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Abstract: Multiscale entropy (MSE) is a widely used metric for characterizing the nonlinear
dynamics of physiological processes. Significant variability, however, exists in the methodological
approaches to MSE which may ultimately impact results and their interpretations. Using publications
focused on balance-related center of pressure (COP) dynamics, we highlight sources of methodological
heterogeneity that can impact study findings. Seventeen studies were systematically identified
that employed MSE for characterizing COP displacement dynamics. We identified five key methodological
procedures that varied significantly between studies: (1) data length; (2) frequencies of the COP
dynamics analyzed; (3) sampling rate; (4) point matching tolerance and sequence length; and
(5) filtering of displacement changes from drifts, fidgets, and shifts. We discuss strengths and
limitations of the various approaches employed and supply flowcharts to assist in the decision making
process regarding each of these procedures. Our guidelines are intended to more broadly inform
the design and analysis of future studies employing MSE for continuous time series, such as COP.
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1. Introduction

As highlighted by the emerging fields of systems biology and medicine, health requires
the integration—across multiple time and spatial scales—of control systems, feedback loops, and
regulatory processes that enable an organism to function and adapt to the demands of everyday
life. Within this framework, aging and disease can be viewed as the breakdown of nonlinear
feedback loops acting across multiple scales, resulting in a loss of physiological complexity [1].
Physiologic complexity can be estimated using a number of techniques derived from the fields of
nonlinear dynamics and statistical physics that quantify the moment-to-moment quality, scaling,
and/or correlation properties of dynamic signals [2,3].

One increasingly used entropy-based metric of complexity is multiscale entropy (MSE). MSE
characterizes the information content of a signal by quantifying the degree of regularity or
predictability over multiple scales of time [4]. MSE has been used to evaluate the relationship between
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complexity and health in a number of populations and physiological systems. For example, MSE
of heart beat intervals demonstrates a clear loss of complexity with aging, is lower in patients with
congestive heart failure, and is predictive of mortality [5]. MSE has also been used to distinguish older
adults with atrial fibrillation from healthy controls [6] and differentiate healthy fetuses from fetuses
with a pathological condition at birth [7]. Additionally, it has been used in physiological processes
as varied as red blood cell flickering, gait dynamics and sleep [6,8–10]. The use of MSE for studying
center-of-pressure (COP) dynamics has received a significant amount of attention, particularly in
elderly populations where falls are of greater concern [8,11,12].

Despite its promise as a sensitive and novel biomarker of health and disease, few attempts have
been made to outline the methodological challenges associated with the calculation of MSE. While
current publications on MSE may discuss one or two methodological issues, no publication—to our
knowledge—comprehensively covers all the issues presented here. For the MSE-naïve researcher,
designing a protocol for the purpose of MSE analysis can be daunting, and this difficulty can
be further amplified by the recognition that improper choice of parameters during MSE analysis
can lead to ambiguity in complexity signatures between healthy and diseased states [13]. In this
paper, we address a number of key issues involved in study design, analysis and interpretation
of MSE for physiological signals using COP as a model example. In particular we focus on five
methodological issues considered critical for the proper design and analyses of an MSE study:
(1) data length; (2) frequency range of analyses; (3) sampling rate; (4) point matching tolerance and
sequence length; and (5) filtering. We choose COP because it is distinct from the more commonly
analyzed, discrete heartbeat interval; the raw displacement COP data is continuous and potentially
plagued by nonstationarities; and the physiologic basis for COP is not as well-defined as that of
heart-rate and other physiological processes. A systematic review of publications using MSE to
analyze COP was conducted which serves to highlight the existing methodological heterogeneity in
key MSE parameters. We start with an overview of MSE since a basic understanding of the technique
is required for context in the subsequent sections.

2. Overview of Multiscale Entropy

MSE quantifies the degree of irregularity within a system across multiple time scales. The
entropy measure used to determine the amount of irregularity at each time scale is called sample
entropy (SampEn). SampEn represents the rate of generation of new information and is precisely
equal to the negative natural logarithm of the conditional probability that m consecutive points that
repeat themselves, within some tolerance, r, will again repeat with the addition of the next (m + 1)
point [6]. The tolerance, r, is often derived by calculating a certain percentage of the time-series
standard deviation (SD).

As described by Richman et al. [14], the mathematical derivation of SampEn is as follows.
For a time-series of length N, tu pjq : 1 ď j ď Nu , N ´ m ` 1 vectors, xm piq, are formed for
ti|1 ď i ď N ´m` 1u, where xm piq “ tu pi` kq : 0 ď k ď m´ 1u is the vector of m data points from
u piq to u pi`m´ 1q. The vectors being compared against xm piq to assess the number of “repeats” or
“matches” are represented by xm pjq. A match is established once the distance between two vectors,
xm piq and xm pjq—defined as the maximum difference of their corresponding scalar components—is
less than r. The vector xm piq is referred to as the template and in the case of a match the xm pjq is
referred to as a template match. This is again repeated for xm`1 piq and xm`1 pjq. This process of
matching is illustrated in Figure 1.

The probability of matches are calculated for each reference vector xm piq and xm`1 piq and
represented by Bm

i prq and Am
i prq, respectively. Bm

i prq equals to pN ´m´ 1q´ 1 times the number of
vectors, xm pjq, within r of, xm piq, and Am

i prq is given by pN ´m´ 1q´1 times the number of vectors,
xm`1 pjq, within r of, xm`1 piq, when j ranges from 1 to N ´m and j ‰ i. The restriction j ‰ i assures
that self-matches are not counted (i.e., vectors are not compared to themselves). SampEn can then be
defined as:
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SE pm, r, Nq “ ´ln
ˆ

Am prq
Bm prq

˙

(1)

where Bm prq “ pN ´mq´1 řN´m
i“1 Bm

i prq and Am prq “ pN ´mq´1 řN´m
i“1 Am

i prq. Bm prq represents
the probability that two sequences will match for m points and Am prq represents the probability that
two sequences will match for m + 1 points across all possible comparisons.

A few points regarding SampEn bear noting. First, by nature of the calculations, SampEn for
periodic, regular signals is approximately zero while SampEn is maximal with irregular, random
signals. This can be understood with the fact that A and B are nearly identical in periodic signals;
A/B is near unity; and thus the logarithm of A/B approximates to zero. On the other hand, irregular
signals have lower probability of matches at m + 1 (A) compared to that of matches at m (B); A/B is
a low-magnitude fraction; and ln (A/B) calculates to a large negative number which is made positive
with the negative in Equation (1), ultimately yielding a larger SampEn.

