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Abstract: Earlier investment practices show that there lies a discrepancy between the actual
fund strategy and stated fund strategy. Using a minimum spanning tree (MST) and planar
maximally-filtered graph (PMFG), we build a network of open-ended funds in China’s market and
investigate the evolution characteristics of the networks over multiple time periods and timescales.
The evolution characteristics, especially the locations of clustering central nodes, show that the actual
strategy of the open-ended funds in China’s market significantly differs from the original stated
strategy. When the investment horizon and timescale extend, the funds approach an identical actual
strategy. This work introduces a novel network-based quantitative method to help investors identify
the actual strategy of open-ended funds.
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1. Introduction

Investment funds provide investors many advantages, such as professional wealth management
and more diversified portfolios. They are growing as a preferable option in today’s investment
practices. To attract more investors, many fund companies spend tremendous efforts introducing
their investment strategies to investors. These strategies, commonly called the stated strategy, are
publicly available to investors. Many fund managers and companies, however, often change their
stated strategies, aiming to earn higher profits. The actual strategies are not known by investors.
Thus, the interests of the investors are hard to protect in practice. How to get efficient and reliable
information about funds’ actual strategies has become a big challenge for researchers and practitioners.

As one well knows, the financial trading market is a complex system. To explore the nature of
its components, a recent study has focused on financial networks [1]. Most financial networks in the
literature are built on the correlation coefficient matrix R of asset returns. Nodes are used to represent
assets or trade agents, while edges linking nodes denote their relationship or closeness. Current
studies mostly concentrate on the topological properties of financial networks, but only a few research
works explore the practical applications of financial networks [2–18]. For example, Mantegna et al. [2]
relate the minimum spanning tree of a stock and its hierarchical tree (HT) to a taxonomy application
of assets. Onnela et al. [3,4] examine the dynamics of the minimum spanning tree (MST) and its
application to asset portfolio. They find that the optimal Markowitz portfolio lies on the outskirts
of the MST. Brida et al. [5] employ the MST and its HT to analyze stock returns and trading volume.
Gilmore et al. [6] use the MST obtained from European Union stock market indexes to investigate the
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property of equity market. Lee et al. [8] discuss the properties of the Korean stock market through MST
on high frequency returns.

In addition, timescale is found as a key determinant impacting the property of financial networks
in the study of financial network [11]. Another strand of literature concentrates on the improvement of
financial network accuracy, because there always exists much noise in the financial trade. This often
leads to the bias of a financial network. To eliminate the influence from noise, researchers adopt some
filtering methods, among which random matrix theory (RMT) [9,15,17] and planar maximally-filtered
graphs [16–18] are two efficient tools. Garas et al. [9] study the Athens stock market by MST and
RMT and discover that the Athens stock market is related to different economic sectors, including
financial services, commerce, transport, manufacturing and constructions. Tumminello et al. apply
planar maximally-filtered graph (PMFG) to explore the influence of timescale on the top 300 biggest
stock portfolios in the New York Stock Exchange during 2001–2003 and find that PMFG is able to
obtain a large amount of market effective information. They also show that the smaller the timescale,
the more robust the PMFGs appear [18]. Further, Coronnello et al. [17] employ a variety of methods,
including RMT, single linkage cluster analysis (SLCA), average linkage cluster analysis (ALSA), MST
and PMFG to describe how timescale impacts stock industrial clustering.

The relevant network technologies used to analyze financial market have received much attention
in the recent literature. However, few studies deeply touch the fields of fund networks and fund
strategy identification. Miceli et al. [19,20] apply MST to examine the fund strategy. Although their
study stays in a static state for a certain time period, it sheds light on the fields using network
studies’ fund evolution and its strategy. Motivated by the previous contribution, we build up the
correlation-based efficient fund network, such as MST and PMFG, to eliminate most trading noise
and further help investors identify the actual investment strategy that the fund adopted. By studying
the network evolution as time period lengthens and as the timescale expands, we also provide
a quantitative identification for the dynamic fund’s actual strategy.

