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Abstract: The interest in designing nanosystems is continuously growing. Engineers apply 

a great number of optimization methods to design macroscopic systems. If these methods could 

be introduced into the design of small systems, a great improvement in nanotechnologies could 

be achieved. To do so, however, it is necessary to extend classical thermodynamic analysis 

to small systems, but irreversibility is also present in small systems, as the Loschmidt paradox 

highlighted. Here, the use of the recent improvement of the Gouy-Stodola theorem to complex 

systems (GSGL approach), based on the use of entropy generation, is suggested to obtain the 

extension of classical thermodynamics to nanothermodynamics. The result is a new approach 

to nanosystems which avoids the difficulties highlighted in the usual analysis of the small 

systems, such as the definition of temperature for nanosystems. 
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1. Introduction 

In the last decades interest in engineering applications in composite materials, reacting systems, drug 

delivery and chemical storage has been continuously increasing. Small systems are ideal components 

for these uses because they present very high surface to volume ratios [1], but the consequences of the 
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progress in small system design and synthesis have pointed out the importance of scale-related properties, 

often different from the macroscopic ones [2]. 

But, what are the small systems? In this paper, small system means any system which has a size smaller 

than the range of the interactions of the forces acting on the system itself, so we consider several kinds 

of small systems [3,4]: 

(1) Mesoscopic systems: Systems considered in the range size between the bulk materials and the 

molecules (of size of the order of 10−9–10−6 m); 

(2) Mesoscopically inhomogeneous systems: systems which have a mesoscopic length scale 

associated with spontaneous thermal fluctuations, so they are loose clusters, statistically appearing 

and disappearing with a definite lifetime; 

(3) Soft condensed-matter materials: polymer solutions, polymer melts, microemulsions, foams, 

gels, colloidal dispersions, liquid crystals; 

(4) Any system with long-range interactions. 

Since the 19th century, thermodynamics has been developed to study the processes in macroscopic 

systems, which means that their number of particles are, at least, of the order of the Avogadro’s number [5]. 

Since the 1930s, scientists and engineers have been trying to understand how to extend thermodynamic 

approaches and methods and the related fundamental quantities to small systems [3,6]: but, today, this 

remains an open problem. Indeed, in a general approach, the laws of thermodynamics operate at all scales, 

but at the small scale some phenomena, non visible at the macroscopic scale, must be taken into account; i.e., 

the interfacial energy and thermal fluctuations [7–11]. As a result of these studies, many new approaches 

have been developed and improved, i.e., non-equilibrium statistical thermodynamics, quantum 

thermodynamics, non-equilibrium fluids, molecular dynamics, etc. [12–22]. 

In this context, surface energies have been highlighted to modify the physical and chemical properties 

of small systems, which are taken into account by introducing a contribution to the total Gibbs free 

energy of the system [23–25]. 

On the other hand, applied and engineering thermodynamics is the science which studies both energy 

and its best use in relation to the available energy resources: energy and energy transformations, including 

power production, refrigeration and relationships among the properties of matter, including also living 

matter. The first law of thermodynamics expresses the conservation of the total energy, while the second 

law states that entropy continuously increases for the system and its environment [26]. Entropy can 

sometimes decrease within an open system, but only if it is used to increase entropy outside of the system. 

The second law highlights that energy has quality as well as quantity and any process occurs with a 

consequent decrease of this quality [26]. Consequently, the analysis of irreversibility in applied 

thermodynamics is a fundamental science for the analysis of open systems when energy transfers and 

energy transformations occur [27]. In this context, it has been highlighted that any effect in Nature is 

always the consequence of the dynamic balances of the interactions between the real systems and their 

environment [28–31]. Energy balances are the results of the exchange of energy between any real system 

and its environment. The real systems evolution is always related to the decrease of their free energy, in 

the least time [32–42]. 

Therefore, since 1993, a new approach to complex system has been developed [43–49] and 

improved [50–52] and recently applied to biological small systems [53–62] with particular regards to 
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the molecular motor analysis of V-ATPase [63]. It is based on the analysis of the interaction between 

systems and their environment by the use of the Gouy-Stodola theorem to evaluate the irreversibility and 

the dissipations in the interaction between systems and their environment, by considering entropy 

generation, which is related to the exergy lost by the systems during the interactions themselves [64–67]. 

