we use the EM method to infer this information a
posteriori from the network connection information and an underlying probability model, by maximizing
the corresponding likelihood function. In the following, we briefly describe the EM implementation and
refer the reader to [24–26] for further details.

Consider a network specified in terms of the adjacency matrix aij , where aij = 1 if nodes i and j are
connected by an (undirected) edge, and aij = 0 otherwise. In the probability model, we assume that each
node i has an intrinsic property gi that can take as many different values as there are number of classes
Nc. The probability of a connection between two nodes i and j, given that they belong to classes gi and
gj , is defined as:

Prob(edge between i and j|gi, gj) = θgi,jθgj ,i (3)

where θrj is the probability of having a connection from a node belonging to class r to a certain node j.
Given the probabilities θrj and a class assignment of nodes {gi}, it is assumed that edges are observed
independently according to Equation (3) above. With the corresponding log-likelihood given as:

L =
∑
ir

γir

[
lnπr +

∑
j

aij ln θrj

]
(4)

the EM implementation then results in the following set of self-consistent equations (EM equations):

πr =
1

N

∑
i

γir, (5)

θrj =

∑
i aijγir∑
i kiγir

, (6)

γir =
πr

∏
j θ

aij
rj∑

s πs
∏

j θ
aij
sj

(7)

Here, N is the number of nodes, ki is the degree of node i (number of nodes adjacent to i), πr is the
probability that a randomly-selected node belongs to class r, while γir is the posterior probability that
node i belongs to class r. The solution to the EM equations is obtained by treating them as a mapping
and iterating until a fixed point is reached: we start with randomly-chosen distributions γir and evaluate
the left-hand sides of the EM equations, Equations (5) to (7). Next, these values are substituted into
the right-hand sides of the equations to obtain updated values, and this is repeated until convergence
is reached.

As the network aij , we use the pollinator-pollinator network, i.e., the one-mode projection of the
bi-partite plant-pollinator network. Recall that this means that we consider as nodes the set of pollinators
only and set aij = 1, if there is at least one plant species that both pollinators i and j pollinate (otherwise,
we set aij = 0). Note that the resulting network is not necessarily transitive, meaning that the existence
of edges between species i and j, as well as j and k does not imply an edge between species i and
k, since the common sets of plants giving rise to each of the two edges could be disjoint. On the
other hand, if in the bi-partite network, n pollinators i1, i2, i3, . . . in are structurally equivalent, then in
the pollinator-pollinator network, they will form a complete subgraph, meaning that all possible edges
between those nodes will be present. plant-plant networks can be constructed in a similar manner.
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For each network, and a given number of classes Nc, we generated 100 different sets of random initial
distributions γir and iterated the EM equations to convergence (to machine precision). From the resulting
classifications, we chose the one with the largest log-likelihood Equation (4) [24,25].

We have attempted classifications of the pollinator-pollinator networks with up to 16 classes and
found that, owing to the number of pollinators in these networks, classifications into Nc > 8 classes
rarely yield genuine classifications. By this, we mean that the resulting classifications contain classes to
which no pollinators have been assigned.

The situation is more pronounced in the case of the plant-plant networks, where the number of plant
species is generally less than that of the pollinator species and often of the order of the number of classes
Nc, as is evident from Table 1. In particular, the plant-plant networks of DUPO, EOLZ, ESKI, OFST
and OLLE are almost complete graphs, meaning that all plants are connected to almost all other plants.
The connection patterns of plants being highly similar means that the connectivity of individual plant
nodes does not provide useful information to distinguish these plants. As a result, the EM classifications
assigns all of these plants to the same class. To give an example, the plant-plant network of EOLZ,
containing 31 plant species, has 14 species having connections to all other species. Only 7 species
connect to less than 27 other species, and the minimum number of connections to other species in the
network is 23.

For most of the networks we considered and particularly for the classifications in to 2–5 classes,
despite starting from 100 different initial conditions, only a few distinct classifications were obtained;
thus, it was not deemed necessary to perform extended searches for classifications with the highest
achievable log-likelihood, as was done for instance in [25].