The remainder of this article is organized as follows: Section 2 discusses the sample of the
open-ended fund in China’s market and our empirical methodology for the fund network. The results
are presented and discussed in Section 3. Section 4 concludes.

2. Data and Methodology

2.1. Fund Data

The funds in China’s financial market are generally classified in the following categories:
(1) open-ended and closed-ended funds based on whether funds can be added and redeemed;
(2) corporate and contract funds according to the organization form; and (3) stock, bond, monetary
and hybrid funds according to the investment target. These rough categories, however, only help
investors grasp basic information, such as fund style, risk preference, etc. They lack the detailed
investment strategy.

In order to deeply probe the fund strategy, we retrieved 94 actively-traded open-ended contract
funds from the CSMAR database. The sample period ranges from 2005 to 2012. More details of the
94 funds are listed in Table A1. Before analyzing the fund strategy and its change, we first obtain
the strategy published by Tencent Finance website and Sohu Finance website as the sample fund’s
original stated strategy. The 94 open-ended contract funds are classified into five types of strategies:
partial stock fund (56 funds), partial bond fund (21 funds), stock-bond balanced fund (12 funds), bond
fund (3 funds) and principal guaranteed fund (2 funds). For the sake of clarity, the stated strategies
are labeled by different colors in Table A1. Hereafter, the funds in our empirical analysis refer to the
open-ended funds.

The following assumptions are made to obtain the identification from a fund network: funds with
a same strategy will earn approximate returns over an identical investment horizon to a great extent.
Hence, in a correlation-based network on funds’ return series, these funds become close neighbors.
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Observing the clustering of the fund network, we can identify the fund’s actual strategy. Compared
to the original stated strategy, we further detect the discrepancy between a fund’s stated and its
actual strategy.

2.2. Methodology

2.2.1. Selection of the Significant Correlation Coefficient

In a fund network, nodes are funds. The edges that link any two nodes are produced by their
correlation coefficients. To remove most trading noise, our empirical networks only include those
edges with significant correlation. Others are viewed as spuriously correlated edges and are excluded
from the empirical fund networks. The financial information commonly can be expressed by the return
data of the assets. In most financial analyses, the logarithm return is used to analyze the feature of
trading and investment. Hence, we calculate the logarithm return of the fund net value and then get
the correlation coefficient matrix R. The logarithm return r∆tptq is the percentage change of the fund
daily net value Z at time t over timescale ∆t:

r∆tptq “ lnZpt` ∆tq ´ lnZptq (1)

Based on Equation (1), we further gain the Pearson correlation coefficient ρ∆t
ij between fund i and

j as follows:
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where x¨ ¨ ¨ y represents the expectation operator. The fund network is constructed on the correlation
coefficient matrix R. The value of ρ∆t

ij ranges from ´1 to 1. ρ∆t
ij = 1 means a completely positive

correlation between nodes i and j and the corresponding funds have the same investment strategy.
ρ∆t

ij = ´1 means a completely negative correlation and the corresponding funds have a contrary

investment strategy. ρ∆t
ij = 0 implies that there is no correlation between two funds and their strategies

are independent. Therefore, from the characteristics of a correlation-based fund network obtained
from R, we can deduce the fund’s actual strategy.

Next, we employ the following t-test under a confidence level of 1´ α = 0.95 to test the significance
of correlation coefficients. If t ą t0.05{2, we reject null hypothesis H0 and view ρij as a significant
coefficient, and ρij is viewed as an insignificant coefficient otherwise. Here, the matrix R only includes
significant coefficients to construct a fund network after most of the trading noise is eliminated.
The work in [11] adopts a similar t-test to identify significant coefficients. The expression of the t-test
for a correlation coefficient is as follows:

H0 : ρ “ 0 (3)

H1 : ρ ‰ 0 (4)

t “ ρij

d

n´ 2
1´ ρ2

ij
„ tpn´ 2q (5)

where n represents the number of observations. Hereafter, our empirical networks are constructed on
the significant correlation coefficient matrix Re.