Lastly, small systems sciences and engineering require an understanding of the small size behaviour 

of materials in order to use them in applications by modifying their physicochemical properties by controlling 

their size. In this context the thermal properties at the nanoscale represent a new opportunity of 

development for thermodynamics. 

In this paper, just the Lucia and Grazzini developments and improvement of the Gouy-Stodola 

approach (GSGL-approach) to the analysis of irreversibility are suggested as a link between the classical 

and the small system approaches to thermodynamics. To do so, in Section 2 the usual approaches to 

nanosystems are summarized and discussed. In Section 3 a summary of the GSGL-approach is developed. 

Last, in Section 4, its application to small systems is proposed. 

2. Nanothermodynamics: Considerations 

A first approach to the thermodynamics of small systems can be obtained considering Hill’s 

nanothermodynamics [15]. Hill began his analysis considering that the Gibbs, Euler and Gibbs-Duhem 

equations could be not valid when a small system doesn’t satisfy the macroscopic limit: 

n
V

N

V
N

∞→
∞→

→  (1)

where N is the number of particles of the system, V is the volume of the system and n is its number 

density, considered fixed and constant for any defined system, so he developed a theory to introduce the 

finite-size effects in the macroscopic thermodynamics. He obtained this result by introducing a new 

thermodynamic potential, named subdivision potential US [14], defined as:  
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where U is the internal energy, S is the entropy, V is the volume, N is the number of particles and NS is 

the number of subdivisions, such that all these quantities are related to the whole system. This quantity 

disappears in the macroscopic approach to thermodynamics because the internal energy cannot have any 

variation if entropy, volume and the number of particles is constant: 

μdU T dS p dV dN= − +  (3)

where T is the temperature, p is the pressure and μ is the chemical potential [68]. So, the pairs  

subdivision potential and number of subdivisions, (US, NS), represent a new pair of conjugate 

thermodynamic variables. 

In order to extend the classical thermodynamic approach to small systems, Hill introduced these 

quantities in the classical thermodynamic relations, considering that any composite system is macroscopic 

and that the small systems are non-interacting because their distance is larger than their interactions 

range. Consequently, for a small system, Euler’s equation becomes: 
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(4)

and the Gibbs-Duhem equation becomes: 

μ μS S ss ss ss
S S S

S V N
dU dT dp d dU S dT V dp N d

N N N
= − + −  = − + −  (5)

where the suffix ss means small system. Consequently, the Gibbs’ equation for the small systems is: 

ssssssss dNpdVTdSdU μ+−=  (6)

the intensive parameter (T, p, μ) can be changed independently because of the variable size of small systems, 

which represents a new degree of freedom [14–19]. As a consequence of the subdivisions energy  

Equation (2) the entropy variation for subdivision, named subdivision entropy, can be introduced as: 
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 (7)

and it represents the entropy variation due to the ways of distributions of the particles in the small system. 

Consequently, the total entropy variation for a small system results: 
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 (8)

So, as a consequence of the definition of:  

(1) Gibbs free energy [68]: 

pVTSUG +−=  (9)

the chemical potential for a small system results as: 
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 (10)

(2) Landau potential, named also grand potential [69]: 

μG U TS NΦ = − −  (11)

the pressure for a small system results: 
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so it follows that: 

( ) ( )S S ss ss ssU TS N p p V= − = μ − μ = −  (13)

But, in relation to Equations (2)–(13), two fundamental thermodynamic questions can be highlighted:  

(1) How is defined the temperature T for a small systems?  

(2) Is temperature the same for a composite system and for its components, the small systems?  
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So, to avoid these two conceptual difficulties, a new approach could be considered. The second law 

is one of the central and powerful laws of Nature. It is based on the concept of entropy [68]. On the other 

hand, entropy has always been a controversial topic. Indeed, during the 19th century, thermodynamics 

began its development as a physical science as a result of the studies of Sadi Carnot (1796–1832), Julius 

Robert von Mayer (1814–1878), Hermann Helmholtz (1821–1894), William Thomson (1824–1907) and 

Rudolf Clausius (1822–1888). But Helmholtz was the scientist who first determine the cultural profile 

of the thermodynamic researches [70–72]. Clausius, just developing the results of Helmholtz and Carnot, 

published the first formulation of the second law, as we know it today. Clausius suggested that heat is 

nothing more than a transformation of different kinds of energy, in which the total energy is a conserved 

quantity; indeed, he used the concept of ideal cycle of a reversible heat engine, as introduced by Carnot, 

in order to describe the work obtained by the transfer of heat from a reservoir at high temperature to one 

at low temperature. In 1851, Thomson obtained independently another formulation of the second law; 

he stated that it is impossible to create work by cooling down a thermal reservoir, so the fundamental 

nature of the second law results in a selection principle which can be expressed as an exclusion principle 

such that not all processes allowed by the energy conservation law may be realized during a real process [71]. 

