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Abstract: We report on an experimental and theoretical investigation of quantum imaging
where the images are stored in both space and time. Ghost images of remote objects are
produced with either one or two beams of chaotic laser light generated by a rotating ground
glass and two sensors measuring the reference field and bucket field at different space-time
points. We further observe that the ghost images translate depending on the time delay
between the sensor measurements. The ghost imaging experiments are performed both
with and without turbulence. A discussion of the physics of the space-time imaging is
presented in terms of quantum nonlocal two-photon analysis to support the experimental
results. The theoretical model includes certain phase factors of the rotating ground glass.
These experiments demonstrated a means to investigate the time and space aspects of ghost
imaging and showed that ghost imaging contains more information per measured photon
than was previously recognized where multiple ghost images are stored within the same
ghost imaging data sets. This suggests new pathways to explore quantum information stored
not only in multi-photon coincidence information but also in time delayed multi-photon
interference. The research is applicable to making enhanced space-time quantum images
and videos of moving objects where the images are stored in both space and time.

Keywords: quantum; space-time; ghost imaging; two-photon interference; ground glass;
turbulence; turbulence-free; wavefunction; probability amplitude



Entropy 2015, 17 1509

1. Introduction

Meyers et al. [1,2] in 2007 and 2008 pioneered the first ghost image of a remote object by imaging a
small toy soldier in their setup at the U.S. Army Research Laboratory.

This demonstration was the first practical application of ghost imaging and it showed that ghost
imaging could be applied to remote sensing from astrophysical to microscopic scales with the potential
of increased resolution, increased contrast, and mitigation of adverse effects from distorting media.
Other interesting Ghost imaging research includes experiments on entangled photon ghost imaging
through laboratory turbulence [3], signal-to-noise studies and illumination variations [4,5], studies on
contrast and visibility [6,7], virtual or computational ghost imaging [8–10], along with associated
fundamental experimental [11] and theoretical physics [12–14]. Extending the remote ghost imaging
practical application to a turbulent environment, Turbulence-free Ghost Imaging (Meyers et al. [15,16])
was recently proven, wherein turbulence has virtually no adverse effect on ghost imaging as shown in
Figure 1.

Figure 1. Ghost imaging through turbulence results: (a) a turbulence-free ghost image of
the letter “A” , (b) a classical averaged image of the letter “A”. Meyers, et al. [15]

Although the theory interpreting these ghost imaging experiments evolved from a more general
approach where photons are emitted at two separate space-time points, the measurements presented
in the ghost images were time coincident. In particular we asked the question, “Can ghost images be
generated when the two sensors of ghost imaging make photon measurements at different times?” In this
paper we present our experimental findings demonstrating that new types of space-time ghost images can
be generated when the measurements of the two-photon system are separated in time as well as space.
In particular we show that ghost images of remote objects can be produced with either one or two beams
of chaotic laser light and two sensors measuring at different space-time points.

2. Experimental Setup

To investigate space-time ghost imaging we needed to adjust previous experiments to examine
the effect of the scattering phenomena involved in pseudo-thermal light on ghost imaging by adding
measurements that resolve the two-photon coherence time of the system. The setup to perform the
experiments is shown in Figure 2. It is similar to previous ghost imaging setups [1,2,15–19]. The setup
differs in that sometimes a faster or slower charged coupled device (CCD) framing rate was implemented
and sometimes a faster or slower ground glass rotation rate was used. A variety of space-time ghost
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imaging experiments were performed with combinations of rotating ground glass rates and CCD timing
parameters. The rotation rate of the ground glass ranged from less than 1◦ per second to greater than 1500
rpm. The CCD timing parameters included frame rates of less than 1 frames per second (fps) to more
than 1000 fps and the integration times ranged from micro-seconds to nanoseconds with some timing
controls operating in picoseconds. For example at the low end of the experiments CCD integration times
of 1 ms, frame rates of approximately 13 fps, and ground glass rotation speeds as low as 1◦ per second
were implemented. We performed these experiments for successive imaging frames so as to track the
laser illumination rotating ground glass disturbances over the reference and target fields. The space-time
ghost imaging experiments consisted of using the reference field images at each time tref = ti and a
bucket field measured at a separate time tb = ti+∆i where ti is the time of the ith measurement. This was
performed for each time separation of ∆i = −N to +N , where in some of our experiments N = 20.
We also evaluated the time correlations in the CCD frames. The experimental results showed that it was
possible to resolve a ghost image with time separations up to twenty frames, that is ∆i = ±20. The ghost
image of the “ARL” moved to the left or right of the ∆i = 0 time separation ghost image depending on
whether the reference measurement was correlated with an earlier (tref − tb < 0) or later (tref − tb > 0)

“bucket” measurement as depicted at the top of Figure 2.