2.2.2. Network of MST and PMFG

The MST method is a commonly-accepted method that can efficiently filter the noise in the fund
networks and extract the valuable information. It presently is widely used in a variety of social
behavior networks. MST is the shortest distance tree of its corresponding network. It shows most
characteristics of a network in the simplest form. To obtain the MST of a fund network, we first
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transform correlation coefficients to a distance framework. Using the transformation dij=
b

2
`

1´ ρij
˘

,
we produce an N ˆ N distance matrix D on which the MST is built. As one well knows, a network
probably contains several different MST. This could cause error when analyzing certain fund features
through a certain MST. To avoid the possible bias from multiple MSTs, we increase the precision of ρij
up to a four digit decimal. The numerical simulations indicate that this treatment ensures a unique
MST corresponding to each network in our analysis.

Since an MST only has the necessary edges that connect the shortest distance, it filters
a considerable amount of the valid information of a corresponding network. A PMFG [16] method is
used to excavate the information underlying a fund network. The PMFG contains 3N-6 edges, but only
N-1 edges on an MST. Therefore, the PMFG preserves more useful information that might be missed
by an MST. Using both PMFG and MST helps us better grasp the characteristics of a fund network.
PMFG is mainly used as a supplementary method to overcome the non-unique shortage of MST.

In addition, we add a hierarchical tree (HT) [2,21] as a supplement to an MST. This combination
accurately detects the correlation and taxonomy of funds. Figure 1 illustrates the advantage when
combing an MST and its HT. For non-unique MSTs, their HT gives a unique expression to determine
the potential relationship. Correspondingly, when the nodes on an HT exhibit identical distances, its
MST can precisely tell whether or not the nodes are identical. For example, the HT in Figure 1 indicates
that nodes c and e have the equal distance 1 to node a, but through the corresponding MSTs, we find
that only node e is closer to node a compared to the others. The distance dăij on the HT of Figure 1,
a subdominant ultra-metric distance, represents the maximum value of the Euclidean distance linking
the shortest route between nodes i and j [2,21].
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2.2.3. Characteristic Indicators of a Network

The correlation of nodes located on a fund network indicates the funds’ relationship and their
actual strategy. We first compute the indicator of correlation coefficient mean ρ to limn the total
correlation of MST and PMFG. The bigger the value of ρ, the more correlated the nodes in the network.
Funds shown by nodes in the network with a high ρ have a more similar actual strategy. Equations (6)
and (7) are used to compute ρ of MST and PMFG, respectively:

ρ1p∆t, Tq “
1

N ´ 1

ÿ

ρijPR∆t
e,T

ρij (6)

ρ2p∆t, Tq “
1

3N ´ 6

ÿ

ρijPR∆t
e,T

ρij (7)

where ρ1p∆t, Tq and ρ2p∆t, Tq are the mean correlation coefficients of MST and PMFG on a timescale
∆t over a period T, respectively, N is the edge number of the fund network and R∆t

e,T is the matrix built
by significant correlation coefficients. Next, to reflect the network stability, we calculate the correlation
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coefficient variance r. The correlation coefficient variances for MST and PMFG are respectively r1 and
r2, shown by Equations (8) and (9). A high variance denotes more diverse fund strategies.

r1p∆t, Tq “
1

N ´ 1

ÿ

ρijPR∆t
e,T

rρij ´ ρ1 p∆t, Tqs
2

(8)

r2p∆t, Tq “
1

N ´ 1

ÿ

ρijPR∆t
e,T

rρij ´ ρ2 p∆t, Tqs
2

(9)

where r1p∆t, Tq and r2p∆t, Tq represent the variance of the correlation coefficient of MST and PMFG
on a timescale ∆t over a period T, respectively. The normalized tree length (NTL) is used to measure
the closeness of the network. Equations (10) and (11) give the computation of NTL for the MST and
PMFG, respectively:

LNTL1p∆t, Tq “
1

N ´ 1

ÿ

dijPD∆t
e,T

dij (10)

LNTL2p∆t, Tq “
1

3N ´ 6

ÿ

dijPD∆t
e,T

dij (11)

where LNTL1p∆t, Tq and LNTL2p∆t, Tq are the normalized tree length of MST and PMFG on a timescale
∆t over a period T, respectively, D∆t

e,T is the distance matrix obtained from R∆t
e,T and dij is the distance

between nodes i and j. A shorter NTL generally denotes that the network has a greater closeness.
In this case, the funds represented by network nodes exhibit a more similar strategy.