Consequently, in order to study the evolution of real processes, Clausius first introduced in the 1850s–1860s 

a new quantity, the entropy S [73]. In 1871, Ludwig Boltzmann (1844–1906) introduced both the ergodic 

hypothesis, fundamental in statistical physics and in non-linear dynamics, and, in the next year, the  

H-theorem, which represents the first link between the second law and the statistical approach to entropy. 

Then, in 1889 Max Planck (1858–1947) highlighted the fundamental role of entropy and its statistical 

interpretation. Afterwords, Josiah Willard Gibbs (1839–1903) developed the ensemble approach and 

the entropy functional, highlighting the fundamental role of the maximum entropy approach in the 

analysis of the natural systems [71]. In 1909, Constantin Caratheodory (1873–1950) suggested an 

axiomatic formulation of the thermodynamics based on the pfaffian differential forms [74], but  

in 1929, Walter Schottky (1886–1976) was the first to extend the approach to thermodynamics for 

industrial applications [71]. Recently, just the thermodynamic formalism and the related links between 

macroscopic and microscopic approach to entropy have come to clearly play an important role in 

nonlinear sciences and complex systems with particular regards to power engineering, environmental 

sciences, quantum theory, low temperature physics, large scale and small scale physics, biophysics, 

biochemistry and biomedicine, information sciences, etc.. The first scientist who was interested in the 

relation between observer and object, information and entropy was James Clerck Maxwell (1831–1879). 

Then this topic was developed by Leo Szilard (1898–1964), John von Neumann (1903–1957), Garrett 

Birkhoff (1911–1996) and Edwin Thompson Jaynes (1922–1998), obtaining the link between the 

foundations of statistical physics with the information theory by using the maximum entropy principle 

which states that the probability distribution is selected such that the uncertainty remains largest in relation 

to the constraints. 

Every macroscopic equilibrium state of a system, named macrostate, is compatible with a great number 

of microscopic states, named microstates. The relation between the macro- and microscopic thermodynamic 

descriptions of the (macro)state is based on the probability of occupation of microstates. In this context 

the observed values of any physical quantity results as the average values over the distribution of microstates. 

Entropy is a concept that it is not usually easy to understand, so in relation to the approach used many 

different definitions of entropy have been introduced [75]. In order to avoid the increase of the number 
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of the entropy functions, a generalized Boltzmann-Gibbs entropy has been introduced and the entropy 

definition was suggested as [20–22]: 
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where Ω is the total number of microstates, pi is the probability of finding the system in the i-th 

microstate, q, named entropic index, is a parameter which characterizes the degree of nonextensivity of 

the entropy for non completely accessible systems, such that, for a conserved energy system: 
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and k is a constant such that: 
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where kB is the Boltzmann’s constant and lnqξ is the q-logarithm, defined as: 

q

q

q −
−=

−

1

1
ln

1ξξ  (17)

The Hill approach can be developed in term of Tsallis nonexstensive formalis by defining the 

subdivision potential Equation (2) as: 
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and considering the following relations [20–22]: 
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But, again in relation to Equation (19), the previous two thermodynamic questions remain open: 

(1) How is defined the temperature T for a small systems? 

(2) Is temperature the same for a composite system and for its components, the small systems? 

