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Abstract: The brain is a complex structure made up of interconnected neurons, and

its electrical activities can be evaluated using electroencephalogram (EEG) signals. The

characteristics of the brain area affected by partial epilepsy can be studied using focal and

non-focal EEG signals. In this work, a method for the classification of focal and non-focal

EEG signals is presented using entropy measures. These entropy measures can be useful

in assessing the nonlinear interrelation and complexity of focal and non-focal EEG signals.

These EEG signals are first decomposed using the empirical mode decomposition (EMD)

method to extract intrinsic mode functions (IMFs). The entropy features, namely, average

Shannon entropy (ShEnAvg), average Renyi’s entropy (RenEnAvg), average approximate

entropy (ApEnAvg), average sample entropy (SpEnAvg) and average phase entropies (S1Avg

and S2Avg), are computed from different IMFs of focal and non-focal EEG signals. These

entropies are used as the input feature set for the least squares support vector machine

(LS-SVM) classifier to classify into focal and non-focal EEG signals. Experimental results

show that our proposed method is able to differentiate the focal and non-focal EEG signals

with an average classification accuracy of 87% correct.
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1. Introduction

The electroencephalogram (EEG) is used to measure the electrical activity of the brain characterizing

its various pathological states. In the literature, many studies are presented to analyze Alzheimer’s

disease [1], attention-deficit/hyperactivity disorder (ADHD) [2], autism [3], autistic spectrum

disorder [4], alcoholism [5], epilepsy [6,7], depth of anesthesia [8,9], etc., using EEG signals. Epilepsy is

a common neurological disorder that affects the quality of life of the patient, causing social impairment

and a higher risk of death [10]. Epilepsy can be divided into two categories: generalized and focal

(partial). About one third of the total patients available for epilepsy treatment become resistant to drug

therapy [10]. About 20% of generalized and 60% of partial epilepsy patients developed a drug resistance

tendency during the course of epilepsy [10]. Consequently, such patients are left with only the choice

of clinical resection of the affected brain area by surgery for the treatment of epilepsy. Hence, the

localization of the brain area affected by epilepsy can be useful to treat epilepsy in such patients. The

different methods used for presurgical localization of the brain may involve magnetic resonance imaging

(MRI) [11], positron emission tomography (PET) [12] and ictal single photon emission computed

tomography (SPECT) [13,14]. The identification of the affected brain area before surgery using EEG

signals can help with locating the epileptogenic focus and the assessment of functional properties and

activities of the brain.

Several techniques have been developed to delineate the changes in the characteristics of the EEG

signals before seizure onset. These techniques involve advanced signal processing methods and can

be useful for localization of the epileptogenic focus. In [15], the electrocorticograph (ECoG) signals

recorded from the cerebral cortex of the brain of 21 patients were analyzed using wavelet packet and

time-frequency waveforms to characterize the spikes in order to localize the epileptic events. The EEG

background activities, such as the delta asymmetry of patients with partial epilepsy, were studied and

found useful for the lateralization and localization of the epileptic focus [16,17]. It is observed that

high frequency oscillations (60–100 Hz) increase before the onset of neocortical epilepsy and help

to localize the seizure onset zone [18]. Coherence patterns of EEG signals are studied to establish

the relationship between the coherence and cortical anatomy [19]. They show that the alteration in

the coherence patterns may help to identify normal and pathological functional relationships between

distant cortical areas. In [20], the mean phase coherence algorithm is used to study inter-electrode

synchrony and showed that the local hypersynchrony may be an indicator of epileptogenic cortex. Mean

phase coherence, which is a statistical measure of phase synchronization, is studied using EEG signals

recorded from patients with temporal lobe epilepsy [21]. They have observed a clear difference in

the degree of synchronization between EEG recordings from seizure-free intervals and those before an

impending seizure. Nonlinear parameters, such as the windowed correlation dimensions and complexity

loss measure, are used to characterize the primary epileptogenic area in [22,23], respectively. The EEG

recordings from seizure-free intervals can also be used to study the changes in the underlying dynamics

of the cortex affected by epilepsy [24–28]. The focal and non-focal EEG signals are recorded from the

patients affected by focal epilepsy. Focal epilepsy affects only a limited part of the patient’s brain. The

focal EEG signals are acquired from the channels that first detected ictal EEG signal changes by visual

inspection [29], and the remaining EEG signals are termed as the non-focal EEG signals. In [29], the
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authors have shown that the focal EEG signals are less random, more nonlinear-dependent and more

stationary, as compared to non-focal EEG signals.