In addition, we introduce the average path length (APL) as a supplement of identifying the fund’s
actual strategy. It is the mean of the edges linking the shortest route between both nodes and calculated
as shown in Equation (12):

LAPL “
2

NpN ´ 1q

ÿ

iąj

lij (12)

where lij is the edge number of the shortest path between nodes i and j. A high APL reflects that
a network has a stronger compactness. The funds, therefore, are likely to appear as having a more
similar strategy.

Central nodes exhibit the characteristics of nodes on the network. A central node generally links
a large number of other nodes and possesses a relatively high degree of network. It is often employed
as a representative of nodes surrounding it. Through observing the feature of a central node, one has
to get the partial information of its neighboring nodes. We define the central nodes of a network as
follows: we rank the node degrees in descending order, as shown, K1 ą K2 ą, ...,ą Kn, and the nodes
that satisfy the condition Ki`1{Ki ą0.75 are defined as central nodes of the network.

3. Results and Discussion

3.1. Evolution Characteristics and Strategy Identification over a Time Period

Identifying the dynamic evolution of an open-ended fund network helps investors learn the actual
change of fund investment strategy. In this section, we use a fixed timescale ∆t “1 day to calculate
R∆t

e,T over four different sample periods: 2005–2009, 2005–2010, 2005–2011 and 2005–2012. We then
construct MST from R∆t

e,T to briefly exhibit the characteristics of the fund network.
The details of 94 open-ended contract funds, including their original stated strategies, are

presented in Table A1. Each color corresponds to a fund’s stated strategy, given in Table A1, to
conveniently locate it in the network. We note that there are five different stated strategies in the
sample: partial stock fund (red, 56 funds), partial bond fund (green, 21 funds), stock-bond balanced
fund (blue, 12 funds), bond fund (yellow, three funds) and principal guaranteed fund (cyan, two
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funds). Figures 2–5 show the MST of 94 funds for four time periods, respectively. We find that: (1) each
group on the MST includes the funds with different stated strategies; some funds show different
actual strategies from their original stated strategies; (2) each group includes a central node; others
surrounding it exhibit a similar actual strategy; (3) as the time period lengthens, the actual strategy
greatly changes, e.g., from three types of actual strategies for the period of 2005–2009 to two types for
period of 2005–2012.
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To confirm the results above, we apply PMFG again to depict the dynamic characteristics of the
fund network over the same four time periods. Figures 6 and 7 illustrate the PMFG in the periods of
2005–2009 and 2005–2012, respectively. Figure 6 shows an approximate group with the MST in Figure 2.
This evidence partially supports the results of Figure 2. There also exist different groups between
Figures 6 and 7 indicating that the strategies of sample funds change as the time period lengthens.
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Moreover, by comparing the characteristic indicators of MST with PMFG, like ρ, r, LNTL, LAPL,
degree and central node, we further study the evolution of the fund network and the fund strategy as
the time period changes. Tables 1 and 2 show that as the time period lengthens: (1) the correlation
of the fund network gradually increases, shown by the increasing ρ, and the fund network trends
to be more stable, shown by the decreasing r; (2) the degree of closeness of the fund network also
gradually increases, shown by the decreasing LNTL and LAPL; and (3) the central node of the fund
network exhibits unstable behavior, shown by the changed three top central nodes, e.g., the different
Kipi “ 1, 2, 3q and K1

i pi “ 1, 2, 3q. These results suggest that the funds’ actual strategies differ from
their original stated strategies in investment practice and that as the time period lengthens, the closer
network construction shows that the funds trend to a more identical actual strategy.

Table 1. The characteristics of the MST over four different time periods.