In relation to small systems, the concept of variance of the distribution and fluctuations are 

fundamental to develop a thermodynamic approach. Indeed, the energy of any system fluctuates around 

its average value, without representing the beginning of a process or a transition, but only the dynamic 

character of any thermodynamic configuration [76–78]. In the macroscopic limit Equation (1) 
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fluctuations can be neglected, while in nanoscale systems they must be taken into account because a lot 

of nonascole thermal properties [79] and the transport phenomena [57–61,64] can be evaluated just by also 

using the fluctuation theory. The fluctuation of a physical quantity ξ can be mathematically defined as 

the deviation δξ of any single measurement of ξ from its average value ξ: 

δξ = ξ − ξ  (20)

The relevance of the fluctuation can be evaluated considering its fractional deviation: 

r
ξ

ξ

σ
σ =

ξ
 (21)

where σξ is the standard deviation of ξ: 

( )2

ξσ = ξ − ξ  (22)

The probability of observing a microstate characterized by the physical quantity ξ is proportional to 

its multiplicity: 

( ) ( )p ξ ∝ Ω ξ  (23)

and the related power expansion for the Boltzmann’s entropy around the equilibrium state ξeq results: 
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But if the system is isolated, the relation Equation (24) becomes: 
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consequently, considering the Boltzmann definition of entropy, the probability distribution results: 
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and the variance of the physical quantity results [78]: 

( )

( )

2
2

2

2

22
2

22

1
exp

2 1
0

1
exp

2

eq

eq B

eq
eqeq

S

k

S NS
d

∞

ξ
ξ ∞

−∞

  ∂ ξ − ξ  ∂ξ   σ = = − ∝ ≥
   ∂ ∂  ξ − ξ ξ   ∂ξ ∂ξ   




 (27)

Therefore, at the macroscopic limit the fluctuations are so small as to be neglected. This approach, 

developed by Einstein, can be used also for non-isolated systems, for which we consider the stationary 

states [80], so fluctuations represent also a fundamental bases in non-equilibrium thermodynamics. 
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In relation to fluctuation Brownian motion must also be considered. It always exists just as a 

fluctuation, related both to thermal molecular motion inside the system and to dissipation for interaction 

between system and external forces. In this context of internal and external irreversibility, Ehrenfest’s 

fundamental question on the existence of a functional which achieves its extreme value, as entropy does 

for the stationary states in equilibrium thermodynamics, must be considered, so many fluctuation theorems 

have been developed to obtain this general principle of analysis and design of the stationary systems for 

complex, and in this context, also small systems [81–90]. Strictly related to this topic, is the analysis of 

self-organizing systems introduced by Mayer, Boltzmann, Erwin Schrödinger (1887–1961) and  

Ilya Prigogine (1917–2003). The basis of their approach is the fundamental role of the exchanges 

between the system and the surroundings. Related to this topic, the development of non-equilibrium 

or irreversible thermodynamics, begun by Joseph John Thomson (1856–1940), John William Strutt 

Rayleigh (1842–1919), Pierre Maurice Marie Duhem (1861–1916), Władysław Natanson (1864–1937), 

Gustav Jaumann (1863–1924) and formalized by Louis Georges Gouy (1854–1926), Aurel Stodola 

(1859–1942), Lars Onsager (1903–1976), Carl Henry Eckart (1902–1973), Josef Meixner (1908–1994), 

Hendrik Casimir (1909–2000), Prigogine and Sybren Ruurds De Groot (1916–1994) it must be considered 

too. Indeed, the analysis of irreversible processes is essential in the study of non-linear sciences, which need 

a non-linear dynamical approach. Thermodynamics is just a theory of the collective behaviour of 

complex systems from engines to biological structures, from transport phenomena to black holes, etc., 

and all these phenomena obey the second law. To develop this law for small systems a mechanical 

formulation is required [91], but, to do so, the surface effects must be taken into account [92]. They can 

be classified in two general sets [25]: 

(1) Smooth size effects: the physical quantities vary monotonically with the system size so that a 

scaling law can be introduced to describe the bulk behaviour; 

(2) Specific size effects: the physical quantities don’t vary monotonically with the system size so 

no scaling law can be introduced and, seldomly, some size properties are unique for the finite 

system considered; 

and they represent the nanosystems property of the high surface to volume ratio increase with size 

decrease. This effect can be taken into account by introducing a size energy component in the total Gibbs 

free energy of the systems [23]. Recently, classical thermodynamics has been highlighted to represent a 

fundamental approach to describe the nanosystems behaviours in relation to their surface properties [95], 

even if it remains fundamental a link between macroscopic and microscopic formulation [96], so that 

the Equation (3) becomes: 

IdAdNpdVTdSdU γμ ++−=  (28)

where AI is the interfacial surface and γ is the interfacial free energy [97]. 
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3. GSGL-Approach: Fundamentals 

In the previous Section some considerations on nanothermodynamics have been developed. Some 

open questions were highlighted: 

(1) How is the temperature T defined for a small system? 

