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Abstract: We explore the information geometric structure of the statistical manifold
generated by the κ-deformed exponential family. The dually-flat manifold is obtained as
a dualistic Hessian structure by introducing suitable generalization of the Fisher metric
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1. Introduction

Information geometry [1] is a powerful framework for studying the family of probability distributions
by applying the geometric tools developed in affine differential geometry. It has a dualistic structure
of affine connections, which appears to be very useful and has been applied to many scientific fields,
such as information theory, statistics, neural networks, statistical physics, and so on. Information
geometry was introduced in 1980s and has been mainly applied to the exponential family of probability
distributions. Recently, it has attracted great attention for studying some deformed exponential families
of probability distributions. Indeed, the α-geometry introduced by Amari [1] is deeply related to the
q-deformed exponential family [2], which plays a fundamental role in Tsallis generalization [3] of



Entropy 2015, 17 1205

thermostatistics. The q-deformed relative entropy is related to the α-geometry on the statistical manifold
with a constant curvature [2]. Ohara et al. [4] have obtained a dually-flat structure on the space
of the escort probabilities by applying ±1-conformal transformation to the α-geometry. On the other
hand, Naudts [5] has generalized Callen’s thermostatistics [6], named generalized thermostatistics, by
introducing the so-called φ-exponential function, which is his generalization of the standard exponential
function. In [7,8], he studied the information geometric structure for the φ-exponential family. The
φ-exponential function is defined by the inverse of the φ-logarithm that is a generalization of the standard
logarithm and is defined by:

lnφ x ≡ ∫
x

1

1

φ(s)
ds, (1)

where φ(s) is a strictly increasing function. When we choose φ(s) = s, the φ-logarithm reduces to the
standard logarithm lnx. In addition, Matsuzoe and Henmi [9] have considered the Hessian structure
on Naudts’ φ-deformed exponential family. For notational reasons, they used the term “χ-deformed
functions” in their paper instead of “φ-deformed functions”. They showed that a deformed exponential
family has two kinds of dualistic Hessian structures and conformal structures of Hessian metrics.
Remarkably, the φ-exponential function includes the q-exponential [3] and the κ-exponential [10,11]
as a special case. In particular, the κ-exponential is defined by:

expκ(x) ≡ (κx +
√

1 + κ2x2)
1
κ
, (2)

for a real deformed parameter κ ∈ (−1,1). We studied the information geometric structures based not
directly on the φ-deformed functions, but by means of a different method, both for the q-exponential
function [12] and for the κ-exponential function [13].

In this contribution, we explore further the information geometric structures of the statistical manifold
generated by the κ-deformed probability distribution:

p(x;θ) = α expκ [
1

λ
(
M

∑
m=1

θmfm(x) − γ(θ))] . (3)

A key point of our construction is to choose the appropriate κ-deformed functions that are consistent
with the κ-generalized MaxEnt principle. The Legendre structures in both the information geometry
and the κ-thermostatistics are shown to be consistent with each other and play a fundamental role. The
next section shows some preliminaries on the basics of the information geometry, especially focused on
the exponential family. As an example of the exponential families in statistical mechanics, we study
the grand-canonical ensemble and derive the fluctuation-response relations for the thermal equilibrium
systems in the present framework. In Section 3, we explore the information geometry for the κ-deformed
exponential family. We explore the Hessian structure associated with the Legendre relations for the
κ-entropy. The final section is devoted to the conclusions.

2. Preliminaries

Information geometry is a powerful framework for studying a family:

S = {p(x;θ) ∣ p(x;θ) > 0,∫ dxp(x;θ) = 1} , (4)
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of probability distribution functions (pdfs) p(x;θ) of a stochastic variable that takes a real value x and
is characterized by a set of the real parameters θ = (θ1, θ2 . . . , θM). S is called a (M -dimensional)
statistical model. Under the appropriate conditions, S can be regarded as a differential manifoldM with
local coordinates {θi}, endowed with a Fisher information matrix gFij [1]:

gFij(θ) = Ep [∂i`θ(x)∂j`θ(x)] , i, j = 1,2, . . . ,M, (5)

as a Riemannian metric and an affine connections, where `θ(x) ≡ lnp(x;θ). Here and hereafter, Ep [⋅]

stands for the linear expectation with respect to the pdf p(x;θ) and ∂i = ∂/∂θi. Though the Fisher
information matrix is generally semi-positive definite, we assume gF to be positive definite, and all of its
components are assumed to be finite.