Time Period ρ1 r1 LNTL1 LAPL1 K1 K2 K3

2005–2009 0.5642 0.0378 0.9025 4.0105 20(50) 19(29) 15(19)
2005–2010 0.5718 0.0347 0.8964 3.8813 23(29) 20(50) 13(19)
2005–2011 0.5784 0.0326 0.8916 3.9243 23(29) 17(50) 16(19)
2005–2012 0.5775 0.0323 0.8940 3.4706 30(29) 27(19) 6(89)

Note: The number, in the columns of Ki and in the parentheses, denotes the corresponding fund code of a central
node on networks, and the outside number is its degree.

Table 2. The characteristics of PMFG over four different time periods.

Time period ρ2 r2 LNTL2 LAPL2 K1

1 K1

2 K1

3

2005–2009 0.4862 0.0416 0.9879 2.1716 57(50) 55(29) 47(19)
2005–2010 0.4963 0.0386 0.9796 2.1645 60(29) 54(50) 46(19)
2005–2011 0.5067 0.0363 0.9703 2.1661 60(29) 49(50) 47(19)
2005–2012 0.5039 0.0351 0.9750 2.1080 69(19) 66(29) 26(16)

Note: The number, in the columns of Ki and in the parentheses, denotes the corresponding fund code of a central
node on networks, and the outside number is its degree.

Figure 8 corresponds to Tables 1 and 2. In Figure 8, two curves of MST and PMFG make a parallel
movement over the period of 2009–2012; for example, the identical increasing of ρ in Figure 8a, the
identical decreasing of r, LNTL and LAPL in Figure 8b–d. This exhibits that both networks have
identical evolution characteristics. Figure 8e shows that the central nodes of Kipi “ 1, 2, 3q and
K1

i pi “ 1, 2, 3q on MST and PMFG exhibit a similar change as the time period lengthens. This hints that
the actual strategies of funds, represented by their central nodes, continue to adjust during the whole
investment horizon.
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original stated strategies in investment practice and that as the time period lengthens, the closer 
network construction shows that the funds trend to a more identical actual strategy. 

Table 1. The characteristics of the MST over four different time periods. 

Time Period 1  1r 1NTLL 1APLL 1K 2K  3K  
2005–2009 0.5642 0.0378 0.9025 4.0105 20(50) 19(29) 15(19) 
2005–2010 0.5718 0.0347 0.8964 3.8813 23(29) 20(50) 13(19) 
2005–2011 0.5784 0.0326 0.8916 3.9243 23(29) 17(50) 16(19) 
2005–2012 0.5775 0.0323 0.8940 3.4706 30(29) 27(19) 6(89) 

Note: The number, in the columns of Ki and in the parentheses, denotes the corresponding fund code 
of a central node on networks, and the outside number is its degree. 

Table 2. The characteristics of PMFG over four different time periods. 

Time period 2  2r  2NTLL 2APLL '
1K

'
2K  '

3K  
2005–2009 0.4862 0.0416 0.9879 2.1716 57(50) 55(29) 47(19) 
2005–2010 0.4963 0.0386 0.9796 2.1645 60(29) 54(50) 46(19) 
2005–2011 0.5067 0.0363 0.9703 2.1661 60(29) 49(50) 47(19) 
2005–2012 0.5039 0.0351 0.9750 2.1080 69(19) 66(29) 26(16) 

Note: The number, in the columns of Ki and in the parentheses, denotes the corresponding fund code 
of a central node on networks, and the outside number is its degree. 

Figure 8 corresponds to Tables 1 and 2. In Figure 8, two curves of MST and PMFG make a parallel 
movement over the period of 2009–2012; for example, the identical increasing of   in Figure 8a, the 
identical decreasing of r , NTLL  and APLL  in Figure 8b–d. This exhibits that both networks have 
identical evolution characteristics. Figure 8e shows that the central nodes of ( 1,2,3)iK i   and 

' ( 1,2,3)iK i   on MST and PMFG exhibit a similar change as the time period lengthens. This hints that 
the actual strategies of funds, represented by their central nodes, continue to adjust during the whole 
investment horizon.  
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Figure 8. Comparison of the characteristic indicators of MST with PMFG over 2009–2012. (a) Evolution 
of correlation coefficient; (b) Evolution of correlation coefficient variance; (c) Evolution of normalized 
tree length; (d) Evolution of average path length; (e) Evolution of degree of central node. 