(2) Is temperature the same for a composite system and for its components, the small systems? 

(3) Which is the right statistics for small systems? 

These are important questions and they lead to new improvements to thermodynamics, but in order 

to use classical thermodynamics in small systems analysis, it could be useful to consider the classical 

analysis of irreversibility as recently developed by using the Gouy-Stodola approach [53]. 

Entropy was introduced in classical thermodynamics in relation to the equilibrium states and reversible 

transformations. It is a state function. When an irreversible system is considered [98,99], mathematical 

inequalities appear, so, entropy generation was introduced just to avoid them. Consequently, the second 

law defines the entropy variation, ∆S, for an irreversible system, as [53]: 
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where ∆S is the real entropy variation, ∆Se is the reversible entropy variation and Sg is the entropy 

generation, i.e., the entropy variation due to irreversibility. But, during any process, only entropy really 

varies, so nothing is really produced or generated [53]. Consequently, entropy generation, the entropy 

variation due to irreversibility, Sg, is not more than a quantity that allows us to measure how far the system 

is from the state that the system could attain through a reversible path. The analytical definition of entropy 

generation is defined as [5]: 
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where τ is the lifetime of the process under consideration, which can be defined as the range of time in 
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where Q is the heat exchanged, T is the temperature of the thermal source, s is the specific entropy and 

G is the mass flow. Considering the results obtained in non equilibrium thermodynamics [100] the 

entropy generation results: 

degcrgvggdcgtfg

V k
kk

j
jjB

o k

k
k

o

qg

SSSSS

dV
T

v
J

T

v
dt

T

v
dt

T
vTdt

T

v
S

,,,,,

000
2

54321

:

++++=

=









⋅+−∇−






∇⋅−∇⋅−=     

τττττ μ
FJxΠJJ A  (32)

where [57–61,63]: 
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(1) Sg,tf is the entropy generation due to the thermal flux driven by temperature difference; 

(2) Sg,dc is the entropy generation due to the diffusion current driven by chemical potential gradients;  

(3) Sg,vg is the entropy generation due to the velocity gradient coupled with viscous stress; 

(4) Sg,cr is the entropy generation due to the chemical reaction rate driven by affinity, always 

positive [42–44]; 

(5) Sg,de is the entropy generation due to the dissipation due to work by interaction with  

the environment; 

(6) II = P – p I with P total pressure tensor, p hydrostatic pressure and I identity matrix of which 
the elements are Ijk = δjk = 1 if j = k and 0 in the other cases, =

ij jiijbaba :  is the product 

between two tensors a and b; 
(7) ( )k k k Bρ= −J x x   is the diffusion flows and Fk are the forces; 

(8) Jj is the chemical reaction rate of the j-th chemical reaction and νij are quantities such that if 

they are divided by the molecular mass of the i-th component they are proportional to the 

stoichiometric coefficients, Aj = Σk νkμjj, the chemical affinity; 

(9) μi are the chemical potentials;  
(10) d/dt =∂/∂t + Bx  ⋅∇; 

(11) Jq is the heat flow, ix  is the relative velocity in relation to the centre of mass reference, and 

Bx  is the centre of mass velocity; 

(12) s is the specific entropy, u is the internal specific energy, v is the specific volume, 

(13) T is the temperature; 

and τi, i ∈ [1,5], are the lifetimes [53] of any process and the relation is considered in the time  

τ = max{τi} It must be highlighted that any work related to electric fields inside or on the boundaries of 

the systems can be expressed by variation of the affinities of the ions involved, so that any work for 

internal electric fields is taken into account in the term Sg,cr. 