Recently, many empirical mode decomposition (EMD) [30]-based techniques have been developed

for analysis and classification of EEG signals [31–38]. The IMFs of EEG signals are symmetric,

amplitude and frequency modulated (AM-FM) components. Many features are extracted from the IMFs

of EEG signals to study the pathological states of the brain. These features are the mean frequency

of IMFs computed from the Fourier–Bessel series expansion [31], the area computed from the analytic

signal representation (ASR) of the IMFs [32,33], the 95% confidence ellipse area of the second-order

difference plot (SODP) of IMFs [33,34], the 95% confidence ellipse area and interquartile range (IQR)

of the Euclidean distances parameters extracted from the 2D and 3D phase space representation (PSR)

of IMFs [35], the histogram-based features extracted from time-frequency images obtained using the

Hilbert–Huang transform [36], multi-level local patterns [37], the coefficient of variation and the

fluctuation index computed from IMFs [38], etc.

In this work, a method for the classification of focal and non-focal EEG signals based on features

extracted from IMFs of EEG signals is presented. The Figure 1 depicts the proposed methodology for

the classification of focal and non-focal EEG signals. The focal and non-focal EEG signals are first

decomposed using the EMD method. Then, various entropy measures, namely average Shannon entropy

(ShEnAvg), average Renyi’s entropy (RenEnAvg), average approximate entropy (ApEnAvg), average

sample entropy (SpEnAvg), average phase entropy 1 (S1Avg) and average phase entropy 2 (S2Avg), are

computed from the IMFs of focal and non-focal EEG signals. The focal and non-focal EEG signals are

available in the studied dataset in the pairs of time series. In order to obtain the characteristics of both

the time series for classification, the average of entropy measures are computed from the time series.

Finally, these computed different entropy measures are used for the classification of focal and non-focal

EEG classes using the LS-SVM classifier.
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Figure 1. Proposed system for the classification of focal and non-focal EEG signals.
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The remaining sections of the paper are organized as follows: Section 2 provides the description of

the dataset, EMD, entropy measures and LS-SVM classifier. Results are presented in Section 3 and

discussed in Section 4. Finally, the paper concludes in Section 5.

2. Methodology

2.1. Dataset

The EEG dataset used in this study was obtained from the Bern-Barcelona EEG database

(www.dtic.upf.edu/~ralph/sc/). A detailed description of the dataset is given in [29]. The dataset consists

of recordings of patients who underwent long-term intracranial EEG recordings at the Department of

Neurology, University of Bern, Switzerland. The multichannel EEG recordings were acquired from

five patients suffering from pharmacoresistant temporal lobe epilepsy and were candidates for surgery.

The EEG signals were sampled at a 512-Hz sampling frequency. The recordings contain pairs of EEG

signals, denoted by “x” and “y”. The dataset consists of 3750 pairs of focal EEG signals and 3750 pairs

of non-focal EEG signals, with each EEG signal having 10,240 samples. In this study, we have used the

first 50 focal and 50 non-focal pairs of EEG signals. Typical example pairs of the focal and non-focal

EEG signals are shown in the Figures 2 and 3, respectively.
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Figure 2. Typical pair of focal EEG signals: (a) “x” signal; and (b) “y” signal.

www.dtic.upf.edu/~ralph/sc/
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Figure 3. Typical pair of non-focal EEG signals: (a) “x” signal; and (b) “y” signal.

2.2. Empirical Mode Decomposition

Empirical mode decomposition (EMD), proposed in [30], is an adaptive, data-dependent

decomposition method and suitable for the analysis of nonlinear and non-stationary signals. This method

decomposes a signal into a finite set of oscillatory components, known as intrinsic mode functions

(IMFs). It adaptively represents a non-stationary signal as the sum of IMFs, which can be considered

zero-mean, amplitude and frequency modulated (AM-FM) components [39]. Each IMF fulfills the

following two conditions [30]:

(1) In the whole dataset, the number of extrema and the number of zero-crossings should be either

equal or differ at most by one.

(2) The mean value of two envelopes, one defined by connecting local maxima and the other defined

by connecting local minima, at any point is zero.

For a given signal x(t), IMFs can be derived using an iterative process, known as the sifting process,

which can be summarized in the following steps [30]:

(i) Extract extrema (maxima and minima) from signal x(t).

(ii) Obtain the envelope Emax(t) by connecting all of the maxima and similarly obtain the envelope

Emin(t) by connecting all of the minima using cubic spline interpolation.
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(iii) Compute the average of Emax(t) and Emin(t) as:

m(t) =
Emax(t) + Emin(t)

2
(1)

(iv) Extract D(t) from x(t) as:

D(t) = x(t)−m(t) (2)

(v) Check whether the D(t) satisfies the two basic conditions of IMF.

(vi) Repeat Steps i–v, for D(t), until it satisfies the conditions of IMF.