Second, the theoretic basis of sample entropy rests on the probability of matches, and the actual
calculation is an estimation based on the available samples. Much like the probability of “heads” for
a coin approximated by counting the number of heads after a number of trial flips, the estimation
of SampEn becomes increasingly susceptible to stochastic effects as the number of trials diminishes
in quantity. The confidence in the accuracy of SampEn, thus, diminishes with smaller time series.
Longer datasets are considered optimal. However, it may be incorrect to assume that the dynamics
remain unchanged over the course of sampled time, particularly for longer time series.
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Figure 1. Demonstration of SampEn calculation with m = 2. The dashed line is the tolerance about the 
first point and highlights matching points to the first point with Δ markers. Likewise the dash-dot line 
and dotted line highlight matches of the second and third points with ○ and × markers respectively. 
Points which do not match any of the template points are marked by ■ symbols. SampEn is 
calculated from the ratio of sequences of length m and length m + 1 which match m and m + 1 length 
templates. The first templates are represented by the first 2 (m) and 3 (m + 1) points. We observe  
2 Δ–○ template matches to the m length template and one Δ–○–× template match to the m + 1 length 
template. The template is then stepped one sample at a time and the process repeated until the end 
of the waveform is reached. SampEn can then be calculated from the ratio of the total number of m + 
1 to m length template matches. Adapted from [6].  

Third, the number of matches (A and B) in SampEn is determined by the cumulative number of 
matches found between the possible permutations of vector comparisons. The quotient for A and B 
is subsequently entered into the logarithmic calculations to find SampEn. This approach is 
inherently different than that taken by approximate entropy (ApEn), the predecessor for SampEn. 
ApEn relies on determining the probability of matches found for each vector and then entering this 
probability into the logarithmic function. As a result, a time series with 100 data points would be 
associated with 99 such probabilities and, by extension, 99 logarithmic calculations for m = 2 (and 98 
probabilities and 98 logarithmic calculations for m = 3). In stark contrast, SampEn has only one 
logarithmic calculation. To obtain ApEn, the logarithmic terms are summed respectively for m = 2 
and m = 3, and the difference of the two sums would equal ApEn. The unintended consequence of 
the ApEn approach is that smaller time series and highly irregular time series may encounter zero 
matches which would subsequently yield an undefined ApEn since the logarithm of 0 cannot be 

Figure 1. Demonstration of SampEn calculation with m = 2. The dashed line is the tolerance about the
first point and highlights matching points to the first point with ∆ markers. Likewise the dash-dot line
and dotted line highlight matches of the second and third points with # and ˆ markers respectively.
Points which do not match any of the template points are marked by � symbols. SampEn is calculated
from the ratio of sequences of length m and length m + 1 which match m and m + 1 length templates.
The first templates are represented by the first 2 (m) and 3 (m + 1) points. We observe 2 ∆–# template
matches to the m length template and one ∆–#–ˆ template match to the m + 1 length template. The
template is then stepped one sample at a time and the process repeated until the end of the waveform
is reached. SampEn can then be calculated from the ratio of the total number of m + 1 to m length
template matches. Adapted from [6].

Third, the number of matches (A and B) in SampEn is determined by the cumulative number
of matches found between the possible permutations of vector comparisons. The quotient for A
and B is subsequently entered into the logarithmic calculations to find SampEn. This approach is
inherently different than that taken by approximate entropy (ApEn), the predecessor for SampEn.
ApEn relies on determining the probability of matches found for each vector and then entering this
probability into the logarithmic function. As a result, a time series with 100 data points would be
associated with 99 such probabilities and, by extension, 99 logarithmic calculations for m = 2 (and
98 probabilities and 98 logarithmic calculations for m = 3). In stark contrast, SampEn has only one
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logarithmic calculation. To obtain ApEn, the logarithmic terms are summed respectively for m = 2
and m = 3, and the difference of the two sums would equal ApEn. The unintended consequence of
the ApEn approach is that smaller time series and highly irregular time series may encounter zero
matches which would subsequently yield an undefined ApEn since the logarithm of 0 cannot be
calculated. To avoid this issue, self-matches are included to ensure that every logarithmic calculation
entails a non-zero positive integer. This naturally biases the ApEn towards a lower entropy value for
short and highly irregular time series [14].

MSE is termed “multiscale” because the sample entropy (SampEn) is calculated across multiple
time scales (τ). This is achieved through a coarse-graining procedure. At the first scale, the MSE
algorithm evaluates SampEn for the time-series at each sampled point. At greater MSE scales,
SampEn is computed on coarse-grained versions of the original time-series. The coarse-graining
procedure divides the original time-series into non-overlapping windows of length, λ. Within each
window the average is taken resulting in a new time-series of length N/λ. This is shown for time
scales 2 and 3 in Figure 2. The procedure is repeated until the last time scale is reached [6].
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Figure 2. MSE coarse graining procedure example for scales two and three. Adapted from [15]. 

The MSE output of SampEn vs. Scale, τ, can be used to calculate a complexity index, CI. The CI 
is calculated by taking the area under this curve. A few important points about this composite 
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MSE calculation. The r is determined by the standard deviation of the time series at scale 1 (not 
coarse grained). Second, MSE assigns a high CI to time-series with complex dynamics across all the 
time scales evaluated. For this reason, 1/f noise is associated with a high CI because the SampEn 
remains relatively constant across time scales. Uncorrelated or white noise, however, is 
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higher scales, ultimately yielding a relatively smaller CI. Since 1/f noise is ubiquitous in nature [16], 
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postural control and to understand underlying motor control mechanisms during both unperturbed 
and challenging experimental conditions. Location and dynamics of the COP are typically 
measured using a force platform. During standing, reaction forces between the body and support 
surface (i.e., platform) are distributed over the entire contact area. These forces can be summed into 
a single net force acting at a single point: the center of pressure. COP is not a static measure, and 
variability in the anteroposterior and mediolateral planes can be characterized using average 
measures of displacement (e.g., range, area swept), changes in velocity, or moment-to-moment 
dynamics. COP dynamics are likely due to complex control process associated with the 

Figure 2. MSE coarse graining procedure example for scales two and three. Adapted from [15].

The MSE output of SampEn vs. Scale, τ, can be used to calculate a complexity index, CI. The
CI is calculated by taking the area under this curve. A few important points about this composite
approach are worth noting. First, r, the tolerance for matches, remains constant for all scales of the
MSE calculation. The r is determined by the standard deviation of the time series at scale 1 (not coarse
grained). Second, MSE assigns a high CI to time-series with complex dynamics across all the time
scales evaluated. For this reason, 1/f noise is associated with a high CI because the SampEn remains
relatively constant across time scales. Uncorrelated or white noise, however, is characterized by high
irregularity (SampEn) at lower scales but increasingly decreased SampEn at higher scales, ultimately
yielding a relatively smaller CI. Since 1/f noise is ubiquitous in nature [16], this technique has gained
traction in the analysis of physiological signals. Third, the coarse graining procedure, itself, does not
necessarily make MSE calculations immune to cross temporal scale effects. Coarse graining is a type
of filter that is susceptible to aliasing. Periodicity at a specific frequency (represented by decreased
SampEn) can be seen at multiples of the cycle frequency [17].