Now, we have obtained a general analytical expression of the entropy generation. In order to use  

this quantity in the analysis of the complex systems steady states, it is interesting to understand its 

physical-mathematical behaviour for stationary states. To do so, a real system is considered. For such a 

system, the theorem of kinetic energy can be written as [53]: 

kifees EWWW Δ=++  (33)

where Wes is the work done by the environment on the system, i.e., the work done by the external forces 

to the border of the system, Wfe is the work lost due to external irreversibility, Ek is the kinetic energy of 

the system, Wi is the work of the internal forces on the border of the system, named internal work, such 

that [53]: 

fi
rev

ii WWW −=  (34)

with rev
iW  reversible internal work and Wfi work lost due to internal irreversibility. Moreover, the 

following relation must be taken in account [53]: 

feesse WWW −−=  (35)
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where Wse is the work done by the system on the environment, i.e., the work done from the internal 

forces to the border of the system. Consequently, the following formulation of the first principle can be 

obtained [53]: 

kse EUWQ Δ+Δ=−  (36)

with U the internal energy of the system. 

In relation to these last equations, it must be highlighted that the system cannot use all the energy 

inflow, so we must take into account the available energy of the system, named exergy, B, i.e., the maximum 

work that could be done by a system. It is related to a reference environment, assumed to be infinite, at 

equilibrium, and to enclose all other systems. This environment has a well known temperature, pressure 

and chemical composition [5], so exergy allows us to measure the potential of the system or flow to 

cause changes [5], because it is a non-equilibrium system in relation to the reference environment. 

Introducing the exergy lost for irreversibility and dissipation, Bλ, it is possible to prove the Gouy-Stodola 

theorem [5,53]: 

( ) 0

0

rev
W W gB B B dt W T S

τ

λ λ= − = =    (37)

Now, considering the relations Equations (33)–(35), the work lost due to external irreversibility can 

be written in relation to the Gouy-Stodola theorem as [4,53]: 

gfe STW 0=  (38)

where T0 is the environmental temperature and Sg is the entropy generation. Consequently, always 

considering the relations Equations (33)–(35), the link between the internal and the external work lost 

due to irreversibility can be easily obtained [53]: 

kes
rev

igfikes
rev

ifefi EWWSTWEWWWW Δ−+=−Δ−+=− 0  (39)

But, another expression of the work lost can be written as [53]: 

( )








−=

−=







−=  

gfi

gV

STWW

STTdVTvdtW

0

0

0

λ

τ

λ φσ
 (40)

where dtdVSg /2δσ =  is the entropy production density, φ  is the dissipation function, v is the specific 

volume, τ is the lifetime of the process and V is the control volume of the system, the internal irreversibility 

can be easily obtained as [5]: 

0

fi gV
W dtTv dV TS

τ

= σ =   (41)

which is the analytical expression for the work lost for internal dissipation. 

All the results obtained in the analysis of the processes which occur in open systems are based on the 

common principle of the least time. This principle hold to the optimal paths approach which is nothing 

more than a redistribution energy approach. 

Now, considering the effect of the potential energies variation can be evaluated as [53]: 
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esi

N

j
pj WWE +=Δ

=1

 (42)

where Epj, j = 1,...,N, are the potential energies, Wi the internal work, and Wes the work done by the 

external forces to the border of the system, and considering also that: 

es fe i kW W W dEδ + δ + δ =  (43)

it is possible to introduce the thermodynamic Lagrangian as [53]: 

( ) gfefeesik

N

j
pjk STWWWWWdEdEdEd 0

1

−====+−=−= 
=

LL λδδδδ  (44)

and the related action as: 

 −==
ττ

0

0

0

gdtSTdtLA  (45)

where τ is the lifetime of the process, as previously introduced. As a consequence of the least time 

approach, it follows: 

δ δ 0gS≤  ≥A 0  (46)

if it is considered from the environment and:  

δ δ 0gS≤  ≤A 0  (47)

if it is considered from the inside of the system, so the entropy generation results maximum if it is 

evaluated from the environment and minimum if it is evaluated from the inside of the system [53]. 