Once the IMF is derived, define the IMF1(t) = D(t), which is the first extracted IMF. In order

to determine the next remaining IMFs, residual signal r1(t) = x(t)− IMF1(t) can be treated as a new

signal. Now, repeat the above-mentioned sifting process until the obtained residual becomes a monotonic

function from which, no further IMFs can be derived. Finally, the original signal x(t) can be expressed

as the sum of IMFs and the final residual [30]:

x(t) =

K
∑

i=1

IMFi(t) +R(t) (3)

where K is the number of extracted IMFs and R(t) is the final residual. The IMFs of the focal and

non-focal EEG signals are shown in Figure 4. The first ten IMFs of the focal EEG signal shown in

Figure 2a are depicted in Figure 4a. Similarly, Figure 4b depicts the first ten IMFs of the non-focal EEG

signal shown in Figure 3a.
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Figure 4. Cont.
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Figure 4. Empirical mode decomposition of the EEG signal: (a) first ten intrinsic mode

functions (IMFs) of the focal EEG signal; and (b) first ten IMFs of the non-focal EEG signal.

2.3. Entropy-Based Features Extraction

In thermodynamics, the entropy is defined as a measure of the degree of disorder [40]. In the context

of information theory, the entropy is an indicator of the amount of information stored in a more general

probability distribution [40]. Entropy is a measure of the complexity of the time series. The nonlinear

parameters can be useful to describe the dynamics of the EEG signals considering the nonlinear and

non-stationary nature of EEG signals. A brief description of the entropy-based features extracted from

the IMFs of focal and non-focal EEG signals is given in this section.

2.3.1. Average Spectral Entropies

Spectral entropy uses the power spectrum of the signal to estimate the regularity of time series.

The amplitude components of the power spectrum are used to compute the probabilities in entropy

computation. Spectral entropy [41,42] is evaluated using the normalized Shannon entropy, which

quantifies the spectral complexity of the time series. Fourier transformation is used to obtain the power

spectral density (PSD) of the time series. The PSD represents the distribution of power of the signal

according to the frequencies present in the signal. In order to obtain the power level for each frequency,

the Fourier transform of the signal is computed, and the power level of the frequency component is

denoted by Pf . The normalization of the power is performed by computing the total power as
∑

Pf and

dividing the power level corresponding to each frequency by the total power as:

pf =
Pf
∑

Pf

(4)
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The entropy is computed by multiplying the power level in each frequency and the logarithm of the

inverse of the same power level. Finally the spectral entropy of the time series is computed using the

following formula [40]:

ShEn =
∑

f

pf log

(

1

pf

)

(5)

Another entropy measure used for estimating the spectral complexity of the time series is Renyi’s

entropy [43,44]. Renyi’s entropy can be defined as [40,44]:

RenEn(α) =
1

1− α
log

(

∑

f

pαf

)

, α > 0, α 6= 1 (6)

Renyi’s entropy corresponding to α = 2 is known as Renyi’s quadratic entropy, and defined as follows

[40,44]:

RenEn(2) = − log

(

∑

f

p2f

)

(7)

In this work, we have used (7) to compute the RenEn. These entropy measures can be considered as

the measure of uncertainty about the event f . Data with a broad, flat probability distribution have high

entropy, and data with a narrow, peaked distribution will have low entropy [40]. These spectral entropy

measures are used for the detection of epilepsy using EEG signals in [40]. The focal and non-focal EEG

signals are given in a pair of time series, “x” and “y”. The average Shannon entropy is used in this work

and defined as:

ShEnAvg =
ShEnx + ShEny

2
(8)

where ShEnx and ShEny are the Shannon entropies corresponding to “x” and “y” time series of the

pair of EEG signals. Similarly, average Renyi’s entropy is defined as:

RenEnAvg =
RenEnx +RenEny

2
(9)

where RenEnx and RenEny are Renyi’s entropies corresponding to the “x” and “y” time series of the

pair of EEG signals.

2.3.2. Average Approximate Entropy

Approximate entropy (ApEn) is a complexity measure of time series [45]. It is widely used in

many areas of biomedical signal processing, such as EEG epileptic activity analysis [46], background

activity [47], coronary artery disease (CAD) heart rate signal analysis [48], etc. It measures the

randomness or the regularity of a time series in multiple dimensions. It expresses the logarithmic

likelihood that the signal of length N repeats itself within the tolerance of r for d points and also repeats

itself for the next d + 1 points [49]. Considering a time series x(i) of length N , construct N − d + 1

vectors X(1), X(2), . . . , X(N − d+ 1). Any vector X(i) can be expressed as:

X(i) = {x(i), x(i+ 1), . . . , x(i+ d− 1)} , 1 ≤ i ≤ N − d+ 1 (10)

where d is the embedding dimension. For a given time series x(i), ApEn is given by [50,51]:
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ApEn(d, r, N) = φd(r)− φd+1(r) (11)

where:

φd(r) =
1

(N − d+ 1)

∑

i

ln
(

Cd
i (r)

)

(12)

where Cd
i (r) is a correlation integral indicating the probability of a vector X(i), which remains similar

to X(j) within tolerance limit r. Cd
i (r) is given by:

Cd
i (r) =

1

(N − d+ 1)
N r

i i = 1, 2, . . . , N − d+ 1 (13)

where N r
i counts the distances between two vectors X(i) and X(j), which is smaller than the tolerance r.