A manifoldM is called e-flat (exponential-flat) if a set of coordinates system θ satisfies:

Ep [∂i∂j`θ(x)∂k`θ(x)] = 0, ∀ i, j, k, (6)

identically. Any set of coordinates θ satisfying (6) is called e-affine coordinates. A well-known example
of e-flat manifolds is the exponential family:

Sexp = {p(x;θ) ∣ p(x;θ) = exp [
M

∑
m=1

θmfm(x) −Ψ(θ)] ,∫ dxp(x;θ) = 1} , (7)

where fm(x) are given functions of a random value x and Ψ(θ) is the normalization factor. The
condition (6) is satisfied for the exponential family because

Ep [∂i`θ(x)] = 0, (8)

which is due to the normalization of the pdf and

∂i∂j`θ(x) = −∂i∂jΨ(θ), (9)

does not depend on x.
A manifoldM is said m-flat (mixture-flat) if a coordinate system η satisfies:

Ep [
1

p(x;η)
∂i∂jp(x;η)∂k lnp(x;η)] = 0, ∀ i, j, k, (10)

identically, where ∂i = ∂/∂ηi, and in this case, the set of coordinates η is called m-affine coordinates. A
well-known example of m-flat manifolds is the mixture family:

Smix = {p(x;θ) ∣ p(x;θ) =
n

∑
j=1

ηjrj(x) + (1 −
n

∑
j=1

ηj) rn+1(x),∫ dxp(x;θ) = 1} , (11)

where rj(x), j = 1, . . . , n + 1 are given probability distributions for a random variable taking a value x,
and ηj ≥ 0,∑

n
j=1 ηj ≤ 1.

For the exponential family, we have:

∂i`θ(x) = fi(x) − ∂iΨ(θ). (12)
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Taking the expectation of the both sides and using Equation (8), we see that the m-affine coordinates
(η-coordinates) of the exponential family are given by:

ηi = Ep [fi(x)] = ∂iΨ(θ). (13)

Accounting for Equations (12) and (13), from Definition (5), we obtain

gFij(θ) = Ep [(fi −Ep [fi] ) (fj −Ep [fj] )] , i, j = 1,2, . . . ,M, (14)

which is the covariance matrix for the statistical model Sexp.
In a dully flat structure, the relationship between θ- and η-coordinates is given by the Legendre

transformation:

Ψ(θ) +Ψ∗(η) − θ ⋅ η = 0, (15)

θi = ∂iΨ∗(η), (16)

ηi = ∂iΨ(θ), (17)

where Ψ(θ) and Ψ∗(η) are Legendre dual to each other and are called θ- and η-potential functions,
respectively. In other words, when S is a dually-flat manifold, both the e-affine and m-affine coordinates
(θ and η) are connected by the Legendre transformation, and the tangent vectors ei of the coordinate
curves θi and those ej of the coordinate curves ηj are orthonormal at every point on the manifold:

⟨ei,e
j⟩ = Ep [∂i lnp(x;θ)∂j lnp(x;η)] = δji . (18)

As is well known, maximizing the Boltzmann–Gibbs–Shannon (BGS) entropy:

SBGS ≡ −∫ dxp(x) lnp(x) = Ep [− lnp] , (19)

under the M -constraints:

Ep [fm(x)] = Um, m = 1,2,⋯,M, (20)

for a given set of Um and the normalization ∫ dxp(x) = 1, leads to the optimized pdf:

p(x;θ) = exp(
M

∑
m=1

θmfm(x) −Ψ(θ)) , (21)

which belongs to the exponential family Sexp. The control parameters {θm} are the Lagrange multipliers
for the above M -constraints. From the normalization of the pdf (21), we readily obtain the θ-potential
function Ψ(θ) as:

Ψ(θ) = ln(∫ dx exp [
M

∑
m=1

θmfm(x)]) . (22)

At this point, we observe that, in addition to Equation (5), the Fisher metric gF can be written
equivalently in other different expressions:

gFij = ∫ dx∂ip(x;θ)∂j`θ(x) (23)

= −∫ dxp(x;θ)∂i ∂j`θ(x) (24)