Let us emphasize that we are not attempting to fit for the optimal number of classes, i.e., we are not
doing model selection. Rather, our aim here is to use the EM method as an exploratory tool. We therefore
treat the number of classes as a parameter in order to track how the classifications change as we vary the
number of classes. Alternatively, if our goal were to determine the optimal number of classes, this could
be achieved by using the Akaike information criterion [41], as for example done by Allesina and Pasqual
for a similar statistical clustering approach to ecological networks [29].

3. Results

3.1. EM Classifications and Network Structure

Figure 1 shows the four-fold EM classification of the unipartite pollinator-pollinator network SCHE
of Schemske et al. [35]. The color of each node i codes the class membership, namely the class r for
which γir is maximum. Notice:

(i) clique-like properties: nodes assigned to the same class tend to connect to each other;

(ii) distinct connection-preferences: for example, “red” pollinators connect predominantly to “red”
and “green” pollinators; likewise, “blue” pollinators connect to “blue” and “green” pollinators, etc.

These two properties are generic features of almost all networks that we have analyzed. Thus, the
EM algorithm when applied to plant-pollinator networks reveals useful information with respect to
connection similarity and connection preferences, thereby validating the suitability of the method.
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Andrena carlini

Andrena cressoni

Andrena irgeniae

Andrena erythronii

Andrena forbesii

Andrena mansonii

Andrena miserabilis

Andrena personata

Andrena rugosa
Andrena sp.

Ceratina metallica

nomada luteola

Bombus greseocollis

Augochlora pura

Augochlorellav striata

Dialictus coeruleus

Dialictus oblongus

Dialictus obscurus

Dialictus imitatus

Dialictus zephyrus

Erylaeus macroupinensis

Halictus confusus

Lasioglossum forbesii

Carposcalis obscura

Eristalis dimidiatus

Helophilus fasciatus

Melanostoma sp.

Mesograpta marginata

Metasyrphus americanus

Surphus torvus

Syrphus sp.

Xylota nemorum

Figure 1. Four-fold expectation maximization (EM) classification of the unipartite
pollinator-pollinator network SCHE. The color of each node i codes the class membership,
namely the class r for which γir is maximum. Since the network contains pollinators with
similar pollination preferences, the resulting network structure contains cliques. The EM
algorithm uncovers this clique structure, as is evident from the fact that the node colors
coincide with the cliques.

3.2. Crispness of EM Classification

The class assignment probabilities γir also allow us to assess the crispness of a classification. To this
end, we consider the classification entropy [25],

S =
1

N

∑
ir

γir ln γir (8)

where N is the number of nodes in the network and the indices i and r run over the nodes and classes,
respectively. Hence, 0 ≤ S ≤ lnNc, with Nc being the number of classes chosen for the classification.
A crisp classification will imply S = 0, i.e., all nodes are classified as belonging to unique classes. Thus,
the parameter S assesses the crispness of the classification found.

Tables 2 and 3 provide the classification entropy for the 2–5 fold-classifications of the networks that
we have considered. For the pollinator networks in Table 2 and the plant-networks in Table 3, we see
that for most of the classification entropies S, as given by Equation (8), we obtain values S < 0.1. Thus,
the classifications resulting from the EM algorithm are rather crisp.
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Table 2. Classification entropy S and niche alignment quality Q for the 20
pollinator-pollinator networks. Note that a five-fold classification for the network ESKI
could not be found.