Lower values of the ApEn are an indication of more self-similarity or more regularity present in the

signal. If the value of the r parameter is small, the conditional probability estimate will be poor and

the estimate will also be sensitive to noise [52]. Similarly, for a high value of the r parameter, detail

information will be lost [51]. In this work, the value of the r parameter is chosen as r = 0.2 times the

standard deviation of the data, and the embedded dimension d is set as two [45]. In this work, the average

ApEn is used for the classification of the focal and non-focal EEG signals and is defined as:

ApEnAvg =
ApEnx + ApEny

2
(14)

where ApEnx and ApEny are the ApEn corresponding to the “x” and “y” time series of the focal and

non-focal EEG signals.

2.3.3. Average Sample Entropy

Sample entropy (SpEn) [50] is a modified version of the ApEn and used as a complexity measure of

time series. The SpEn averts the bias caused by the use of the self matches in the computation of ApEn

and improves performance. Furthermore, SpEn is independent of the long record length and improves

the relative consistency [50]. In addition, the SpEn algorithm is simpler than the ApEn algorithm and

takes nearly half of the ApEn computation time [50]. Suppose that x(i) is a time series of length N ;

construct N−d+1 vectors X(1), X(2), . . . , X(N−d+1) as expressed by (10). For a given time series

x(i), SpEn can be computed as [50,51]:

SpEn(d, r, N) = − ln

(

Ad(r)

Bd(r)

)

(15)

where parameters Bd(r) and Ad(r) are defined as:

Bd(r) =
1

(N − d)

N−d
∑

i=1

Cd
i (r)

Ad(r) =
1

(N − d)

N−d
∑

i=1

Cd+1
i (r)
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and

Cd
i (r) =

1

(N − d)
Ci, i = 1, 2, . . . , N − d

where Ci is the count, such that L [X(i), X(j)] ≤ r, excluding self-matches. The parameter

L [X(i), X(j)] is the distance between X(i) and X(j) and can be defined as:

L [X(i), X(j)] = max
1,2,...,d

(|x(i+ k − 1)− x(j + k − 1)|)

The lower the value of SpEn for a given value of d and r, the more the self-similarity in a given time

series will be. In this work, the value of d is chosen as two [50,52], and the value of r is set as 0.2-times

the standard deviation of the data [50]. The average SpEn computed from the average of SpEn of the

“x” and “y” time series is used as a feature for the classification of focal and non-focal EEG signals.

Average sample entropy can be defined as:

SpEnAvg =
SpEnx + SpEny

2
(16)

2.3.4. Average Phase Entropies

Phase entropies use higher order spectra (HOS) to compute the entropy. The HOS are defined in

terms of higher order statistics, known as cumulants [53]. HOS are spectral representations of higher

order moments. For example, a bispectrum is the Fourier spectrum of the third order moments. HOS can

be defined for a deterministic signal, as well as random processes [52]. The bispectrum of the signal can

be defined as:

B(f1, f2) = E[F (f1)F (f2)F
∗(f1 + f2)] (17)

where E denotes the expectation operator of a random variable and F (f) is the Fourier transform of the

signal x(i).

The bispectrum is a complex valued function of the two frequencies f1 and f2. The computation of

the bispectrum depends on the product of the three Fourier coefficients, as shown in (17). The phase

entropies S1 and S2 are similar to spectral entropies, but computed from the bispectrum, and can be

given by [54]:

S1 = −
∑

k

pk log(pk) (18)

where:

pk =
|B(f1, f2)|

∑

Ω|B(f1, f2)|
(19)

where Ω is the principal domain or non-redundant region [52].

S2 = −
∑

j

qj log(qj) (20)

where: qj =
|B(f1,f2)|2∑
Ω|B(f1,f2)|2

.

The two entropies S1 and S2 are computed from the probabilities estimated based on the L1 and L2

norms of the bispectrum of the signal. The pk and qj are similar to the probability distribution functions
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and computed by normalization using the L1 and L2 norms, respectively, using the sum of the norm over

Ω. The spectrum entropies are used for automatic diagnosis of epileptic EEG signals in [52]. In this

work, the S1Avg and S2Avg entropies are used for the classification of focal and non-focal EEG signals

and are defined as:

S1Avg =
S1x + S1y

2
(21)

and:

S2Avg =
S2x + S2y

2
(22)

where S1x and S2x are the S1 and S2 corresponding to the “x” time series. Similarly, S1y and S2y are

the S1 and S2 corresponding to the “y” time series.