3. Multiscale Entropy of Center of Pressure Dynamics in Human Postural Control:
A Systematic Review

Analysis of the center of pressure (COP) during human standing is widely used to characterize
postural control and to understand underlying motor control mechanisms during both unperturbed
and challenging experimental conditions. Location and dynamics of the COP are typically measured
using a force platform. During standing, reaction forces between the body and support surface
(i.e., platform) are distributed over the entire contact area. These forces can be summed into a single
net force acting at a single point: the center of pressure. COP is not a static measure, and variability
in the anteroposterior and mediolateral planes can be characterized using average measures of
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displacement (e.g., range, area swept), changes in velocity, or moment-to-moment dynamics. COP
dynamics are likely due to complex control process associated with the maintenance of postural
control, as well as the inherent noise within the human neuromotor system. COP is widely used to
inform the health of the postural control system, and in some populations, is a predictor of instability
and falls [18].

3.1. Systematic Review Methods

We performed a systematic review of publications using MSE, as defined by Costa et al. [15],
to analyze COP displacement data. Only this specific version of multiscale entropy was included
as part of this review. Variants [19–21] that also use entropy measures across scales were not
considered. We completed electronic literature searches using PubMed/MEDLINE, Excerpta Medica
Database (Embase), Web of ScienceTM, and Academic Search Premier on 14 May 2015. Combinations
of keywords (“Center of Pressure” OR “COP” OR “Postural”) AND (“Multiscale Entropy” OR
“Multi-scale Entropy” OR “MSE”) were used as search terms. This returned 92 unique results.
Articles were excluded if: (1) They were not written in English; (2) They were not original research;
(3) The publication was simply an abstract or a letter; (4) Multiscale entropy was not a primary
metric; and (5) Center-of-pressure raw force-plate displacement data were not analyzed. We limited
our inclusion to raw displacement analysis of COP data and excluded studies which focused solely
on COP velocity data. Analysis of displacement data, unlike that of velocity data, requires special
consideration in regards to filtering and the management of nonstationarities.

All manuscripts meeting these inclusion criteria were published in peer-reviewed journals. We
included studies with obvious methodological limitations since this review is focused more on MSE
methodology rather than the actual quality of the data. All published settings for m, r, data length,
sample rate (fs), filtering method, analyzed frequencies and time scales were recorded and tabulated.
In many cases, these parameters were not reported (Table 1).

3.2. Systematic Review Results

Results of this review show that all of the settings used to analyze COP displacement data with
MSE were heterogenous, some much more than others.

The columns for sequence length (m) and point matching tolerance (r) parameters were relatively
consistent across studies. The most common parameter settings for sequence length was m = 2. The
most common setting for the point matching tolerance was r = 0.15. Of note, a couple studies explicitly
evaluated multiple ranges for these parameters [22,23].

In contrast to sequence length and point matching tolerance, settings chosen for time series
length, sampling rate, filtering method, frequencies and times scales analyzed, and the number of
points remaining at the greatest time scale varied considerably across studies. The length of the
time-series in seconds varied greatly across studies, ranging from 7 s to 1800 s. Sampling rate also
varied markedly across studies, ranging from 33 Hz to 250 Hz. Studies employed a variety of filtering
methods to remove trends outside the frequencies of interest. Empirical Mode Decomposition (EMD)
was the most commonly employed technique, in part due to its applicability to nonlinear and
nonstationary data [24]. Briefly, EMD decomposes a signal into a set of intrinsic mode functions
(IMFs) where each IMF represents a dominant or characteristic frequency with a limited bandwidth.
Fourier-based methods were the second most commonly used filtering method. Duarte et al.,
also explored a number of additional methods for filtering drifts and nonstationarities [22]. The
frequencies analyzed also varied greatly across studies. On the low end, frequencies as low as 0.0056
Hz were included. On the high end, frequencies between 7.5 and 60 Hz were analyzed. The MSE
scales used for the estimation of the complexity index also varied across studies, with values ranging
from well below 10, to greater than 50. Finally, for studies where it was possible to calculate the
number of data points remaining at the last MSE scale, NτM, this parameter also varied from 100 to
1800 points. However, only two studies had less than 300 points.
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Table 1. Systematic review of publications using MSE to analyze center-of-pressure displacement time-series.

Public Ation Study Design [MSE
Measure(s)] No. Subjects Time-Series

Length (s)
Time Scales

Analyzed
NτM : Points
τmax ∆

Frequencies
Analyzed (Hz)
[Dissimilarity

Comparison Ω]

fs:
Sampling

Rate
(Hz)

SCH : Samp./Cycle
Highest Freq. δ

m:
Sequence

Length

r: Point
Matching
Tolerance

Filtering Key MSE Related
Findingsω

Costa et al.
(2007) [8]

3 groups (young (Y), healthy
elderly (HE), fallers (F)) and

pre-, post- stochastic resonance
(SR) exposure. [MSE-CI]

Pre-exposure:
Y = 15

HE = 22
F = 22

Post-exposure:
Y = 15

HE = 12

30 1–6 300 (~17m) -
[No] 60 - 2 0.15 EMD

‚ F had lower MSE-CI than Y
and HE.
‚ HE showed increased
MSE-CI w/SR but not Y.

Duarte et al.
(2008) [22]

2 groups (healthy-young (HY)
and healthy-older (HO)).

[MSE-CI]

HY = 14
HO = 14 1800 1–50 720 (~27m) >0.0056

[No] 20 - 2ˆ 0.2ˆ Custom ‚ HO showed higher MSE-CI
than HY.

Kang et al.
(2009) [25]

3 groups (nonfrail (NF),
prefrail (PF), frail(F)) under 2
conditions (single-task and
dual-task (DT)). [MSE-CI]

NF = 291
PF = 209

F = 50
30 2–8 900 (30m) 7.5–60

[No] 240 2 2 0.15 EMD

‚ MSE-CI lower under DT in
all groups.
‚ MSE-CI associated with
frailty status.

Manor et al.
(2010) [11]

3 impaired groups (visual,
somatosensory, both

(combined)), a control group
and 2 exposures (single-task

and dual-task (DT)). [MSE-CI]

Contol = 299
Visual = 81

Somatosensory
= 49

Combined = 25

30 2–8 900 (30m) -
[No] 240 - - - EMD

‚ MSE-CI lower under DT.
‚ MSE-CI different between
all groups.