Figures 9 and 10 present the distributions of the node degree of MST and PMFG, respectively, 
over four different periods. The illustrations of Figures 9 and 10 exhibit that the shapes of the degree 
distributions over all four periods are quite similar, especially when the degree is greater than five 
for MST and 10 for PMFG. In all four time periods, the number of nodes with a higher degree falls 
approximately into the range [1,3] for both MST and PMFG. This indicates that the nodes surround a 
few central nodes and conduct similar investment strategies with these dominant funds. As the time 
period lengthens, the nodes approach a certain node, and the funds trend to an identical strategy. 

Figure 8. Comparison of the characteristic indicators of MST with PMFG over 2009–2012. (a) Evolution
of correlation coefficient; (b) Evolution of correlation coefficient variance; (c) Evolution of normalized
tree length; (d) Evolution of average path length; (e) Evolution of degree of central node.

Figures 9 and 10 present the distributions of the node degree of MST and PMFG, respectively,
over four different periods. The illustrations of Figures 9 and 10 exhibit that the shapes of the degree
distributions over all four periods are quite similar, especially when the degree is greater than five
for MST and 10 for PMFG. In all four time periods, the number of nodes with a higher degree falls
approximately into the range [1,3] for both MST and PMFG. This indicates that the nodes surround
a few central nodes and conduct similar investment strategies with these dominant funds. As the time
period lengthens, the nodes approach a certain node, and the funds trend to an identical strategy.
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In the wake of the financial crisis in 2008, China’s security markets were down in the dumps. 
Some fund managers prefer consistent strategies to defeat a higher risk together. The evidence above 
perfectly explains the practical phenomena. In the network built on the relevant funds, the correlation 
of nodes gradually increases; the structure of the whole network becomes more compact. 

3.2. Evolution Characteristics and Strategy Identification over Timescales 

Most financial networks in recent research are constructed by the correlation coefficient  
matrix of asset returns. The calculation of return, however, depends on a certain selected timescale.  
The return series obtained from different timescales have distinct statistical distributions and  
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In the wake of the financial crisis in 2008, China’s security markets were down in the dumps.
Some fund managers prefer consistent strategies to defeat a higher risk together. The evidence above
perfectly explains the practical phenomena. In the network built on the relevant funds, the correlation
of nodes gradually increases; the structure of the whole network becomes more compact.

3.2. Evolution Characteristics and Strategy Identification over Timescales

Most financial networks in recent research are constructed by the correlation coefficient matrix
of asset returns. The calculation of return, however, depends on a certain selected timescale.
The return series obtained from different timescales have distinct statistical distributions and
correlations [11,22,23]. The behavior of returns on different timescales also reflects the fund investment
operation over different horizons. This makes timescale a crucial factor impacting the characteristics of
a fund network. To investigate such an influence, we construct MST on four typical timescales, e.g., the
daily, weekly, monthly and quarterly scale, for the period from 2009–2012.

Table 3 presents the evolution of fund networks over four timescales. As the timescale expands, the
networks show an increasing correlation, a declining fluctuation and a decreasing distance. The results
are similar to the results presented in Tables 1 and 2 which indicate similar evolution characteristics
between timescale and time period. As the timescale expands, the fund's actual strategy trends
accordingly. In Table 3, we also notice that LAPL1 has an apparently increasing tendency, which
differs from the changes in Tables 1 and 2 in which LAPL1 only slightly decreases. This shows that
the compactness of the whole network significantly slows down as the timescale expands. The fund
network exhibits higher correlation as the timescale expands. The investment strategy of funds
gradually trends consistently. When comparing Figure 11 to Figure 12, being two significantly different
scales, we find that the network structure varies dramatically over timescales. The central nodes appear
to have a clear difference, supporting the evidence that funds continue to adjust their actual strategies.

Table 3. The characteristics of MST over four timescales.