2.3.5. Least Squares Support Vector Machine

The support vector machine (SVM) is based on the idea of maximizing the distance between the

separating hyperplanes. It has a good generalization ability [5,55,56]. The least squares support vector

machine (LS-SVM) method searches for the optimal hyperplane in the higher dimension input space

to create a decision boundary between two different groups of patterns. Originally, this algorithm

was developed as a linear classifier. The SVM algorithm has been extended as LS-SVM, which is a

least squares version of SVM. For a set of data points {xk, yk}
K
k=1, xk ∈ R

n is the input data and

yk ∈ {+1,−1} is the k-th output class label, the discriminant function can be defined as [57]:

v(x) = sign
[

W Tu(x) + β
]

. (23)

where W is the d-dimensional weight vector, β is a bias and u(x) is a mapping function that maps x into

d-dimensional space.

The decision function of the LS-SVM classifier can be expressed as [35,38]:

v(x) = sign

[

K
∑

k=1

αkykK(x, xk) + β

]

(24)

where K(x, xk) is a kernel function. The following kernels are used in this work:

(1) The radial basis function (RBF) kernel: It can be defined as [58]:

K(x, xk) = e
−||x−x

k
||2

2σ2 (25)

(2) The Mexican hat wavelet kernel: It can be derived from the Mexican hat mother wavelet Ψ(x) =

(1− x2)e
−x

2

2 and can be defined as [59,60]:

K(x, xk) =
d
∏

i=1

[

1−
(xi − xi

k)
2

a2

]

e
−||xi−x

i

k
||2

2a2 (26)

(3) The Morlet wavelet kernel: It can be obtained from the Morlet mother wavelet Ψ(x) =

cos [ω0x] e
−x

2

2 and can be defined as [59,60]:

K(x, xk) =

d
∏

i=1

cos

[

ω0
xi − xi

k

a2

]

e
−||xi−x

i

k
||2

2a2 (27)
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2.3.6. Performance Evaluation

Ten-fold cross-validation is used for ensuring the reliable classification performance of the LS-SVM

classifier. In the k-fold cross-validation procedure, the available data are broken into the k subsets

randomly [61]. k − 1 subsets at a time are used for training the classifier, and the one remaining

subset is used to test the classification model. In this way, each subset is used to test the classification

model exactly once, while the remaining k − 1 subsets are used for training the classifier before testing.

All performance parameters are computed for each testing, and finally, the average of the performance

parameters for all testing gives the final average performance parameters. In ten-fold cross-validation,

the value of k is equal to 10.

The performance of the LS-SVM classifier is evaluated using sensitivity (SEN), specificity (SPF ),

accuracy (ACC), positive predictive value (PPV ), negative predictive value (NPV ) and Matthews

correlation coefficient (MCC). If TP (true positive) is the number of focal EEG signals identified

as focal EEG signals, TN (true negative) is the number of non-focal EEG signals classified as

non-focal EEG signals, FP (false positive) is the number of non-focal EEG signals recognized as

focal EEG signals and FN (false negative) is the number of focal EEG signals distinguished as

non-focal EEG signals, then the mathematical expressions of the performance measure parameters are

as follows [62,63]:

SEN =
TP

TP + FN
× 100 (%) (28)

SPF =
TN

TN + FP
× 100 (%) (29)

ACC =
TP + TN

TP + TN + FP + FN
× 100 (%) (30)

PPV =
TP

TP + FP
× 100 (%) (31)

NPV =
TN

TN + FN
× 100 (%) (32)

MCC =
TP × TN − FN × FP

T1 × T2
(33)

where:

T1 =
√

(TP + FN)(TP + FP )

and:

T2 =
√

(TN + FN)(TN + FP )

A larger value of the MCC parameter indicates better classifier performance [62,63].
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3. Results

The EMD decomposes the EEG signals into symmetric, oscillatory and band-limited IMFs. In this

work, the focal and non-focal EEG signals decomposed by applying the EMD method, and features

are extracted from these obtained IMFs. The IMFs of the signal are arranged from higher frequency

components to lower frequency components (IMF1 to IMF10). Six entropies are computed from the IMFs

of focal and non-focal EEG signals and used as features for classification. Due to higher computational

complexity, entropy features are computed for a data length of 4, 096 samples. Table 1 presents the results

of different features extracted from first ten IMFs of focal and non-focal EEG signals. Spectral entropies

(ShEnAvg and RenEnAvg) quantify the degree of regularity present in the spectral components of the

signal. If the number of dominant spectral components present in the signals are more, the spectral

entropy will be higher, and vice versa. The ApEnAvg and SpEnAvg entropy measures quantify the

self-similarity in the time series. The phase entropies S1Avg and S2Avg are the complexity measures

based on the probability density functions of the bispectrum of the signals.

Table 1. The range (mean ± standard deviation) of the features extracted from different

IMFs of focal and non-focal EEG signals.