Gruber et al.
(2011) [26]

2 groups with adolescent
idiopathic scoliosis (AIS)

(pre-bracing (PB) and
pre-operative (PO)), and a

healthy control (CON) group.
[MSE-CI]

Control = 10
PB = 18
PO = 18

7 1–20 - -
[No] - - 2 0.15 θ LPF

20 Hz
‚ MSE-CI showed differences
for CON vs. AIS, CON vs. PB,
CON vs. PO, PB vs. PO.

Kirchner et al.
(2012) [27]

Single group under 2
conditions (dual-task (DT) and
quiet-standing (BT)). [MSE-CI]

16 30, 60, 300 1–6, 1–12,
1–60 100 (10m) -

[No] 20 - 2 0.15 Custom ‚ MSE-CI differed between
BT and DT at 300 s.

Jiang et al.
(2011) [23]

Multiple studies:
‚ Young vs. Elderly (YE) under
2 conditions (single-task (ST)

and dual-task (DT))
‚ Eyes-Open vs. Eyes-Closed

(EO/EC)
‚ Pre- and Post- wearing

vibratory (V) insoles. [MSE-CI]

YE: Young = 15
Elderly = 13
EO/EC: 16

V: Young = 16
Elderly = 26

60 1–7 343 (~19m) 1.5–3
[Yes] 40 13.3 2 * 0.15 * EMD

‚ YE: MSE-CI differed for DT
vs. ST within both groups and
between groups under both
ST and DT.
‚ EO/EC: MSE-CI differed
between EO and EC.
‚ V: MSE-CI differed between
pre- and post- V in Elderly.

Wei et al. (2012)
[12]

Single elderly group with 2
exposures (pre- and post-

wearing vibratory (V) insoles).
[MSE-CI]

26 60 - - -
[Yes] 31.25 - 2 0.2 EMD ‚ No significant differences in

MSE-CI.

Huang et al.
(2013) [28]

Single group and variable
platform (rigid platform (R)
and water pad (W)), variable
force-plate (custom, AMTI)

each under eyes-open (EO) and
eyes-closed (EC) conditions.

[MSE-CI]

20 60 - - <2
[No] 50 - - - EMD

‚ MSE-CI differed between R
and W under both EO and
EC, across both platforms.
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Table 1. Cont.

Public Ation Study Design [MSE
Measure(s)] No. Subjects Time-Series

Length (s)
Time Scales

Analyzed
NτM : Points
τmax ∆

Frequencies
Analyzed (Hz)
[Dissimilarity

Comparison Ω]

fs:
Sampling

Rate
(Hz)

SCH : Samp./Cycle
Highest Freq. δ

m:
Sequence

Length

r: Point
Matching
Tolerance

Filtering Key MSE Related
Findingsω

Manor et al.
(2013) [29]

Single group exposed to 24
weeks of Tai Chi. [MSE-CI] 25 30 1–5 300 (~17m) 3.125–12.5

[No] 50 4 2 0.15 EMD ‚ MSE-CI increased with
exposure to Tai Chi.

Fournier et al.
(2014) [30]

Group of children with Autism
Spectrum Disorder (ASD)

relative to controls. [MSE-CI]

Controls = 17
ASD = 16 20 1–20 360 (~19m) <20

[No] 360 18 2 0.2 LPF
20 Hz

‚ ASD showed lower MSE-CI
than controls.

Chen et al.
(2014) [31]

Single elderly group exposed
to a Resistance Training

program. [MSE-CI]
24 60 - - -

[No] - - - - EMD ‚ No significant change in
MSE-CI.

Pau et al. (2014)
[32]

2 groups (part-time (retained)
and full-time (career)

firefighters) pre- and post- a
physical task (stressor).

[MSE-CI]

Retained = 13
Career = 13 30 1–8 123 (~11m) <18

[No] 33 1.8 2 0.15 LPF
18 Hz

‚ Change in MSE-CI was
smaller in career vs. retained
firefighers after the stressor.

Wayne et al.
(2014) [33]

Multiple studies:
‚ Cross-sectional (X-Sec) with

two groups (Tai Chi Experts (E)
and Naives (N)) under

eyes-open (EO) and
eyes-closed (EC) conditions.

‚ Longitudinal (LGT) with two
groups (randomized to Tai Chi
(TC) or Usual Care(UC)) under

EO and EC conditions.
[MSE-CI]

X-Sec:
E = 27
N = 60
LGT:

TC = 31
UC = 29

50

X-Sec:
AP = 1–25,
ML = 1–35

LGT:
AP = 2–31,
ML = 1–39

X-Sec:
AP = 500
(~22m),

ML = 357
(~19m)
LGT:

AP = 403
(~20m),

ML = 320
(~18m)

X-Sec:
AP = 1.3–17.6,
ML = 0.5–17.9

LGT:
AP = 0.6–3.2,
ML = 0.3–8

[Yes]

250

X-Sec:
AP = 14.2,
ML = 14.0

LGT:
AP = 39.1,
ML = 31.3

2 0.15 EEMD ‚ MSE-CI differed between E
and N under EO and EC.

Yeh et al. (2014)
[34]

3 groups (young, dizzy
(w/vestibular hypofunction),

healthy-elderly) exposed to the
sensory organization test

(SOT). [MSE-CI]

Young = 23
Dizzy = 19
Elderly = 9

- 1–20 - -
[No] 100 - - - -

‚ MSE-CI analysis showed
differences between groups
which varied by SOT
condition.

Decker et al.
(2015) [35]

2 groups (postmenopausal
women of lower (L) physical
function, those of normal or

subnormal (N) physical
function) under eyes-open
(EO) and eyes-closed (EC)

conditions. [MSE-CI]

N = 32
L = 94 51.2 1–6 341 (~18m) -

[No] 40 - 2 0.15 EMD ‚ MSE-CI did not differ by
group or exposure.

Zhou et al.
(2015) [36]

Single group under single-task
(ST) and dual-task (DT)

conditions and 2 exposures
(pre- and post- transcranial
direct current stimulation

(tDCS)(real or sham)).
[MSE-CI]

20 60 3–8 1800 (~42m) -
[No] 240 - 2 0.15 EEMD ‚ tDCS reduced the dual-task

cost of MSE-CI.

MSE-CI—is the complexity index which is determined by taking the area under the curve of sample entropy vs. time scales; LPF—low pass filter; EMD—empirical mode
decomposition; EEMD—ensemble empirical mode decomposition; AP—anterioposterior direction; ML—mediolateral direction; ∆—Number of points remaining at last time scale;
Ω—A dissimilarity comparison is a statistical analysis between a healthier (or otherwise disparate group) and the study group at baseline to determine which frequencies best
distinguish the groups; δ indicates the number of samples per cycle at the first scale for the highest frequency component; ω—Only statistically significant differences are presented;
ˆreported on m = 2 and r = 0.2 but also did additional analysis to check if it changed their result. Used m = 1 to 5 and r = 0.1, 0.15, 0.25 and 0.3. Additionally to account for outliers
they tried using a fixed point matching criteria (r = 0.2 ˆ 1); θ reported that 0.15 ˆ SD was used for r but later report that an absolute value of 0.001 was used; * used m = 2, 3 and
r = 0.1, 0.15, 0.2, 0.25 and 0.3, choose m = 2 and r = 0.15 since it maximized the difference between young and elderly at the frequencies analyzed.
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4. Methodological Considerations

The first three subsections (4.1–4.3) listed below should be considered prior to protocol
development. This ensures that the protocol for data collection is designed appropriately for MSE
analysis. All subsections (4.1–4.6) herein discuss methodological considerations applicable to the
actual data analysis.