= ∫ dx
1

p(x;θ)
∂ip(x;θ)∂jp(x;θ). (25)
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In particular, combining Equations (9) with (24), we readily confirm the important relation:

gFij = ∂i∂jΨ(θ), (26)

that is, the Fisher metric coincides with the Hessian matrix of the θ-potential function Ψ(θ). It is known
that an exponential family naturally has the dualistic Hessian structures, and their canonical divergences
coincide with the Kullback–Leibler divergences. Furthermore, using Equation (13), the Fisher matrix
can be also rewritten as:

gFij = ∂iηj = ∂iEp [fj] , (27)

which holds for the exponential family Sexp.
In general, the dual affine connections are induced by the metric. By applying ∂i to Equation (23) for

gF, we see that the next relation holds:

∂ig
F
jk = Γ

(e)
ij,k + Γ

(m)
ij,k , (28)

where the Christoffel symbol of the first kind for the e-affine connection and that for the m-affine
connection are defined by:

Γ
(e)
ij,k ≡ ∫ dx∂kp(x;θ)∂i∂j`θ(x) = Ep [∂k`θ ∂i∂j`θ] , (29)

Γ
(m)
ij,k ≡ ∫ dx∂i∂jp(x;θ)∂k`θ(x) = Ep [

1

p(x;θ)
∂i∂jp(x;θ) ∂k`θ] , (30)

respectively. In addition, we can introduce a cubic form:

Cijk ≡ Γ
(m)
ij,k − Γ

(e)
ij,k, (31)

which characterizes the difference between the affine connection ∇(e) (or ∇(m)) and the Levi–Civita
connection ∇(0) through the relations:

Γ
(e)
ij,k = Γ

(0)
ij,k −

1

2
Cijk, (32)

Γ
(m)
ij,k = Γ

(0)
ij,k +

1

2
Cijk. (33)

A well-known example of the exponential family in statistical physics is given by the grand-canonical
ensemble, which describes an equilibrium thermal system characterized by a constant temperature T and
a constant chemical potential µ. The pdf of the grand-canonical ensemble [6] is given by:

pG(x) =
1

ZG(β,µ)
exp [−βEN(x) + βµN] , (34)

with the grand-canonical partition function:

ZG(β,µ) =
∞

∑
N=0
∫ dx exp[−βEN(x) + βµN]. (35)

Here, β = 1/(kBT ) stands for inverse temperature, kB for the Boltzmann constant, N for the number
of particles, and EN(x) is the energy of the system with N particles for a given configuration x.
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The pdf (34) can be cast into the exponential form (21) by choosing θ1 = −β, θ2 = βµ, f1(x) =

EN(x), f2(x) = N and:

Ψ(θ) = lnZG(β,µ) = Φ(β,µ), (36)

where Φ(β,µ) is the Massieu potential [6].
From (26), we see that the corresponding Fisher information matrix gFG for the grand canonical

ensemble is the Hessian matrix of lnZG(β,µ) (or that of Φ(β,µ)):

gFGij = ∂i∂j lnZG(β,µ) = ∂i∂jΦ(β,µ), (37)

whereas from Relation (13), we see that the η-coordinates are given by:

ηG1 = −
∂

∂β
lnZG(β,µ) = Ep [EN] , (38)

ηG2 =
∂

∂(βµ)
lnZG(β,µ) = Ep [N] , (39)

which are nothing but the thermodynamic Legendre relations in statistical mechanics. Consistently, the
corresponding η-potential function is the negative of the BGS entropy:

Ψ∗(η) = −βEp [EN] + βµEp [N] − lnZG(β,µ) = −S
BGS. (40)

Finally, from Relation (27), we have

gFG =
⎛

⎝

− ∂
∂βEp [EN] − ∂

∂βEp [N]

∂
∂(βµ)Ep [EN] ∂

∂(βµ)Ep [N]

⎞

⎠
, (41)

that coincides with the susceptibilities matrix. From Relation (14), the same Fisher metric can be written
in:

gFG =
⎛

⎝

Ep [E2
N] −Ep [EN]

2
Ep [EN N] −Ep [EN] Ep [N]

Ep [EN N] −Ep [EN] Ep [N] Ep [N2] −Ep [N]
2

⎞

⎠
, (42)

which describes the square correlations (or fluctuations) of the stochastic variables EN and N . From this
expression, we see that gFG is actually a positive definite matrix, because of Jensen’s inequalities:

Ep [E
2
N] > Ep [EN]

2
, Ep [N

2] > Ep [N]
2
, (43)

and others. We remark that the thermodynamic stability of the grand-canonical ensemble is due to the
convexity of the relevant potential function lnZG(β,µ).