IMF Features Focal EEG Signals Non-Focal EEG Signals

IMF1

ShEnAvg 6.2540 ± 0.1708 6.2806 ± 0.2899

RenEnAvg 5.7793 ± 0.2306 5.7941 ± 0.4683

ApEnAvg 0.9899 ± 0.2088 1.1289 ± 0.1050

SpEnAvg 2.6911 ± 0.2758 2.9814 ± 0.4337

S1Avg 0.8243 ± 0.0400 0.8397 ± 0.0294

S2Avg 0.2650 ± 0.0529 0.2535 ± 0.0596

IMF2

ShEnAvg 5.5284 ± 0.1673 5.4603 ± 0.2285

RenEnAvg 5.0784 ± 0.2054 4.9755 ± 0.2708

ApEnAvg 0.6265 ± 0.0901 0.6366 ± 0.0931

SpEnAvg 2.5932 ± 0.2947 2.8691 ± 0.3757

S1Avg 0.6934 ± 0.0498 0.7059 ± 0.0656

S2Avg 0.0406 ± 0.0270 0.0362 ± 0.0239

IMF3

ShEnAvg 4.7766 ± 0.2099 4.6954 ± 0.1942

RenEnAvg 4.3318 ± 0.2423 4.2373 ± 0.2163

ApEnAvg 0.5322 ± 0.0855 0.5495 ± 0.0819

SpEnAvg 2.3958 ± 0.3202 2.7408 ± 0.3527

S1Avg 0.6422 ± 0.0506 0.6251 ± 0.0657

S2Avg 0.3390 ± 0.0516 0.3349 ± 0.0577

IMF4

ShEnAvg 4.0436 ± 0.1791 4.0154 ± 0.1629

RenEnAvg 3.606 ± 0.2053 3.5705 ± 0.2169

ApEnAvg 0.3337 ± 0.0632 0.3543 ± 0.0629

SpEnAvg 2.2111 ± 0.3325 2.2928 ± 0.3279

S1Avg 0.4983 ± 0.0591 0.4758 ± 0.0706

S2Avg 0.0473 ± 0.0196 0.0434 ± 0.0169
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Table 1. Cont.

IMF Features Focal EEG Signals Non-Focal EEG Signals

IMF5

ShEnAvg 3.3572 ± 0.2202 3.3676 ± 0.1906

RenEnAvg 2.9394 ± 0.2728 2.958 ± 0.2293

ApEnAvg 0.1546 ± 0.0388 0.1564 ± 0.0279

SpEnAvg 1.8450 ± 0.3640 1.5742 ± 0.3653

S1Avg 0.4762 ± 0.0473 0.4639 ± 0.0564

S2Avg 0.3998 ± 0.0515 0.4259 ± 0.0290

IMF6

ShEnAvg 2.6842 ± 0.2384 2.6886 ± 0.1775

RenEnAvg 2.2904 ± 0.2502 2.312 ± 0.2072

ApEnAvg 0.0711 ± 0.0200 0.0648 ± 0.0111

SpEnAvg 1.2377 ± 0.3969 0.9484 ± 0.3337

S1Avg 0.3337 ± 0.0514 0.3174 ± 0.0622

S2Avg 0.0656 ± 0.0159 0.0740 ± 0.0176

IMF7

ShEnAvg 2.0076 ± 0.3008 2.018 ± 0.2033

RenEnAvg 1.64 ± 0.3107 1.6385 ± 0.2201

ApEnAvg 0.0361 ± 0.0101 0.0333 ± 0.0051

SpEnAvg 0.6229 ± 0.3246 0.4393 ± 0.2127

S1Avg 0.3401 ± 0.0426 0.3413 ± 0.0405

S2Avg 0.4432 ± 0.0147 0.4424 ± 0.0046

IMF8

ShEnAvg 1.4991 ± 0.279 1.4757 ± 0.2509

RenEnAvg 1.144 ± 0.2705 1.1327 ± 0.2564

ApEnAvg 0.0190 ± 0.0056 0.0176 ± 0.0034

SpEnAvg 0.1837 ± 0.2630 0.1120 ± 0.0836

S1Avg 0.1869 ± 0.0507 0.1953 ± 0.0435

S2Avg 0.0803 ± 0.0097 0.0788 ± 0.0022

IMF9

ShEnAvg 1.1696 ± 0.2795 1.0887 ± 0.2935

RenEnAvg 0.7892 ± 0.2541 0.7416 ± 0.2378

ApEnAvg 0.0091 ± 0.0037 0.0087 ± 0.0023

SpEnAvg 0.0497 ± 0.1537 0.0217 ± 0.0173

S1Avg 0.2525 ± 0.0502 0.2587 ± 0.0373

S2Avg 0.4468 ± 0.0057 0.4473 ± 0.0015

IMF10

ShEnAvg 0.7005 ± 0.3021 0.8159 ± 0.3198

RenEnAvg 0.396 ± 0.2094 0.4755 ± 0.2346

ApEnAvg 0.0039 ± 0.0022 0.0039 ± 0.0014

SpEnAvg 0.0108 ± 0.0334 0.0055 ± 0.0046

S1Avg 0.0900 ± 0.0437 0.0893 ± 0.0316

S2Avg 0.0811 ± 0.0028 0.0813 ± 0.0008

Classification of focal and non-focal EEG signals is performed using the LS-SVM classifier with

different kernels. The above-mentioned six entropy measures computed for the first ten IMFs of the