Therefore, the entropy generation results always in an extremum at the stationary states. Moreover, 

the change in energy always causes a transition between two different thermodynamic states, and it 

always results in a path-dependent processes, so these flow of quanta in a process is nothing more than 

a flow of exergy, which causes the specific entropy generation rate [53]: 

 





∇⋅+






∇⋅=

i
NUg TT

s
i

μ
JJ

1  (48)

where JU is the energy flow, T is temperature, μ is the chemical potential, and JNi is the molar flow,  

it follows that: 

( ) ( )0 0

0 0

1

1
1 1

1

i

i

g U N
i

U N
i

ch
B g

T T s T T
T T

T T
T T

T T T T

T Ts
T

μ

μ

    − = − ⋅∇ + ⋅∇ =        
      = − ⋅∇ + − ⋅∇ =            

 = ⋅∇ + 
 





J J

J J

J





 (49)

where JB is the exergy flow density and ch
gs  is the chemical component of the entropy generation density 

rate. This relation, integrated in time and volume, holds: 



Entropy 2015, 17 1321 

 

 

( )0

0 0

1 1

fi fe g

ch rev ch
B g i es k B g

V V

rev
fi fe i es k

W W W T T S

T d dV s W W E T d dV TS
T T

W W W W W E

λ

τ τ

λ

τ τ

= − = − =

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= − = + − Δ 

   J J  (50)

In this relation it is possible to evince that the system reacts to the external forces by exergy flows, 

which evolves in the least time, so [83]: 

01
0

01
0     TTW

TT

TT
TSg ≠∀

−
−≤ λ  (51)

where Wλ1 is the lost work required to maintain the state 1 at the temperature T1 ≠ T0, in agreement with 

the previous result Equation (46).  

These results are also related to the Carnot efficiency. Indeed, considering an ideal system which 

absorbs the heat Q1 from the thermostat at temperature T1, it follows: 

1
1

1

T
QSg ≤  (52)

This relation was highlighted to be the entropy variation required to maintain the process [53], so 

considering the second thermostat at temperature T2 of a cycle, the heat not converted in useful  

work becomes: 

1

2
122 T

T
QSTQ g ==  (53)

and the maximum work done by a system operating on a Carnot’s cycle results: 









−=−=

1

2
121 1

T

T
QSTQW g

 (54)

which is just the well known Carnot efficiency: 

1

2

1

1
T

T

Q

W −==η  (55)

Consequently, the entropy generation can be considered as an “exergy footprint ∆” in the environment, 

due to the processes occurring inside the complex system: information lost by the system and gained by 

the environment. This exergy footprint can be defined as the exergy difference in a cyclic transformation 

by using Noether’s theorem [34]: 

1        with  2
0

≥= nnhdtEk

τ

 (56)

with n multiples of quanta and h Planck’s constant. By using the previous relations, it follows that [53]: 

( ) 0
rev

i es gW W n T S+ τ = π + τ  (57)

and, considering that the entropy generation is always positive for any real process or null for an ideal 

reversible process, the consequent entropy generation results: 
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0T
Sg

Δ=  
(58)

with T0 a reference temperature, which can be considered the temperature of the environment in contact 

with the system.  

4. GSGL-Approach and Small Systems 

In the last decades, molecular machines have highly been studied [101,102] and their use has been 

suggested both in industrial nanotechnology and in medicine. In this Section an example of application 

of the GSGL approach to small systems is proposed. The small system considered is a molecular 

machine, namely V-ATPase. 

The environment of a small system can be considered as a thermostat, so it has a constant temperature 

T0, so the environment of a small system behaves as a thermostat. As a consequence of the previous 

considerations, we suggest to introduce the irreversible term in the Boltzmann's definition of the entropy 

as follows [103]: 

gB SkS +
Ω
Ω=Δ

1

2ln  (59)

where Sg is evaluated by considering the relation Equation (32), equivalent to the relation Equation (58), 

and ∆S is the entropy variation between two stationary states 1 e 2 such that: 

22

11

ln

ln

Ω=
Ω=

B

B

kS

kS
 (60)

and Sg is consequent to the irreversibility during the transition (process). This new expression for the 

entropy variation is completely time-irreversible for any real process: it could represent a new approach 

to solve the Loschmidt paradox. It is obtained by analysing the interactions of the system in relation to 

its environment (a thermostat). 

Now, we consider an example of application. The basis of metabolism energy conversion consists in 

the generation and the hydrolysis of ATP, which occurs across a trans-membrane electromotive gradient. 