In addition, equating the two different expressions, (41) and (42), we obtain the fluctuation-response
relation for systems in equilibrium [6], which is a well-known statement in statistical mechanics relating
the spontaneous thermodynamic fluctuations to thermodynamic responses (or susceptibility).
We also observe that the grand-canonical Fisher matrix is symmetric gFGij = gFGji , as is obvious from
Equation (42). Then, accounting for Equation (41), we obtain the relation:

−
∂

∂β
Ep [N] =

∂

∂(βµ)
Ep [EN] , (44)

which is one among the many Maxwell relations that are well known in the thermodynamics theory.
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3. Information Geometric Structures in the κ-Thermostatistics

The κ-deformed entropy [10,11] is defined by:

Sκ ≡ −∫ dxp(x) lnκ p(x) = Ep [− lnκ p] , (45)

which mimics the BGS entropy by replacing the standard logarithm with the κ-logarithm:

lnκ x ≡
xκ − x−κ

2κ
=

1

κ
sinh (κ lnx), (46)

for x > 0 and a real-parameter κ ∈ (−1,1). The inverse function of lnκ x is the κ-exponential function
expκ(x) introduced in Equation (2). In the κ→ 0 limit, the κ-exponential and the κ-logarithm reduce to
the standard exponential exp(x) and logarithm lnx, respectively.

There exists another κ-deformed function:

uκ(x) ≡
xκ + x−κ

2
= cosh (κ lnx), (47)

which is conjugate to lnκ x. In the κ → 0 limit, this function uκ(x) reduces to the unit constant function
u0(x) = 1. As with the case that the κ-entropy Sκ defined as the expectation of − lnκ p(x), we introduce
the function:

Iκ ≡ ∫ dxp(x)uκ(p(x)) = Ep [uκ(p)] , (48)

as the expectation of uκ(p(x)). We will see later that the function Iκ plays an important role in the
Legendre structures concerning the κ-entropy Sκ.

Let us consider the maximum κ-entropy problem [14] under the M -constraints:

Ep [fm] = Um, m = 1,2,⋯,M, (49)

for a given set of Um and the normalization ∫ dxp(x) = 1

max
p(x)

(Sκ −
M

∑
m=1

θm ∫ dxfm(x)p(x) − γ ∫ dxp(x)) , (50)

where {θm} and γ are Lagrange multipliers. In order to solve this problem, we introduce two constants
α and λ, which satisfy the condition:

d

dx
(x lnκ x) = λ lnκ (

x

α
) . (51)

This relation holds for any x > 0 if

α = (
1 − κ

1 + κ
)

1
2κ

, λ =
√

1 − κ2, (52)

which are related to each other according to

lnκ (
1

α
) =

1

λ
. (53)
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Using Relation (51), we obtain the optimal solution of the MaxEnt problem as:

p(x;θ) = α expκ [
1

λ
(
M

∑
m=1

θmfm(x) − γ(θ))] . (54)

We hence consider the statistical manifold generated by the κ-exponential family [13],

Sκ-exp = {p(x,θ) ∣ p(x,θ) = α expκ [
1

λ
(
M

∑
m=1

θmfm(x) − γ(θ))] ,∫ dxpκ(x,θ) = 1} . (55)

We comment on the relations between Naudts’ φ-deformed functions and the κ-deformed functions in
this study. They are related in

expφ(x)↔ α expκ (
x

λ
) ,

lnφ x↔ λ lnκ (
x

α
) . (56)

From the useful identity [13]:

λ lnκ (
x

α
) = lnκ x + uκ(x), (57)

we see that

Iκ − Sκ = Ep [uκ(p(x;θ)] +Ep [lnκ (p(x;θ))] = Ep [λ lnκ (
p(x;θ)

α
)]

=
M

∑
m=1

θm Ep [fm] − γ(θ). (58)

By comparing this last relation with Equations (15)-(17), we realize that Equation (58) corresponds to
the Legendre relation:

Ψκ(θ) = θ ⋅ η −Ψ⋆
κ(η), (59)

for the κ-deformed exponential family with ηm = Ep [fm] and the θ- and η- potential functions given by:

Ψκ(θ) = Iκ(θ) + γ(θ), Ψ⋆
κ(η) = −Sκ(η). (60)

Next, we introduce the κ-escort distribution P (x) [13] with respect to a pdf p(x) by:

P (x) ≡
1

Uκ

p(x)

λuκ (
p(x)
α )

, (61)

where Uκ is the normalization factor:

Uκ ≡ ∫ dx
p(x)

λuκ (
p(x)
α )

, (62)

and the corresponding κ-escort expectation EP [A] of a function A(x) is defined by:

EP [A] ≡ ∫ dxP (x)A(x). (63)



Entropy 2015, 17 1212

By using the relation:

d

dx
expκ(x) =

expκ(x)

uκ( expκ(x))
. (64)

and accounting for the normalization of the κ-exponential pdf (54), we have:

0 = ∂i∫ dxp(x;θ) = ∫ dx
1

λ
(fi(x) − ∂iγ(θ))

α expκ [
1
λ
(∑m θ

mfm(x) − γ)]

uκ (expκ [
1
λ
(∑m θ

mfm(x) − γ)])

= ∫ dx(fi(x) − ∂iγ(θ))
p(x;θ)

λuκ (
p(x;θ)
α )

. (65)

We thus obtain

∂iγ(θ) = EP [fi] , (66)

i.e., the Lagrange multiplier γ(θ) associated with the normalization condition is the θ-potential function
associated with the κ-escort expectations {EP [fi]}. Note that, since

∂i (λ lnκ (
p(x;θ)

α
)) = fi(x) − ∂iγ(θ), (67)

Relation (66) implies

EP [∂i (λ lnκ (
p(x;θ)

α
))] = 0. (68)

At this point, we introduce the κ-generalization of `θ(x) given by:

`
(κ)
θ ≡ λ lnκ (

p(x;θ)

α
) , (69)

which reduces to `θ(x)+1 in the limit of κ→ 0. Due to Equation (68), the standard expectation of ∂i`
(κ)
θ

does not vanish:

Ep [∂i`
(κ)
θ ] ≠ 0, (70)

and consequently `
(κ)
θ is not an appropriate candidate for the κ-generalized representation. We then

consider a modified κ-representation given by:

˜̀(κ)
θ ≡ `

(κ)
θ − Iκ, (71)

which fulfills the relation:

Ep [∂i ˜̀
(κ)
θ ] = 0, (72)

as similar as Equation (8) in the standard exponential case. In addition, since limκ→0 Iκ = 1, we see that
˜̀(κ)
θ reduces to `θ(x) in the limit of κ→ 0.
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With the help of Equation (59), we can derive the following relations:

˜̀(κ)
θ =

M

∑
m=1

θmfm(x) − γ − Iκ =
M

∑
m=1

θmfm(x) −Ψκ(θ), (73)

∂i ˜̀(κ)
θ = fi(x) − ∂i Ψκ(θ), (74)

∂i∂j ˜̀(κ)
θ = −∂i∂j Ψκ(θ), (75)

and from Equations (72) and (74), we obtain

0 = Ep [∂i ˜̀
(κ)
θ ] = Ep [fi] − ∂i Ψκ(θ). (76)

Since Ψκ(θ) is the θ-potential function, we have

ηi ≡ ∂iΨκ(θ) = Ep [fi] , (77)

in agreement with Equation (13), and consequently, they are the η-coordinates for the κ-formalism.
We now introduce the κ-generalized metric as the Hessian matrix of the κ-deformed θ-potential

function:

g
(κ)
ij ≡ ∂i∂j Ψκ(θ). (78)

Since Equation (75) does not depend on x, we can write

g
(κ)
ij = −Ep [∂i∂j ˜̀(κ)

θ ] = −∫ dxp(x;θ)∂i∂j ˜̀(κ)
θ

= ∫ dx∂i p(x;θ)∂j ˜̀(κ)
θ , (79)

where the last expression follows from the relation:

∂iEp [∂j ˜̀
(κ)
θ ] = ∫ dx∂ip(x;θ) ∂j ˜̀

(κ)
θ + ∫ dxp(x;θ)∂i∂j ˜̀

(κ)
θ = 0. (80)