Figure 2. Layout for the space-time quantum ghost imaging experiments. A charged coupled
device (CCD) collected reference field images at each time tref = ti and a single pixel
photo-sensor measured the bucket field at a separate time tb = ti+∆i, where ti is the time of
the ith measurement. The space-time “ARL” images at the top of the figure are representative
results when the reference field measurements are correlated with earlier (tref − tb < 0),
later (tref − tb > 0), or coincident (tref − tb = 0) bucket photon measurements.

These experiments were performed with and without turbulence and used a typical thermal light
lensless ghost imaging setup [1]. The CCD records the secondary image of the primary ghost
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image [15,17] at the reference-image arm which helps make ghost imaging practical for applications.
In this experiment, atmospheric turbulence is introduced to the optical paths by the adding heating
elements underneath the optical paths operating at a temperature of 550 ◦C with the refractive index
structure parameter in the range C2

n ∼ 1.5 · 10−12 to 10−9. Note that the illumination and imaging paths
traversed differing turbulence realizations each with these high levels of turbulence. In Figure 2, we
illustrate the most serious situation in which turbulence occurs in all optical paths of the setup. Heating
of the air causes temporal and spatial fluctuations on its index of refraction that makes the classical
image of the object jitter about randomly on the image plane causing a “blurred” picture. Similar to
our early experiment [1], the light source is a typical chaotic pseudo-thermal source, which contains a
laser beam and a rotating ground glass diffuser. The thermalized chaotically scattered laser beam, which
has a fairly large size on the ground glass (11 mm diameter) in transverse dimension, is split into two
by a 50%–50% beamsplitter (BS). One of the beams illuminates an object located at z1, such as the
letters “ARL” as shown in Figure 2. The scattered and reflected photons from the object are collected
and counted by a “bucket” detector, which is simulated by the right-half of the CCD in Figure 2. The
other beam propagates to the ghost image plane of z2 = z1 ' 1.4 m and the distance from the target
to the detectors is ∼1.7 m. Placing a CCD array on the ghost image plane, the CCD array will capture
the ghost image of the object if its exposure is gated by the bucket detector [1]. In this experiment the
CCD array will image the target and reference planes located on a sheet of paper. The CCD is moved
to a distance to view the ghost image on the glossy white paper. The scattered and reflected light from
the glossy white half of the paper, which contains the spatial information for the ghost image, is then
captured by the left-half of the high resolution CCD camera operating in the photon counting regime.
The CCD camera is focused onto the glossy white paper at the ghost image plane and is gated by the
bucket detector for the observation of the secondary ghost image. The hardware circuit and the software
program are designed to monitor the outputs of the left-half and the right-half of the CCD individually,
as two independent classical cameras, and simultaneously to monitor the gated output of the left-half of
the CCD as a ghost camera. In the measurement, the classical image and the secondary ghost image of
the object were captured and monitored simultaneously. In addition, measurements were made of the
g
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3. Space-Time Ghost Imaging

The physics of the space-time ghost imaging follows the formulation presented by Meyers et al. [1,2]
for remote ghost imaging wherein the Glauber theory [20,21] was adapted to our two-photon interference
ghost imaging setup.

G(2)(r1, t1; r2, t2) =
∣∣∣〈0

∣∣∣Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
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∣∣∣Ψ〉∣∣∣2 (3)

and
G(2)(r1, t1; r2, t2) = |Ψ(−→ρ 1, z1, t1;−→ρ 2, z2, t2)|2 (4)

where the negative and positive frequency fields Ê(−)
1 , Ê

(−)
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(+)
2 , Ê

(+)
1 contribute at the space-time

points r1, t1, r2, t2. The wavefunction Ψ(−→ρ 1, z1, t1;−→ρ 2, z2, t2) is the effective two-photon wavefunction
(probability amplitude). Figure 3 shows bucket and reference detectors when photons are emitted by two
sub-sources. Figure 4 presents a depiction of conventional turbulence-free ghost imaging where there is
a phase disturbance in the photon paths such as caused by turbulence. In that case phase disturbances
cancel in the G(2) due to symmetry in the wavefunction.