Timescale ρ1 r1 LNTL1 LAPL1

daily 0.5775 0.03225 0.8940 3.4706
weekly 0.6631 0.0247 0.7947 5.2398

monthly 0.8008 0.0197 0.5943 8.8161
quarterly 0.9968 0.0003 0.0277 9.3811
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To clarify the details, we re-construct the HT in Figure 13 on a quarterly timescale, showing
correspondence to the MST in Figure 12. According to Figure 13, one sees easily that the scattered
nodes in Figure 12 surround a certain central node. Over 92 percent of nodes present very low
HT distances. Their values of HT approach nearly zero. This suggests that the fund returns upon
a quarterly timescale remain highly correlated. Most funds in this case conduct a consistent investment
strategy, and funds do not appear to have a determinant node. The evidence from HT, shown by
Figure 13, partially supports the results in Table 3 that the network becomes closer as the timescale
increases. The funds, therefore, have a similar investment strategy. Figure 14, from the side of the
degree distribution, also verifies the change of the central node indicated by Figures 11 and 12.

According to the evolution features of the networks, investors can identify which funds have
obviously different strategies over different timescales. Investors need to properly choose the funds
according to their own realistic requirements and investment preference. Additionally, investors
are able to combine the funds with different actual strategies as the portfolio to diversify the risk.
In addition, utilizing the networks over different timescales, the actual strategies of the funds on
different horizons are identified. Investors, therefore, can choose the suitable funds according to their
own investment horizons and the preference.
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4. Conclusions

In this study, we examine the evolution of a fund network and a fund’s actual strategy using
94 open-ended funds in China’s finance market. Our results from the evolution of MST and PMFG
are two-fold. Firstly, as the time period lengthens, the fund network presents a stronger correlation,
a weaker fluctuation and a closer construction. The homogeneity of the network becomes evident.
On short time periods, the network exhibits a few prominent central nodes. The fund strategy, indicated
by its central node, varies as the time period changes. The fund’s actual strategy significantly differs
from its original stated strategy. On a longer investment horizon, the funds trend to a certain identical
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actual strategy, and the central nodes reduce greatly. Secondly, as the timescale expands, the fund
network exhibits a tendency similar to the one of time periods. The network exhibits more correlated,
stable and closer construction on a wider timescale similar to the change over time periods. The fund
strategy trends more accordingly, and there still exists the evident discrepancy between the actual
and stated strategy. However, since there is a discrepancy in redemption and trading between the
open-ended funds and the closed-ended funds, it is hard to directly apply the above conclusions to the
closed-ended funds.
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Appendix

Table A1. Ninety four sample open-ended contract funds and their stated strategies.

Fund Code Fund Name
Abbreviation Fund Type Corresponding Code

in Network (Color) Fund Code Fund Name
Abbreviation Fund Type Corresponding Code

in Network (Color)