Equation (79) corresponds to Equation (24) for the standard Fisher matrix.
The κ-deformed Christoffel symbol of the first kind for the e-connection is defined by:

Γ
(κe)
ij,k ≡ ∫ dx∂i∂j ˜̀(κ)

θ ∂kp(x;θ) = Ep [∂i∂j ˜̀(κ)
θ ∂k `θ] , (81)

so that the κ-exponential family Sκexp is e-flat, because from Equation (75):

Γ
(κe)
ij,k = −∂i∂j Ψκ(θ)∫ dx∂kp(x;θ) = 0. (82)

Similarly, the inverse of the κ-generalized metric g(κ)ij is obtained from the Hessian matrix of the
κ-deformed η-potential function:

g(κ) ij = ∂i∂j Ψ∗
κ(η). (83)

This can be confirmed as follows. By utilizing the Legendre relation (59) and θm = ∂mΨ∗
κ(η), we can

express ˜̀(κ)
θ as a function of η:

˜̀(κ)
θ =

M

∑
m=1

θmfm(x) −Ψκ(θ) =
M

∑
m=1

θmηm −Ψκ(θ) +
M

∑
m=1

θm (fm(x) − ηm)

= Ψ∗
κ(η) +

M

∑
m=1

∂mΨ∗
κ(η) (fm(x) − ηm). (84)



Entropy 2015, 17 1214

Then, the derivative of ˜̀(κ)
θ with respect to ηi becomes

∂i ˜̀(κ)
θ = ∂iΨ∗

κ(η) +
M

∑
m=1

∂i∂mΨ∗
κ(η) (fm(x) − ηm) −

M

∑
m=1

∂mΨ∗
κ(η)∂

iηm

=
M

∑
m=1

∂i∂mΨ∗
κ(η) (fm(x) − ηm), (85)

where we used ∂iηm = δim. Taking the linear expectation of the both sides of (85), we see Ep [∂i ˜̀
(κ)
θ ] = 0.

Then, we have

∂iEp [∂
j ˜̀(κ)
θ ] = ∫ dx∂ip(x;θ)∂j ˜̀

(κ)
θ +Ep [∂

i∂j ˜̀
(κ)
θ ] = 0. (86)

By using this relation and Equation (85), we thus confirm that:

g(κ) ij = −Ep [∂
i∂j ˜̀

(κ)
θ ] = ∫ dx∂ip(x;θ)∂j ˜̀

(κ)
θ =

M

∑
m=1

∂j∂mΨ∗
κ(η) ∫ dx∂ip(x;η)(fm(x) − ηm)

= ∂j∂mΨ∗
κ(η) ∂

iEp [fm] = ∂i∂j Ψ∗
κ(η). (87)

Next, we consider the κ-deformed Christoffel symbol of the first kind for the m-connection, which is
defined by:

Γ(κm) ij,k ≡ ∫ dx∂i∂jp(x;θ)∂k ˜̀(κ)
θ = Ep [

1

p(x;θ)
∂i∂jp(x;θ) ∂k ˜̀(κ)

θ ] . (88)

Taking the derivative of the metric g(κ) jk with respect to ηi, we have

∂ig(κ) jk = ∂i(∫ dx∂jp(x;θ)∂k ˜̀(κ)
θ ) = ∫ dx∂i∂jp(x;θ)∂k ˜̀(κ)

θ + ∫ dx∂jp(x;θ)∂i∂k ˜̀(κ)
θ

= Ep [
1

p(x;θ)
∂i∂jp(x;θ) ∂k ˜̀(κ)

θ ] +Ep [∂
j`θ ∂

i∂k ˜̀(κ)
θ ]

= Γ(κm) ij,k + Γ(κe) ik,j, (89)

which is a similar relation of (28). Note that the expression of Γ(κe) ik,j is obtained by rising the indexes
of Equation (81).