4.1. Determining Required Data Length

Because SampEn is ultimately a probabilistic calculation, SampEn requires a minimum number
of points to obtain an accurate estimate of matching probability. The confidence in the accuracy of
SampEn is diminished greatly when the number of matches is low. This can occur with shorter data
(due to short data acquisition or substantial coarse graining at higher MSE scales), highly irregular
time series, tight tolerance window (small r), or data with trends or drifts. Of these factors, data length
becomes a universally unavoidable issue for all finite time series since coarse graining for ascending
MSE scales ultimately generates a time series too short for reliable MSE analyses.

To address this methodological issue, an important first step is to determine the minimum
number of points required for SampEn. Estimates for the minimum number of SampEn points
are sometimes based on theoretical calculations for ApEn which suggest that 10m points should be
sufficient, although 20m—30m points would be preferable for an accurate estimate [27,37]. However
ApEn estimates based on simulated random time-series show increasing effects of self-matching
bias with a smaller number of points [14]. In comparison, due to the exclusion of self-matches,
SampEn is not susceptible to such biases and is generally considered more robust to shorter time
series. However, it is noted in Richman et al. [14] that the confidence intervals for simulated random
time-series at a length of 10m remain quite large for SampEn, therefore we recommend that between
14m and 23m points be present at the last MSE scale analyzed. As denoted by the NτM column in
Table 1, the majority of the reviewed studies satisfied this criterion with 300 data points (17m with
m = 2) used for analyses at the last scale. Determining the number of points at the last MSE scale
is done by multiplying the sample rate times the data length and then dividing by the largest MSE
scale, NτM “ p fs ˆ tq {τM. One outlier was the Gruber study where the acquired data totaled 7 s.
Although the NτM for this study could not be determined due to lack of reporting for fs, it is unlikely
that sufficient data points at physiologically relevant frequencies could be extracted from such a short
acquisition window.

Ideally, as much data as possible should be acquired but constraints arise from a subject’s
capacity to sustain such testing for long durations. For COP, fatigue can emerge generating altered
dynamics and transient effects such as shifts, fidgets, or drifts. These changes can produce dynamics
that no longer become the state for which the investigators were originally intending to evaluate.
Duarte’s study [22], for instance, acquired testing for 30 min in both young and older subjects, and
this duration may have potentially caused transient effects (i.e., nonstationarities as discussed below)
that ultimately change the MSE results. The study, however, was interested in very low physiological
frequencies and may not have had other options.

The length of testing is therefore dictated by the subject’s capacity to maintain a specific dynamic
and by the lowest physiologic frequency of interest. When this lowest physiologic frequency of
interest is known, the required length of the time series to be collected in a study can be determined.
This should be done such that the lowest frequency component included is not clearly oversampled.
To achieve this, a simple formula based on the number of points remaining at the last coarse-grained
time scale, NτM, can be used:

t “
NτM

2ˆ pm` 1q ˆ fL
(2)

where fL is the lowest frequency component of interest and m is the sequence length. This will result
in 2ˆ (m + 1) samples per cycle for the lowest frequency component at the last time scale. A minimum
number of oscillations are required to accurately characterize the information at some low frequency,
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so we use an example to check that this is reasonable when using this formula. If we take NτM = 300,
m = 2 and fL = 0.5 Hz, we observe that we need our time series to be 100 s in length. This would result
in 50 oscillations of this low frequency component which is reasonable.

In the end, the confidence interval for a SampEn calculation may not be dictated by data length
alone and can be influenced by other factors such as increased signal regularity or higher tolerance
r. As a result, the extent by which an investigator can coarse grain the time series (for higher MSE
scale analyses) can be determined not merely by data length alone but also by an additional stability
analysis process. Stability is established by observing consistent trends in SampEn with increasing
MSE scales. However, if there are significant deviations or erratic patterns (e.g., an increase with
a subsequent decrease or vice versa) in consecutive SampEn values as MSE scales increase, then
this would suggest that the SampEn calculations are now susceptible to stochastic effects and thus
unreliable. This stability analysis can be evaluated within-subjects and across subjects to observe
overall patterns. An arbitrary value of a ˘ 0.1 change in SampEn from scale τ-1 to τ followed by a
change in the opposite direction of ˘ 0.1 can be used to determine the last stable scale. When this test
fails analysis should stop at τ-1, the scale where the instability begins.

Of note, new variants of MSE, such as Modified MSE, have been created to overcome these
limitations seen with short time-series [38]. A review of a number of other variants on MSE, each of
which has their own strengths is provided in Humeau–Heurtier [39].

4.2. Range of Frequencies for Analysis

For continuous time series such as COP data, each MSE scale represents a time frequency:
smaller scales correspond to higher frequencies while larger scales correspond to lower frequencies.
For certain discrete data such as heart interbeat intervals, on the other hand, this frequential
correlation is not nearly as straightforward since each MSE scale corresponds to an approximate
average of vacillating interbeat periods at varying degrees of coarse graining. The MSE analyses
of continuous COP data are therefore more conducive to physiological interpretations based on the
frequency represented at each scale: a SampEn value for a 1 Hz time series would reveal information
about the amount of irregularity of the time series at 1 Hz, and so on.

The frequency range on which to focus MSE analyses is constrained by two factors:
(1) physiological considerations and (2) the limits set by the granularity and length of the data.
In an ideal world, SampEn values would impart information about a well-described physiological
mechanism operating at the analyzed frequency. However, unlike heart rate, the physiological basis
for COP is not well understood. This lack of clarity may account for the wide range of frequencies
(e.g., from 0.0056 to 60 Hz) analyzed by the studies summarized in Table 1.

Several tactics have been adopted to deal with this issue. One approach is to recruit healthy
control groups which, in the case of COP studies, have been largely composed of healthy young
individuals. Comparisons are subsequently made at each frequency range to determine which
frequencies differed statistically between a disordered condition and the healthy young, and these
frequencies are then examined to identify the effects of a specific intervention. Jiang et al. [23], for
instance, selected the frequencies of interest based on the dissimilarity of the CI between elderly
and young subjects at baseline. Once the intervention—vibratory insoles—were applied, the CI in
elderly were re-evaluated at those pre-identified frequencies and were found to increase making
their CI similar to the CI in healthy young. This led to the conclusion that vibratory insoles applied
to the elderly people might be able to improve their postural stability [23]. Other studies, such as
Wei et al. [12] and Wayne et al. [33], have similarly used young as healthy controls to identify the
frequencies to analyze.