pollinator-pollinator
2 Class 3 Class 4 Class 5 Class

Network S Q S Q S Q S Q

ARR3 0.000 1.000 0.020 1.000 0.015 0.840 0.044 0.960

DISH 0.039 0.556 0.013 0.722 0.043 0.889 0.055 0.889

DUPO 0.042 0.658 0.079 0.526 0.116 0.579 0.105 0.579

EOLZ 0.024 0.684 0.030 0.684 0.029 0.671 0.021 0.658

ESKI 0.040 1.000 0.174 1.000 0.148 1.000 - -
HOCK 0.016 0.741 0.003 0.617 0.004 0.617 0.005 0.716

LLAO 0.000 0.778 0.000 0.926 0.028 0.815 0.032 0.889

MED2 0.015 0.222 0.015 0.222 0.007 0.181 0.011 0.139

MEMM 0.017 0.165 0.008 0.190 0.012 0.177 0.011 0.228

MOMA 0.000 1.000 0.007 1.000 0.019 1.000 0.133 0.889

MULL 0.026 0.833 0.038 0.926 0.028 0.778 0.017 0.852

OFLO 0.022 1.000 0.258 1.000 0.193 1.000 0.222 1.000

OFST 0.013 0.714 0.025 0.929 0.006 1.000 0.016 0.833

OLAU 0.020 0.600 0.018 0.509 0.016 0.636 0.011 0.727

OLLE 0.040 0.786 0.026 0.929 0.031 0.964 0.025 0.875

PERC 0.013 0.861 0.035 0.861 0.034 0.639 0.059 0.667

PRCA 0.001 0.813 0.008 0.763 0.009 0.863 0.007 0.806

SAAG 0.055 0.640 0.199 0.680 0.202 0.800 0.258 0.840

SCHE 0.000 1.000 0.027 0.938 0.006 0.969 0.003 0.969

STAN 0.000 1.000 0.000 1.000 0.001 0.901 0.009 0.775

Table 3. Classification entropy S and niche alignment quality Q for plant-plant networks.
The networks for DUPO, EOLZ, ESKI, OFST and OLLE are nearly complete graphs, and
classification into 2 or more classes was not found (see the end of Section 2.3 for details).

plant-plant
2 Class 3 Class 4 Class 5 Class

Network S Q S Q S Q S Q

ARR3 0.000 1.000 0.006 0.833 0.003 0.750 0.007 0.694

DISH 0.011 1.000 0.063 1.000 0.216 0.875 0.236 0.875

LLAO 0.000 1.000 0.000 1.000 - - - -
HOCK 0.000 0.828 0.024 0.828 0.047 0.828 0.026 0.724

MED2 0.011 0.435 0.005 0.348 0.021 0.391 0.025 0.435
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Table 3 . Cont.

plant-plant
2 Class 3 Class 4 Class 5 Class

Network S Q S Q S Q S Q
MEMM 0.239 0.760 0.481 0.560 - - - -
MOMA 0.000 1.000 0.000 1.000 - - - -
MULL 0.008 0.848 0.017 0.914 0.013 0.867 0.030 0.867

OFLO 0.016 1.000 0.365 1.000 0.327 1.000 0.407 0.800

OLAU 0.001 1.000 0.056 0.966 0.027 0.862 0.043 0.724

PERC 0.023 0.639 0.011 0.639 0.021 0.672 0.020 0.803

PRCA 0.109 0.927 0.089 0.463 0.095 0.561 0.074 0.659

SAAG 0.014 0.745 0.011 0.804 0.026 0.706 0.050 0.686

SCHE 0.136 0.571 0.411 0.857 - - - -
STAN 0.040 1.000 0.085 0.920 0.143 0.920 0.160 0.920

3.3. Compatibility of RO-Based Niche-Ordering of Species with Their EM Classifications

The RO approach of Subsection 2.2 results in an ordering of the species of the unipartite
pollinator-pollinator and plant-plant networks along a one-dimensional circular niche axis. We ask
next how compatible such an ordering is with the classification of the species as obtained from the
EM algorithm. In order to measure the extent to which the EM classification is compatible with the
inferred niche-ordering, we proceed as follows: Given a niche ordering, for each EM class r, we identify
the regions of contiguous sites on the niche-axis that belong to the same class. Among these, we pick
the largest region and denote its size by Lr. If the classification is fully compatible with the niche order,
then for each class r, there is only a single contiguous region, and the sum of the sizes of these regions
Lr is N . In all other cases, this sum is less than N . We therefore define the quality index Q as:

Q =
1

N

∑
r

Lr (9)

so that 0 < Q ≤ 1, and full compatibility of EM classification with RO niche ordering implies Q = 1.
To illustrate this, consider the 2-, 3- and 4-fold classifications of the SCHE pollinator-pollinator

network [35] shown in Figure 2. This network consists of 32 pollinators. In the two-fold classification,
the “blue” and “red” groups each form single contiguous domains of 24 and eight pollinators,
respectively. Thus, Lblue = 24, and Lred = 8, so that Q = 1. Now, consider the three-fold classification,
as shown in the middle panel of the figure. Comparing to the two-fold classification in the top panel of
Figure 2, we see that the “blue” group has split into two, forming a “blue” and “green” group. However,
the new “blue” group is not contiguous anymore; it has a second domain on the niche axis of size two
(the pollinators with IDs 13 and 22). The total number of pollinators in the largest contiguous domains
is therefore 32 − 2 = 30, and hence, Q = 30/32 = 0.9375, as indicated in Table 2. Comparing to the
four-fold classification, we see that the boundary of the “blue” and “red” domains turns into a new group,
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“yellow”, so that there is now only one pollinator that is not part of a contiguous domain, and therefore,
Q = 31/32 = 0.969.

Figure 2. (Top to bottom) 2-, 3- and 4-fold expectation maximization (EM) classification
of the SCHE [35] unipartite pollinator-pollinator network. Each figure is a plot of degree
vs. pollinator ID (shown on the x-axis of the bottom figure). The pollinators have been
placed according to their ordering on the niche axis, as inferred by the resource overlap (RO)
method of Subsection 2.2. The color of the bars denotes the class that the pollinator has been
assigned to by the EM algorithm. The degree refers to the number of different plant species
that the pollinator pollinates. A large (low) value of the degree implies that the pollinator is
a generalist (specialist).

In Table 2, we list the Q values for the pollinator-pollinator networks. Quite a number of
classifications have a niche alignment quality of Q = 1, as indicated in bold in the table. This implies
that the EM classification of the pollinators is in perfect agreement with their ordering on a niche axis,
as obtained by the RO method. However, there are a few cases where this alignment is very poor, as for
example in the MED2and MEMMnetworks. Table 3 shows similar findings for the plant-plant networks:
close to crisp classifications and high niche alignment quality Q.

4. Discussion

The RO method produces two clear patterns. Firstly, the Jaccard matrices display a block structure
along the diagonal that corresponds to the niche axis (dark red blocks of a side greater than one in the
right panel of Figure 3). Such a structure is typical of Jaccard matrices computed by using MacArthur
and Levins’ niche overlap [20]. These blocks correspond to sectors of strong resource overlap. The
blocks of maximum overlap, Jij = 1, occur for sets of specialists (Di = 1 or 2) that all share one or at
most two plants as their resource.

Secondly, the degree of generalism versus the niche position, D(x), exhibits a pattern of “hills”
separated by shallow “valleys” corresponding to alternating clusters of generalists and specialists (upper
panel of Figures 2 and 3). This undulated landscape can be understood, because as generalist species
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(plants or pollinators) have wider niches than specialists, the niche overlap between a generalist and a
specialist is in general smaller than the niche overlap between pairs of generalists or pairs of specialists
that share some resource.

In turn, these clusters of generalists or specialists are often associated with classes obtained when
applying the EM method. Note in particular how in Figure 3, the order and size of the contiguous
EM classes in the right top panel closely follows the block structure along the diagonal of the resource
overlaps depicted in the bottom right of the figure.
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Figure 3. (Left) The OFST pollinator-pollinator network with the nine-fold EM
classification. The color of each node denotes the class in which the pollinator has been
classified by the EM algorithm. (Right, top) The corresponding plot of degree D vs. inferred
relative location on a one-dimensional niche axis (legend as in Figure 2). The numbering
of the pollinators corresponds to the IDs given in the data source [27] and agrees with those
in the left panel. (Right, bottom) The Jaccard Jij matrix measuring the resource overlap
of species i and j. Jij = 0 (dark blue) corresponds to no resource overlap, while Jij = 1

(dark red) corresponds to complete resource overlap, in general only possible between two
specialists with D = 1 that have the same resource.