Figure 3. Typical ghost imaging representation where there are two alternate and
indistinguishable ways to generate a joint-detection. Space-time quantum imaging
generalizes this representation according to G(2)(r1, t1; r2, t2).

Figure 4. Representation of two-photon detection through turbulence depicting two alternate
but indistinguishable ways to produce a joint detection in the presence of turbulence [15].
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3.1. Double Beam Results

The ghost images depicted in this section were measured in the setup given by Figure 2. We found that
each ghost image was translated according to the value of the time separation index ∆i.When played as a
movie the ghost image is seen to smoothly translate across the computer screen, the amount of translation
being proportional to the time separation index. The translation appeared to be consistent with the motion
of the ground glass scattering centers, although the reference frame correlations were reduced to 0.023
after three frames and 0.003 after 20 frames. At first, space-time ghost imaging was performed in
non-turbulent conditions where the heating elements in Figure 2 were turned off. Figure 5a1,a2 presents
the results of a ghost image generated with the time separation index ∆i = 0. This image is typical
of ghost imaging where the ghost image is produced from coincident measurements. Our next result,
Figure 5b1,b2, presents ghost images of the “ARL” target produced when the time separation index
∆i = ±5. Note that the images of the “ARL” target are translated towards the left and right relative to
the ∆i = 0 ghost image. These ghost images of the “ARL” target are visually slightly less distinct when
compared with the “ARL” ghost image computed with ∆i = 0.

Figure 5. Correlation ghost images taken under conditions of no turbulence. (a1, a2) zero
frame separation correlation ghost image. (b1)−5 frame separation correlation ghost image.
(b2) +5 frame separation correlation ghost image.

We also present in Figure 6 composite results from multiple ∆i ghost images. The left side shows
the composite image produced from the sum ghost images of ∆i = 0,±5,±10,±15 while the right side
shows the composite sum ghost image for all of the ∆i considered in this experiment (41 images).

Figure 6. Left panel: Composite Ghost Image from adding ±15, ±10, ±5, and 0 time
separation correlation images; Right panel: Composite Ghost Image from adding all time
separation ±20 correlation images (41 images). No turbulence.

Next, we present the results of space-time ghost images generated with the heating elements turned
on. These results are shown in Figure 7. Note again that the images in Figure 7b1,b2 of the “ARL”
target are translated towards the left and right relative to the ∆i = 0 ghost image. Also, these ghost
images through turbulence of the “ARL” target are visually quite similar with the “ARL” ghost images
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in non-turbulent conditions. In addition, measurements were made of the correlations between intensities
measured at each pixel which can be described by

R∆i =
〈[Ii − 〈Ii〉][Ii+∆i − 〈Ii+∆i〉]〉

σiσi+∆i

, (5)

where the Ii are the measured photon counts at frame i, ∆i is the separation from frame i, and σi is
the standard deviation of Ii. A table of reference field intensity correlations as a function of frame time
separation for the non-turbulent experiment case is shown in Table 1.

Figure 7. Correlation ghost images taken under conditions of turbulence. (a1, a2) zero
frame separation correlation ghost image. (b1)−5 frame separation correlation ghost image.
(b2) +5 frame separation correlation ghost image.

Table 1. Non-Turbulent Case: Reference Field Intensity Correlations as a function of
time separation.

∆i 0 1 2 3 5 10 20
R+∆i 1.0 0.47 0.09 0.023 0.009 0.006 0.003
R−∆i 1.0 0.47 0.09 0.023 0.009 0.006 0.003

We further present the reference field intensity correlations as a function of frame time separation for
the turbulent experiment case in Table 2.

Table 2. Turbulent Case: Reference Field Intensity Correlations as a function of
time separation.

∆i 0 1 2 3 5 10 20
R+∆i 1.0 0.41 0.12 0.03 0.009 0.005 0.006
R−∆i 1.0 0.41 0.12 0.03 0.009 0.005 0.006

As with our results for the non-turbulent case Table 2 presents the details of the reference frame
correlations for the experiment in the turbulence case. In Figure 8a,b a graph is overlaid on the ∆i = 0

ghost image that displays the track of the “ARL” as it moves across the field of view in the non-turbulent
and turbulence case, respectively. The results shown in Figure 8a,b demonstrate that a time separation
between the bucket and reference fields gives an apparent change in location of the ghost image even
through strong laboratory turbulence.
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Figure 8. Lines overlayed on the time separation 0 ghost image “ARL” indicates the track
that the ghost image follows based on the location of the middle of the letter “R” for time
separations –20, -15, -10, 0, +10, +15, +20 (a) Non-turbulent conditions. (b) Turbulent
conditions.