This energy conversion can be obtained by transitioning the electrochemical energy into the chemical 

energy of the terminal phosphoric anhydride bond of the ATP. This can occur by the action of an enzyme, 

which works as a proton-pumping ATP synthetase. A mechanochemical model for the V-ATPase was 

suggested by Grabe, Wang, and Oster [104] and it is based on the hypothesis that ATP concentrations are 

sufficiently high so that hydrolysis is not rate limiting. The V-ATPase structure is composed of a counter-

rotating stator and a rotor. This accepted model for the active transmembrane ion transport is the alternating 

access mechanism. Ions are bound tightly on the low concentration side of the membrane. A conformational 

change weakens their binding affinity by exposing them to the high concentration side; as a consequence, 

they dissociate. Then, the pump changes its conformation in order to begin the cycle again.  

V-APTase hydrolyses ATP to obtain the required energy for its work. The fundamental reaction is: 

PADPOHATP 2 +→+  (61)

and, consequently, a H+ ion is pumped into the cell: 
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++ ⎯⎯ →⎯ + inout
memb

HH
H

 
(62)

where out means outside, in refers to inside and memb stands for across the membrane. 

The efficiency of V-ATPase can be evaluated as [102]: 

χ P

ATP

G

G

Δη =
Δ

 (63)

where ∆GATP is the free energy variation due to the hydrolysis of a single ATP molecule (∼50 kJ·mol−1),  

χ is the coupling ratio (χ = JH/JATP, being JH the proton flux and JATP the ATP hydrolysis rate) and ∆GP 

is the free energy variation required to move the proton across the membrane [106]: 

pH3.2 0 Δ−Δ=Δ
F

RT
GP φ  (64)

where ∆ϕ is the membrane potential, R is the gas constant (8.314 J mol−1K−1), F is the Faraday constant 

(96.485 × 103 A·s·mol−1), and 2.3 ∆pH is the physiological concentration gradient. The coupling ratio χ 

is affected both by the pH gradients and by the membrane potential. So, the work dissipated in wasted 

heat yields: 

( ) 





 Δ−Δ−Δ=Δ−== pH3.21 0

0 F

RT

J

J
GGSTW

AATP

H
ATPATPg φηλ  (65)

and the entropy generation is easily evaluated as: 









Δ−Δ−Δ= pH3.2

00 F

R

TJ

J

T

G
S

AATP

HATP
g

φ
 (66)

This example highlights how entropy generation allows us to link between the microscopic (flows, 

pH, etc.) and the macroscopic thermodynamic quantities (efficiency, heat, etc.). Therefore, all the 

optimization methods usually used in engineering thermodynamics and based on the use of entropy 

generation can be introduced in the analysis and design of small systems in relation to the application 

aims. In particular, in relation to Equation (66), it follows that it is possible to control the proton fluxes 

across the cell membrane by controlling the electric field of the membrane or the pH in the cell 

environment. 

5. Conclusions 

The interest in designing nanosystems is growing [107]. In particular, mechanical engineering uses a 

great number of optimization approaches to design macroscopic machines. If these methods could be 

introduced in the design of small systems it would represent a great improvement in nanotechnologies, 

but to do so, it is necessary to extend classical thermodynamic analysis to small systems. 

In this paper the GSGL approach is suggested to achieve this result. Indeed, this approach is based 

on the use of entropy generation, the variation of entropy related to irreversibility. Irreversibility is 

present also in small systems, as the Loschmidt paradox highlighted. Here a solution to this paradox is 

introduced to extend the use of the entropy generation to small systems thus obtaining a link between 

local and global thermodynamic quantities. Moreover, the use of this new approach avoids the difficulties 
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highlighted in the usual analysis of the small systems, such as the definition of a temperature for nanosystems, 

even if some thermodynamicists have began the analysis of this topic [93,94,105,108]. Moreover, in this 

paper we have only introduced a first application of the GSGL approach to nanosystems. This approach 

will be improved in relation to the other theories not yet analyzed. This choice has been done in relation 

to the following considerations: 

(1) The fundamental aim of this paper: to suggest a link between engineering thermodynamics  

and nanosystems in order to employ a first approximation use of the usual engineering design 

of machines in designing molecular machines for medical applications. However, engineering 

thermodynamics is related to the classical approach to thermodynamics. Consequently, in this 

paper, some fundamental approaches [109] have not been considered. Indeed, these new and 

original approaches doesn’t have a clear link with engineering thermodynamics, so in order to 

develop the GSGL approach to them, it is necessary to obtain this link; 

(2) The proposed approach hasn’t developed the size effects because they have just been discussed 

in depth in some recent papers [110]. 
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