EEG signals are used to form the input feature set for the LS-SVM classifier. In this work, we have
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used 100 pairs of EEG signals (50 pairs of focal and 50 pairs of non-focal signals). The size of the input

feature set formed using the ten IMFs of the EEG signals is 60×100. In order to reduce the complexity of

the classifier, the size of the feature set is reduced using the Student’s t-test (p ≤ 0.05) [55,64]. Finally,

the reduced feature set is of a size of 13× 100. The selected features are statistically significant features

(p ≤ 0.05) based on the Student’s t-test and are presented in Table 2. This reduced feature set is given

as the input to the LS-SVM classifier, and the obtained results are shown in Table 3. The performance

of the LS-SVM classifier is evaluated for three kernels, namely, RBF, Mexican hat wavelet and Morlet

wavelet kernels, using a ten-fold cross-validation procedure. The kernel parameters are selected by the

trial and error method. In order to ensure the reliable classification of the LS-SVM classifier, ten-fold

cross-validation is used, and various performance parameters, namely ACC, SEN , SPF , PPV , NPV

and MCC, are evaluated.

Table 2. Statistically-significant features (p ≤ 0.05) selected for classification based on the

Student’s t-test.

Feature IMF p-Value

ShEnAvg IMF3 4.52 × 10
−2

RenEnAvg

IMF2 3.47 × 10
−2

IMF3 4.23 × 10
−2

ApEnAvg IMF1 5.79 × 10
−5

SpEnAvg

IMF1 1.26 × 10
−4

IMF2 8.98 × 10
−5

IMF3 1.52 × 10
−6

IMF5 3.40 × 10
−4

IMF6 1.50 × 10
−4

IMF7 1.17 × 10
−3

S1Avg IMF1 3.08 × 10
−2

S2Avg

IMF5 2.43 × 10
−3

IMF6 1.35 × 10
−2

Table 3. Performance of the LS-SVM classifier using different kernels. RBF, radial

basis function.

Kernel Kernel Parameter ACC SEN SPF PPV NPV MCC

RBF σ = 18.2 86.00 88.00 84.00 86.81 88.00 0.73

Mexican hat wavelet a = 70.6 84.00 86.00 82.00 86.67 87.56 0.71

Morlet wavelet a = 24.6 87.00 90.00 84.00 87.29 90.50 0.76

The proposed methodology is carried out in two stages—(i) feature extraction and (ii)

classification—using MATLAB programming. Table 3 shows a maximum classification accuracy of
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87% using the LS-SVM classifier with the Morlet wavelet kernel. The SEN parameter indicates the

ability of the classifier to accurately identify the proportion of true positive samples from the test set [62].

Similarly, SPF indicates the ability of the classifier to accurately identify the proportion of true negative

samples from the test set [62]. In this work, we have achieved the highest SEN and SPF of 90%

and 84%, respectively, using the LS-SVM classifier with the Morlet wavelet kernel. PPV represents

the fraction of positive values identified by the classifier that represents true positives [62]. Similarly,

NPV denotes the fraction of the negative values identified by the classifier that are true negative [62].

The values of the PPV and NPV parameters are 87.29% and 90.50%, respectively, when the Morlet

wavelet kernel is used with the LS-SVM classifier, which is the highest among all of the kernels used

in this study. The maximum classification accuracy obtained using the LS-SVM classifier with the RBF

kernel is 86%. Similarly, we obtained an accuracy of 84% using the Mexican hat wavelet kernel. In

terms of classification accuracy, the Morlet wavelet kernel shows the best performance and is suitable

for the classification of focal and non-focal EEG signals. MCC evaluates the classification accuracy of

imbalanced positive and negative samples in a dataset [62]. The highest value of the MCC parameter for

the Morlet wavelet kernel confirms the suitability of the Morlet wavelet kernel for the classification of

the focal and non-focal EEG signals. The comparison of our proposed method with previously reported

methods [65,66] using the same database is presented in Table 4. Our proposed method shows the highest

classification accuracy of 87%.

Table 4. Summary of studies reporting automated detection of focal and non-focal EEG

classes using the same database used in this work. DPE, delay permutation entropy; AVIF,

average variance of instantaneous frequencies.

Method Classification Accuracy (%)

DPE and SVM [65] 84

SpEnAvg , AVIF and LS-SVM [66] 85

Proposed method 87

4. Discussion

EMD is suitable for the decomposition of the EEG signals that exhibit a nonlinear and a non-stationary

nature [67,68]. It separates the fast oscillations from the slow oscillations present in the signals [69].