When statistical comparisons with a “healthy” group is not feasible, assumptions must
be made about which physiological frequencies are clinically relevant. Some assumptions are
based on physiological feasibility: for example, frequencies above 20 Hz are likely too rapid to
affect balance-related processes or neurophysiological dynamics at the whole-body level. Other
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assumptions are premised on the distribution of spectral power. For instance, the preponderance
of spectral power (95%) of quiet standing COP exists at frequencies lower than 1 Hz [22]. However,
the majority of the studies in our systematic review examined frequencies greater than 1 Hz and some
identified statistically significant results.

The other constraint limiting the range of analyzed frequencies is the granularity and length
of data. The highest frequency, fH, feasible for analysis is set by the sample rate at which the data
is collected. As discussed below, accurate characterization of a physiological process at a specific
frequency requires sufficient granularity, and we recommend having at least five points per cycle
for fH represented at the first MSE scale. Therefore, MSE analyses at 10 Hz frequency should be
performed on data with at least a 50 Hz sampling rate (fs). When the data are acquired at very
high sample rates, this guideline may permit analyses of data at frequencies that are too high to be
physiologically realistic. In this case, fH should be selected based on physiologic feasibility.

The lowest frequency, fL, feasible for analysis is limited by the length of time over which data is
acquired. The shorter the time series, the less one can evaluate the lower frequencies. To determine
the lowest frequency which should be included in the analysis based on the time series length one
can rearrange Equation (2):

fL “
NτM

2ˆ pm` 1q ˆ t
(3)

This will set the lowest frequency which should be included in the analysis (i.e., the lowest
frequency IMF or the cutoff frequency of a high-pass filter) such that at the last time scale it will
have 2 ˆ (m + 1) samples per cycle. For example if we performed EMD on a time-series of length
t = 40 s which resulted in one of the low frequency IMFs having a characteristic frequency of 0.5 Hz.
We need to understand whether that IMF should be included in the analysis or if instead it should be
eliminated since it will be oversampled even at the last time scale. Using Equation (3) with NτM = 300
we observe that the minimum fL should not be lower than 1.25 Hz. Therefore the 0.5 Hz IMF should
not be included since it will always be oversampled. We include m in the denominator because
for larger sequence lengths we do not want to detrend the signal to much. Since we are looking
at longer sequences the relevant information (oscillations) will be prevalent at lower frequencies.
We would like to emphasize that Equations (2) and (3) are merely guidelines to help setup a study
and analysis such that meaningful information can be garnered from a dataset. There are a number
of other important factors to consider when determining how long of a time-series to collect and
which frequencies to analyze; subject fatigue, protocol limitations (inability to collect long data;
BOLD-fMRI), and which frequencies are physiologically meaningful. While complexity generally
persists across multiple time scales in some cases there may be a valid physiological reason for not
analyzing below a particular frequency.

4.3. Appropriate Sample Rate (fs)

To adequately capture the dynamics of a specific frequency of interest, a minimum number
of samples are required per cycle or period. Traditionally, in engineering, the Nyquist criterion
mandates that the sampling rate be twice the frequency to be evaluated. In our systematic review,
some researchers choose fs such that the number of samples per cycle at the highest frequency, fH, was
2 to 4. While this satisfies the Nyquist criterion for sampling, the more conservative approach would
recommend at least five samples per cycle (5 ˆ the highest frequency) since evaluation of sinusoidal
waveforms with sampling at less than 5 samples per cycle results in mean amplitude errors greater
than 5% [40]. To fully capture the information contained in the highest frequency component (fH) it
is recommended to set fs such that there are at least five samples/cycle for fH at the first MSE scale.
The counter-situation is when the sampling is obtained at a much higher rate.

As stated previously, experimental data obtained at a sampling rate much greater than that
required by the Nyquist theorem could lead to analyses of processes that are not relevant to the
system of interest. In this oversampled case, matching would occur at smaller time intervals and
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thereby fail to assess the dynamics at the frequencies of interest. For example, assuming that no
physiological process in COP operates at frequencies greater than 20 Hz, sampling our signal with
fs =1 kHz and working with m = 2 would lead MSE analyses to characterize dynamics at frequencies
which are too high to be physiologically relevant. With this sampling frequency, a 20 Hz cycle would
be associated with 50 samples and the MSE analyses utilizing two or three-sample sequences would
deal with dynamics that are much greater than 20 Hz. There is the option to increase m to around 50
to ultimately include data encompassing 20 Hz or lower frequencies, however, this would introduce
other unintended and undesired effects—namely, decreased number of matches and diminished
confidence in SampEn (to be explained in Section 4.4). In these cases, down-sampling of the data
prior to data analyses would be recommended.

4.4. Sequence Length (m), and Point Matching Tolerance (r)

The selection of m and r is driven by two overarching factors: (1) maximizing the accuracy
and confidence in the SampEn values obtained at each MSE scale and (2) optimizing the ability to
distinguish any real, salient features in the dataset. In principle, the accuracy and confidence of the
entropy estimate improve as the numbers of matches of length m and m + 1 increase. The number
of matches can be increased by choosing small m (short templates) and large r (wide tolerance).
However, a larger r will result in a conditional property (A/B) of 1 and thus a SampEn of zero
for nearly all stationary time series, thereby limiting one’s ability to discriminate between various
time series. On the other hand, r must be large enough to avoid the influence of noise and to
simultaneously increase probability of matches to ensure that confidence in SampEn is adequate [27].

A much more quantitative approach to seeking a value of r was advocated by Lake et al., in
2002 [41]. In this study, Lake derived the variance, σCP, of the conditional probability (CP) of A/B
where CP represents the probability of a match of length m + 1 given there is a match of length m:

σ2
CP “

CP p1´ CPq
B

`
1

B2 pKA ´ KB pCPq2q (4)

where B is again the number of template matches of length m, KA is the number of overlapping
pairs of matching templates of length m + 1 and KB is the number of overlapping pairs of
matching templates of length m. Selection of the value r is then determined by maximizing the
following quantity:

max
ˆ

σCP
CP

,
σCP

´log pCPqCP

˙

(5)

which is the maximum of the relative error of SampEn and of the CP estimate, respectively.
To identify the optimal value for sequence length m, a number of techniques have been utilized.

Selecting the appropriate value for m has its basis on the fact that m determines where the information
content is being assessed. Since SampEn is essentially a marker of how much new information is
generated, it is important to ensure that the template matches for m and m + 1 are within the vicinity
of where the important dynamics are present.