From Relation (85), we have

Γ(κe) ik,j = ∫ dx∂jp(x;θ)∂i
M

∑
m=1

∂k∂mΨ∗
κ(η) (fm(x) − ηm)

= ∫ dx∂jp(x;θ)
M

∑
m=1

{∂i∂k∂mΨ∗
κ(η)(fm(x) − ηm) − ∂i∂mΨ∗

κ(η)∂
iηm}

=
M

∑
m=1

∂i∂k∂mΨ∗
κ(η)∂

jEp [fm] = ∂i∂j∂kΨ∗
κ(η) = ∂

ig(κ) jk, (90)

where we used ∂iEp [fm] = ∂iηm = δim. Substituting Relation (90) into Equation (89), we obtain
Γ(κm) ij,k = 0, i.e., the κ-exponential family Sκ-exp is also m-flat. Therefore, the κ-deformed statistical
manifold (Sκ-exp, gκ,∇κ) has a dually-flat structure.
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We can further elaborate the expression of the metric g(κ). In fact, accounting for Equation (77), we
can rewrite Equation (78) in:

g
(κ)
ij = ∂i Ep [fj] , (91)

and taking into account the relation:

∂ip(x;θ) =
p(x;θ)

λuκ(
p(x;θ)
α )

(fi(x) − ∂iγ) = UκP (x;θ) (fi(x) − ∂iγ) , (92)

we obtain

g
(κ)
ij = ∫ dx∂ip(x;θ)fj(x) = Uκ∫ dxP (x;θ) (fi(x) − ∂iγ) fj(x)

= Uκ ∫ dxP (x;θ) (fi(x) −EP [fi]) fj(x) = UκEP [(fi(x) −EP [fi] ) fj(x)]

= UκEP [(fi −EP [fi])(fj −EP [fj])] . (93)

This expression has the following meaning: the response function ∂i Ep [fj] associated with the standard
expectation Ep [fj] is related to the fluctuation associated with the κ-escort expectation, which states
the κ-generalization of the standard fluctuation-response relation, as pointed out firstly by Naudts [7].
It is also clear, from the final result in Equation (93) that the metric gκij is symmetric in its indexes, and
accounting for Equation (91), we see that:

∂i Ep [fj] = ∂j Ep [fi] . (94)

In concluding this section, let us specify our results to the grand-canonical ensemble described by the
pdf:

pGκ (x) = α expκ [
1

λ
( − βEN(x) + βµN − γ(β,µ))] . (95)

It belongs to the κ-exponential family (55) with θ1 = −β, θ2 = βµ and f1(x) = EN(x), f2(x) = N .
The grand-canonical potential coincides with Ψκ(θ) and also corresponds to the κ-generalized Massieu
potential:

Ψκ(θ) = Iκ(β,µ) + γ(β,µ) = ΦG
κ (β,µ), (96)

whereas its dual, Ψ∗
κ(η), is the negative of the κ-entropy:

Ψ∗
κ(η) = −Sκ(Ep [EN] ,Ep [N]). (97)

The η-coordinates are given by the relations:

ηG1 = −
∂

∂β
ΦG
κ (β,µ), (98)

ηG2 = −
∂

∂(βµ)
ΦG
κ (β,µ), (99)
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and coincide with the energy average Ep [EN] and the particle number average Ep [N], respectively,
as can be verified by a direct calculation. All of Relations (96)–(99) fulfill consistently the Legendre
transformations (15).

Finally, the corresponding κ-generalized metric becomes

g(κ)G =
⎛

⎝

− ∂
∂βEp [EN] − ∂

∂βEp [N]

∂
∂(βµ)Ep [EN] ∂

∂(βµ)Ep [N]

⎞

⎠

= Uκ
⎛

⎝

EP [E2
N] −EP [EN]

2 EP [EN N] −EP [EN] EP [N]

EP [EN N] −EP [EN] EP [N] EP [N2] −EP [N]
2

⎞

⎠
, (100)

from which we can promptly read the energy-particle fluctuation-response relations in the κ-formalism.
Again, from this last expression, we see that the κ-generalized metric is actually a positive definite
matrix, because of Jensen’s inequalities.

4. Conclusions

We have studied the information geometric structures of the statistical manifold generated by the
κ-deformed exponential family Sκ-exp. Our construction of the κ-statistical manifold is based on the
appropriate κ-deformed functions (56), which are consistent with the κ-generalized MaxEnt principle
for the κ-entropy Sκ. We have constructed the κ-deformed statistical manifold (Sκ-exp, g(κ),∇(κ)),
which has a dually-flat structure. As a byproduct, we obtained the κ-generalized fluctuation-response
relations (100) based on our κ-generalized exponential family.
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