000001 HXCZ partial stock fund 1 (red) 162202 TDZQ partial stock fund 48 (red)
000011 HXDP partial stock fund 2 (red) 162203 TDWD partial stock fund 49 (red)
001001 HXZQA/B bond fund 3 (yellow) 162204 TDJX partial stock fund 50 (red)
002001 HXHB stock bond balanced fund 4 (blue) 180001 YHYS partial stock fund 51 (red)
020001 GTJY partial stock fund 5 (red) 180002 YHBB principal guaranteed fund 52 (cyan)
020002 GTZQA bond fund 6 (yellow) 180003 YH88 partial stock fund 53 (red)
020003 GTJX partial stock fund 7 (red) 200001 CCJH stock bond balanced fund 54 (blue)
020005 GTJM partial stock fund 8 (red) 200002 CCJT partial stock fund 55 (red)
040001 HACX partial stock fund 9 (red) 202001 NFWJ partial stock fund 56 (red)
040002 HAAG partial stock fund 10 (red) 202101 NFBY bond fund 57 (yellow)
040004 HABL stock bond balanced fund 11 (blue) 202202 NFBX principal guaranteed fund 58 (cyan)
050001 BSZZ stock bond balanced fund 12 (blue) 206001 PHCZ partial stock fund 59 (red)
050002 BSYF partial stock fund 13 (red) 210001 JYYX partial stock fund 60 (red)
050004 BSJX partial stock fund 14 (red) 213001 BYHL partial stock fund 61 (red)
070001 JSCZ partial stock fund 15 (red) 217001 ZSGP partial stock fund 62 (red)
070002 JSZZ partial stock fund 16 (red) 217002 ZSPH stock bond balanced fund 63 (blue)
070003 JSWJ partial stock fund 17 (red) 217003 ZSZQA bond fund 64 (yellow)
070005 JSZQ bond fund 18 (yellow) 217005 ZSXF stock bond balanced fund 65 (blue)
070006 JSFW partial stock fund 19 (red) 233001 DMJC stock bond balanced fund 66 (blue)
080001 CSCZ stock bond balanced fund 20 (blue) 240001 BKXF partial stock fund 67 (red)
090001 DCJZ partial stock fund 21 (red) 240002 BKPZ stock bond balanced fund 68 (blue)
090002 DCZQA/B bond fund 22 (yellow) 240003 BKZQ bond fund 69 (yellow)
090003 DCLC partial stock fund 23 (red) 240005 HBCL partial stock fund 70 (red)
090004 DCJX partial stock fund 24 (red) 255010 WCWJ stock bond balanced fund 71 (blue)
100016 FGTY stock bond balanced fund 25 (blue) 257010 GLAJP partial stock fund 72 (red)
100018 FGTL bond fund 26 (yellow) 260101 JXGP partial stock fund 73 (red)
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Table A1. Cont.

Fund Code Fund Name
Abbreviation Fund Type Corresponding Code

in Network (Color) Fund Code Fund Name
Abbreviation Fund Type Corresponding Code

in Network (Color)

100020 FGTY partial stock fund 27 (red) 260103 JXDL stock bond balanced fund 74 (blue)
110001 YJPW stock bond balanced fund 28 (blue) 260104 JSZZ partial stock fund 75 (red)
110002 YJCL partial stock fund 29 (red) 270001 GFJF stock bond balanced fund 76 (blue)
110003 YJ50 partial stock fund 30 (red) 270002 GFWJ stock bond balanced fund 77 (blue)
110005 YJJJ partial stock fund 31 (red) 288001 HXJD partial stock fund 78 (red)
121001 GTRH partial bond fund 32 (green) 290002 TXXX partial stock fund 79 (red)
121002 GTJQ partial stock fund 33 (red) 310308 SLJX partial stock fund 80 (red)
150103 YHYT stock bond balanced fund 34 (blue) 310318 SLPZ partial bond fund 81 (green)
151001 YHWJ partial stock fund 35 (red) 320001 NAPH stock bond balanced fund 82 (blue)
151002 YHSY bond fund 36 (yellow) 340001 XQCJ partial bond fund 83 (green)
160105 NFJP partial stock fund 37 (red) 350001 TZCF stock bond balanced fund 84 (blue)
160602 PTZQA bond fund 38 (yellow) 360001 LHHX partial stock fund 85 (red)
160603 PTSY partial stock fund 39 (red) 375010 STYS partial stock fund 86 (red)
160605 PHZG50 partial stock fund 40 (red) 398001 ZHCZ partial stock fund 87 (red)
161601 XLC partial stock fund 41 (red) 400001 DFL stock bond balanced fund 88 (blue)
161603 RTZQA bond fund 42 (yellow) 510050 50ETF partial stock fund 89 (red)
161604 RTSZ100 partial stock fund 43 (red) 510080 CSZQ bond fund 90 (yellow)
161605 RTLC partial stock fund 44 (red) 510081 CSJX partial stock fund 91 (red)
161606 RTHY partial stock fund 45 (red) 519003 HFSY stock bond balanced fund 92 (blue)
162102 JYZXP partial stock fund 46 (red) 519011 HFJX stock bond balanced fund 93 (blue)
162201 TDCZ partial stock fund 47 (red) 519180 WJ180 partial stock fund 94 (red)

Note: We use the number and color as a tag to label the fund and its stated strategy, respectively. An identical color represents the same fund stated strategy that investors can obtain
publicly before investing.
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