These oscillating components can be separated using EMD as the IMFs. The nonlinear signal processing

methods are more useful for nonlinear and non-stationary signal analysis. Nonlinear methods efficiently

extract the small changes in the nonlinear and non-stationary signals [55]. Hence, we have used entropy

measures for extracting features from focal and non-focal EEG signals. Different entropy measures

are computed on the IMFs of focal and non-focal EEG signals. These entropies indicate the complexity

measures related to the power spectrum, multiple dimensions and HOS. The spectral entropies ShEnAvg

and RenEnAvg reveal the complexity of signals in the frequency domain; ApEnAvg and SpEnAvg

measure the self-similarity of time series; and S1Avg and S2Avg represent the complexity in the higher

order spectrums of the signals.
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The Student’s t-test detects the discrimination ability of the features to separate the two classes.

This test estimates the probability, known as the p-value, for each feature using the Student’s t-test.

The p-value measures the similarity between the two classes [55]. In other words, the lower p-value

indicates the higher discrimination ability of the feature to differentiate the two classes. After running

Student’s t-tests, 13 features are found to be significant. Out of these 13 features, one is ApEnAvg, six are

SpEnAvg, one is S1Avg, two are S2Avg, one is ShEnAvg and two are RenAvg, computed from different

IMFs. The statistically-significant (p ≤ 0.05) features are listed in Table 2 with the resultant p-values.

The ShEnAvg is significant for the discrimination of IMF1; similarly, RenAvg is significant for IMF2

and IMF3. The ApEnAvg is significant for IMF1 only, and SpEnAvg is found to be significant for IMF1,

IMF2, IMF3, IMF5, IMF6 and IMF7. The S1Avg is significant for IMF1, and S2Avg is found to be

significant for IMF5 and IMF6. Based on the analysis of Table 2, IMF1 and IMF3 are found to be more

suitable for the discrimination of focal and non-focal EEG signals. The results show that SpEnAvg is the

most sensitive entropy measure for the classification between focal and non-focal EEG signals. It should

be noted that the two entropies, namely ApEnAvg and SpEnAvg, among all of the studied entropies,

seem to have more computational complexity.

The IMFs of focal and non-focal EEG signals obtained using the EMD method represent narrow-band

frequency components. It would be of interest to develop links between different rhythms and IMFs

of focal and non-focal EEG signals. The physiological understanding of the computed entropies of

the IMFs for focal and non-focal EEG signals can be studied. This work also can be extended to

determine the affected localized area of the brain with the help of the computation of the entropies

in different channels.

LS-SVM is a well-known classifier and is used in the classification of many biomedical signals, like

electrocardiograph (ECG) signals [70], heart rate variability signals [71], cardiac sound signals [72],

brain MRI classification [73], EEG signals [74,75], etc. In this work, the classification performance of

the LS-SVM classifier is evaluated by employing the ten-fold cross-validation procedure. The results

obtained from the experiments show that the extracted entropy parameters are able to classify the focal

and non-focal EEG signals. The Morlet wavelet is found to be most suitable in creating an accurate

decision boundary for the classification of the focal and non-focal EEG signals. The reliability of the

proposed method can be further improved using larger and diverse datasets.

The proposed method is also compared with the other existing methods, and the comparison is

presented in Table 4. In [65], delay permutation entropy (DPE) is used as the feature for the classification

of focal and non-focal EEG signals. The maximum classification accuracy obtained using the SVM

classifier for 50 focal and 50 non-focal EEG signals is 84%. In previous work [66], using the average

sample entropy (SpEnAvg), the average variance of instantaneous frequencies (AVIF) coupled with the

LS-SVM classifier has yielded an accuracy of 85%. The maximum classification accuracy obtained in

this work is 87% for the same dataset, which is 2% higher than the previous work [66].

The advantages of our proposed method are as follows:

(1) We have obtained a higher classification accuracy compared to previously reported works using

the same database.

(2) Our method is rigorous and repetitive, as we have performed a ten-fold cross-validation.
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(3) The developed software can be used for automated identification of focal and non-focal

EEG signals.

The limitations of the proposed method are that we have used a small database and that it is

computationally intensive.

5. Conclusions

Epilepsy is a mental disorder affecting a large population of the world. Locating the area of brain

affected by focal epilepsy can aid in the presurgical diagnosis of seizure. In this work, we have used

six entropy measures computed from IMFs of the EEG signals for classification into focal and non-focal

EEG signals, which can help to determine the epileptogenic zone of the brain. These entropies are

useful in assessing the complexity of the IMFs of focal and non-focal EEG signals. The selected

clinically significant features are fed to the LS-SVM classifier, obtaining a classification accuracy of

87%. The classification accuracy can be further improved using a huge database, better features and

robust classifiers.
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