To identify the template lengths associated with sufficient information content and thus the
optimal range of m, Lake et al. [41] employed an autoregressive model while Chen et al. [42] instead
utilized a mutual information method and false nearest neighbor (FNN) technique which is more
appropriate for nonlinear time series. These considerations, although applicable to SampEn analyses
of raw time-series, are largely negated by the process of coarse-graining and the utilization of multiple
scales in MSE. As a result, the choice of m is relatively arbitrary for MSE but becomes more a function
of data logistics: m = 2 is superior to m = 1 since it allows more detailed reconstruction of the joint
probabilistic dynamics while m > 2 is unfavorable due to the requirement of larger data lengths [42].

Numerous studies have taken more of an empirical approach to this issue by observing the
effects of varying m and r on the calculated MSE results. In our systematic review, Duarte et al. [22]
and Jiang et al. [23] performed such evaluations and have concluded that while absolute changes
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in complexity values are observed, relative changes were insignificant [9,22]. Indeed, according
to Duarte et al., the relative results remain generally consistent when r is swept between 10% and
30% [22], suggesting that this range should be sufficient for most data sets. Similarly, Pincus et al.,
has found that entropy analyses produce statistically reliable and reproducible results with m = 2 and
r = 10%–25% and an appropriate data length [37]. Our systematic review reveals that the selection of
m and r are relatively consistent across studies: sequence length m is typically 2 and point matching
tolerance r is either 15% or 20%.

4.5. Filtering

Filtering raw data is a critical pre-processing step for MSE analysis. General trends and low
frequency drifts, in particular, can lend to diminished sequence matching and incorrectly ascertained
increase in irregularity manifesting as a higher SampEn. Moreover, the infrequent sequence matching
corresponds to a widened confidence interval for the derived SampEn values. Nonstationarities
at higher frequencies may also have unpredictable effects on the calculated SampEn values. To
remove such effects, Empirical Mode Decomposition (EMD) is the technique most commonly used as
demonstrated in Table 1.

EMD is well-suited for decomposition of nonlinear, nonstationary physiologic signals and
possesses advantages over Fourier and wavelet analysis because it employs a fully adaptive approach
derived by means of a sifting process [8]. Unlike Fourier or wavelet methods, there are no a
priori assumptions about the nature of a signal and it does not rely on a specific basis (e.g.,
sinusoidal or Haar wavelet function) for decomposing the signal. Fourier based filtering of nonlinear,
nonstationary signals can produce undesired artifacts in the outputted signal. After decomposition
by EMD the resulting IMFs can be recombined in various permutations, representing a range of
characteristic frequencies which are a subset of the original signals bandwidth. This resulting signal
can then be analyzed with methods such as MSE.

EMD is not without its limitations as it is susceptible to mode-mixing and end-effect issues.
Mode mixing occurs when an oscillation at a particular frequency is not fully isolated to a single IMF
but rather leaked to adjacent IMFs. Ensemble Empirical Mode Decomposition (EEMD) minimizes
mode mixing through the implementation of noise-assisted sifting [24]. End effects represent errors
that occur at the beginning or end of an IMF due to the EMD process. To enable proper decomposition
of the edges of a time-series, values must be appended at the boundaries in an appropriate manner.
Improper additions or extensions can lead to unwanted distortions. A detailed review of EEMD
which addresses mode-mixing and end-effect issues can be found in Wu and Huang [24].

Generally, removal of nonstationarities that have characteristics well outside the frequencies of
interest is not difficult to accomplish through the use of EMD or other filtering methods. However
sudden, transient movements, such as shifts and fidgets, can also cause nonstationarities with
predominant frequencies within the frequencies of interest since they are simply larger versions of
the complex postural sway adjustments seen on a regular basis. Due to this overlap in frequencies,
these particular nonstationarities may commonly persist despite the filtering step. A more detailed
discussion on technique (Fourier-based, wavelet, EMD) selection for the filtering of biomedical
signals can be found in Fonseca-Pinto [43].

4.5.1. Nonstationarities within Frequency Band of Interest

The presence of a single large nonstationarity can generate significant changes in the calculated
tolerance window, r. As noted previously, r is directly proportional to the signal’s standard deviation
(at Scale 1) and importantly is established thereafter for all scales. A large spike or extrema can
increase r, increase the number of template matches, and thus decrease the overall complexity index
CI. As a consequence, a lower CI can be paradoxically construed as either increased regularity or
larger presence of spurious extremas. This phenomenon is depicted in Figure 3 where the large
nonstationarity starting at 34 s, potentially due to the subject shifting, greatly increases the standard
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deviation of the signal and therefore the value of r. We explore how this nonstaionarity affects
the SampEn calculation at scale 15. In Figure 4a the nonstationarity is included while in Figure 4b
it is excluded. As shown, this results in more template matches in the former case and therefore
lower sample entropy. The absolute difference in SampEn at this coarse grained level is substantial:
|0.872–1.902| = 1.03.
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Figure 4. The first 50 coarse-grained points from Figure 3 with τ = 15. The straight (dashed, dotted,
dashed-dotted) lines represent the point matching tolerance, r, based on a standard deviation which
includes the nonstationarity (a) and does not include the nonstationarity (b). Two sequence template
matches are represented by ∆–# vectors which are comprised of matches to the first (∆) and second
(#) points from the first template. Three sequence template matches are represented by ∆–#-ˆ, where
the next point (ˆ) matches the third point from the template. Points which do not match any template
points are represented by � symbols. In (a) due to the large nonstationarity, the calculated standard
deviation is large enough to cause overlap between the tolerance about the 2nd (dash-dot line) and 3rd
points in the template sequence. This results in certain points matching both the 2nd and 3rd points
as indicated by markers with both an # and an ˆ. Because of the wide tolerance the complexity index
will be less than what it would be without the large nonstationarity. In (b) it is observed that exclusion
of the nonstationarity results in tighter tolerance about the template sequence points. In turn this will
result in a larger complexity index. Adapted from [6].

Different approaches have been attempted to deal with this dilemma. Some researchers have
used a fixed standard deviation [22] irrespective of the time-series variability. Although this approach
removes sensitivity to nonstationarities, it is also less adaptive to the variability in amplitudes seen
across subjects. Subjects who exhibit larger amplitudes will generally be associated with a greater
complexity, CI, and vice versa. Other researchers have chosen to remove the nonstationarity from the
time-series [22]. Conceptually, removal of such nonstationarities—which may occur frequently in
certain cases—constitutes removal of information which may be an important aspect of the systems
dynamics. For this reason, we seek to preserve the intrinsic structure of the signal as much as it is
feasible. Lastly, some have used a median absolute deviation (MAD) in place the signal’s standard
deviation [44]. The MAD is computed by taking the median of the absolute deviations between the
data’s median. This approach is again less sensitive to large nonstationarities but due to the inherent
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difference between MAD (based on median of absolute differences) and standard deviation (based
on variance, which is the average of squared differences), the comparative relationship between
MAD-based MSE and the traditional MSE algorithm is unclear. One possible solution to this issue of
nonstationarities is proposed here.