Therefore, our analysis sheds light on how those groups of ecologically-similar species self-organize
into niches based on the similarity of some of their biological traits and their abundance [20]. Indeed,
the niche concept is an important element in many aspects of ecological thinking, across levels of
organization, from individuals (concerning their behavior, morphology and physiology) to ecosystems
(to evaluate how species participate in ecosystem functioning) [42]. The niche framework helps to
devise each species place and role in the community to which it belong, as well as it provides a
better understanding of species coexistence, new insights and interpretations about ecological patterns
and processes in ecology and how fluctuating environments might regulate population dynamics and
species interactions.
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As we have seen, there are classes that emerge from a classification into a low number of classes
Nc and persist while Nc increases. At the same time, there are classes that are refined as the number
of classes increases. Both types of behavior can reveal meaningful information about the network. To
illustrate these points, we consider the classifications of the DISH pollinator-pollinator network into
Nc = 3, 4, 6, 7 and 9 classes, as depicted in Figure 4. Consider for example the set of pollinators with
IDs {9, 11, 13, 14}. These pollinators are classified as belonging to the same “green” group for all of the
classifications shown. In fact, this turned out to be true for all classifications attempted (Nc ≤ 12).

Figure 4. (Top to bottom) 3-, 4-, 6-, 7- and 9-fold EM classification of the DISH unipartite
pollinator-pollinator network. As the number of classes increase, we see both robustness,
namely certain species being classified together, as well as the emergence of finer structure,
as classes are split up (legend as in Figure 2).

On the other hand, most of the other classes, as expected, split up into smaller classes when Nc is
increased. In this case, an increase ofNc often reveals the internal structure of a cluster of species. Again,
for DISH, Figure 4 considers the first ten species on the niche-axis, {30, 25, 8, 29, 26, 31, 17, 21, 20, 32}.
These 10 species constitute almost the whole blue class for the Nc = 3 classification, while when
Nc = 4, they split up into two classes, Species 21, 20 and 32 becoming part of the “red” class
and then forming their own class when Nc = 7. Likewise, comparing the three- and four-fold
classifications, we see that the “red” class splits into two, forming a new class containing the pollinator
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IDs {4, 3, 34, 19, 18, 22, 6, 5, 27, 1, 24}, which coincides with the set of generalists (large degrees), at the
center of the niche axis.

5. Conclusions

Ecological networks are an interdisciplinary research field, where physicists, biologists and applied
mathematicians have been working together in order to understand the structure of ecological networks,
one of the outstanding challenges in the study of complex systems.

The case of mutualistic interactions is of paramount importance; for example, we have seen that the
mutualism between plants and pollinators is vital for the maintenance of most natural systems. Moreover,
pollinators play a key role in communities, and their decline is leading to a crisis that is affecting both
native and cultivated plant species [43–45]. A better understanding of the structure of plant-pollinator
communities and how this relate to their dynamics is key to developing models capable of explaining the
relative species abundance. These quantitative models are useful for several purposes, like predicting the
consequences of the loss of pollinators on crop yield [46].

A recently-developed model for pollination, in terms of mutualistic interactions between plants and
pollinators aggregated into classes with similar traits, was able to predict the relative abundances of
plants and pollinators of a Mediterranean network [30]. The problem is that only for a handful of these
networks are there public data about species traits, like the nectar depth for plants and the proboscis
length for animals, which seem to play a crucial role in determining the set of mutualistic interactions
occurring between plants and pollinators [36,47–51]. The general procedure we proposed here, based
on the combination of EM and RO, offers a possible alternative to overcome this lack of data on traits by
classifying plants and pollinators into classes associated with clusters of species with overlapping niches
(i.e., grouped on a niche axis).

From quantitative interaction matrices, qap, it is possible to compute using a generalization of Jaccard
similarity indices, basically internal products, more refined overlap matrices and the corresponding
species niche distributions [20]. Something worth addressing in future work would be to extend the
EM method in such a way as to incorporate quantitative information on mutualistic interactions. For
example, we have formed the unipartite pollinator-pollinator networks by including a link between two
pollinators when they have at least one common plant resource. However, it would be natural to consider
weighted links, where the weight of a link is the quantitative amount of resource overlap for the two
pollinators. Likewise, the number of visits of a pollinator to a plant could also be used as a quantitative
input into the EM method.
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