4.5.2. Windowed Standard Deviation MSE

An alternative method for determining the point matching tolerance r is the windowed standard
deviation—herein referred to as windowed-MSE or WMSE. In this approach, the standard deviation
is calculated for a fixed width window as it is stepped across the time-series as opposed to calculating
standard deviation for the entire time-series. The window is stepped one sample at a time until the
end of the time series, and in the process generating N-n standard deviation calculations, where n
is the window width. The median value for all N-n standard deviations is then determined and
subsequently used to calculate the point matching tolerance r, which is subsequently applied to
all scales.

The window width n should be set such that each window provides a reasonable estimate of
the population standard deviation. For a normally distributed time series with no outliers, to be 95%
confident that the error between the window and population standard deviation is less than 10%,
the window width must be 240 samples. The confidence interval for the window standard deviation
estimate of the population standard deviation, σ, can be calculated using:

r

g

f

f

e

pn´ 1q s2

χ2
9{2,n´1

,

g

f

f

e

pn´ 1q s2

χ2
1´9{2,n´1

s (6)

where n is the window width, s is the sample (or window) standard deviation, χ2 is the chi-squared
distribution for a given significance level, α, with degrees of freedom, n ´ 1 [45]. With the estimate of
240 samples as provided by Equation (6) with an arbitrary s and α of 95%, we can be reasonably
confident that each of our windows is providing an accurate estimate of the entire time-series
(population) standard deviation.

For time-series without existing nonstationarities, WMSE produces results very similar to
that of the traditional MSE approach, since standard deviation remains the means by which the
point matching tolerance r is calculated. For time-series with sporadic nonstationarities, WMSE
deemphasizes the nonstationarities and yields a larger CI relative to the traditional MSE method,
as should be expected.
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Figure 5 provides an example of the difference in the SampEn Vs τ curves for MSE and WMSE
calculations using the time-series depicted in Figure 3 with a large nonstationarity. Table 2 highlights
the details of the standard deviation result for this waveform using MSE and WMSE. It is evident that
the inclusion of the nonstationarity in the time series (0–37 s) generates a much different standard
deviation as compared to that seen with exclusion of the nonstationarity (0–34 s) when determined by
the traditional algorithm (MSE column). However the standard deviation derived using the WMSE
approach is much more robust against the effects of including the nonstationarity (WMSE column).
Since the standard deviation as calculated by WMSE is smaller in the nonstationarity case, we see
higher sample entropies at a given scale in Figure 5 for the WMSE curve.

Table 2. Differences in the standard deviation result between MSE and WMSE for the waveform
shown in Figure 3. The results are shown including the nonstationarity (with) at the end and not
including it (without).

Nonstationarity MSE WMSE

With (0–37 s) 0.3718 0.1214
Without (0–34 s) 0.1234 0.1214

5. Conclusions

This systematic review has revealed significant heterogeneity in the way MSE is applied to
COP displacement data. Part of the heterogeneity arises from the lack of clarity regarding the
methodological challenges involved in MSE-based analyses. We recommend that prior to testing,
future studies should consider establishing these important factors: the minimal amount of time
for data collection, the physiological frequencies to evaluate, the inclusion of healthy controls, and
sampling rate for data acquisition. Once the data is collected, the researchers must then decide
how the data should be filtered, what values m and r should be assigned, and how to address the
nonstationarities that persist despite the filtering process. These recommendations are summarized
in flowcharts in Appendix A.

As MSE increases in popularity, modifications of the MSE methodological algorithm will likely
arise with corresponding changes in the way the parameters are assigned. Already, different variants
of MSE have been published, and this review does not include them due to their sheer number,
their limited employment to COP studies, and—at present—their lack of mature development.
Nevertheless, many of the methodological challenges discussed here still apply, and this paper
intends to help researchers understand how to properly design their studies and to analyze their
data using MSE. Further discussions about these methodological issues should hopefully enhance
consistency across studies in both reporting and possibly methodology for MSE analyses of COP
data and other continuous real-world time series. In turn, accurate and consistent results for the MSE
assessment of physiological signals will help determine whether MSE gains more traction as a clinical
biomarker. The concept of complexity and health is still novel in the clinical setting but could become
an important part of patient diagnoses in the future.
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Appendix

A. Flowcharts

The following flowcharts provide a visual representation of our recommendations for each
section in 4. These flowcharts can be used when making decisions specific to a given study.

Stability analysis—involves looking for a large change in SampEn from one time scale to the next
followed by another large change in the opposite direction between the next two scales.
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Figure A1. Determining Required Data Length. NτM—Number of points remaining at the last time 
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Figure A1. Determining Required Data Length. NτM—Number of points remaining at the last time
scale which dictates whether the SampEn calculation will be accurate. The ˆ symbol represents to
the power.
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Figure A2. Range of Frequencies for Analysis. fs—sampling rate; fH—highest frequency included in 
analysis; fL—lowest frequency included in analysis; dissimilarity comparison—is a statistical analysis 
between a healthier (or otherwise disparate group) and the study group at baseline to determine 
which frequencies best distinguish the groups; * Cautionary note: Since the premise of MSE is that 
complexity exists across all scales; excluding available data should only be done when there is a 
clear reason for doing so. 

Figure A2. Range of Frequencies for Analysis. fs—sampling rate; fH—highest frequency included in
analysis; fL—lowest frequency included in analysis; dissimilarity comparison—is a statistical analysis
between a healthier (or otherwise disparate group) and the study group at baseline to determine
which frequencies best distinguish the groups; * Cautionary note: Since the premise of MSE is that
complexity exists across all scales; excluding available data should only be done when there is a clear
reason for doing so.
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Figure A3. Appropriate sample rate (fs). fs—sampling rate; fH—highest frequency included in analysis; 
dissimilarity comparison—is a statistical analysis between a healthier (or otherwise disparate group) and the 
study group at baseline to determine which frequencies best distinguish the groups. 

Figure A3. Appropriate sample rate (fs). fs—sampling rate; fH—highest frequency included in
analysis; dissimilarity comparison—is a statistical analysis between a healthier (or otherwise disparate
group) and the study group at baseline to determine which frequencies best distinguish the groups.
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Figure A4. Selection of sequence length (m), and point matching tolerance (r). Mutual information and False 
Nearest Neighbor Reference: Chen et al. [42]; Minimizing the relative error of SampEn Reference: Lake et al. 
[41].  

Figure A4. Selection of sequence length (m), and point matching tolerance (r). Mutual information
and False Nearest Neighbor Reference: Chen et al. [42]; Minimizing the relative error of SampEn
Reference: Lake et al. [41].
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Figure A5. Filtering. 
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