In addition to demonstrating the motion of ghost images due to the rotation of the ground glass
additional information can be extracted from the time lagged joint measurements. For example, the
letter “R” is reconstructed by extracting and compositing a new ghost image made up of columns of the
ghost images at time separations as they translate past a line of pixels (Figure 9). The resolution of the
new ghost imaging is a function of the speed of rotation of the ground glass. For example, a slower
rotating ground glass will contribute to greater horizontal resolution of the ghost image. In this case we
achieved higher resolution in Figure 9 than is available from any of the individual ghost images. A more
detailed example of this is presented below with regard to imaging a U.S. Revolutionary War toy soldier.

Figure 9. Sample of extracting a column of pixels at horizotonal position 60 of the ghost
image as a function of the shifted frame index.

3.2. Single Beam 2D Object Experiment Results

The experimental setup to perform a second set of experiments is shown in Figure 10. It is also
similar to previous ghost imaging setups [1,2,15,16] except that a single illuminating beam was used,
a faster charged coupled device (CCD) framing rate was implemented, and a slower rotation rate was
used to resolve the time of rotation of the ground glass. We performed these experiments for successive
high speed frames so as to track the laser illumination through rotating ground glass disturbance over
the reference and target fields. The single beam space-time ghost imaging experiments consisted of
using the reference field images at each time tref = ti and a bucket field measured at a separate time
tb = ti+∆i. This was performed for each time separation of ∆i = N1 to N2 frames, where in some of our
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experimentsN1 = −500 and N2 = −545. Interestingly, at coincident times, i.e., ∆i = 0, no space-time
ghost images are possible in this configuration.

Figure 10. Layout for the single beam space-time ghost-imaging experiments. A CCD
collected reference field (RF) and bucket field (BF) images at time ti. The space-time
“ARL” images at the top of the figure are representative results when the reference field
measurements are correlated with coincident (tref − tb = 0), later (tref − tb < 0), or much
later (tref − tb << 0) bucket photon measurements.

Figure 11. A series of single beam space-time ghost images. Left panel: Images
were generated under conditions of no turbulence. Right panel: Images generated under
conditions of strong laboratory turbulence. The ghost images are presented as a function
of bucket measurement frame separation time relative to the reference frame measurement.
Note that the “A” in the turbulence case is not well resolved. Ghost images are shown for up
to 12 additional frames beyond the time separation of −524 frames.

Single beam space-time ghost imaging of the letter “A” was performed first in non-turbulent
conditions where the heating elements in Figure 10 were turned off. We found that each ghost image
was translated according to the value of the time lag index ∆i. When played as a movie the ghost image
is seen to smoothly translate across the computer screen, the amount of translation being proportional to
the time lag index. The translation appeared to be consistent with the light scattering variation due to the
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motion of the ground glass scattering centers. Images of these time lag ghost images in non-turbulent
conditions are presented on the left side of Figure 11 and in Figure 12. While these space-time ghost
images have many characteristics of our earlier time coincident ghost images, the generation of ghost
images using a single illuminating beam where the reference and bucket measurements are not time
coincident with each other is quite interesting.

Figure 12. A series of single beam space-time ghost images was generated under conditions
of no turbulence. The ghost images are presented as a function of bucket measurement frame
separation time relative to the reference frame measurement. Ghost image results are shown
for up to 43 additional frames beyond the separation of −501 frames.

Figure 13. A series of single beam space-time ghost images was generated under conditions
of high turbulence. The ghost images are presented as a function of bucket measurement
frame separation time relative to the reference frame measurement. Note: Offset is
−501 frames.

Single beam space-time ghost imaging experiments were then performed with turbulence, where the
set of heating elements depicted in Figure 10 were turned on to 550 ◦C to generate strong laboratory
turbulence. Images of the time lag ghost images generated with turbulence are presented on the right
side of Figure 11 and in Figure 13. These results again demonstrate that a time separation between the
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bucket and reference fields gives an apparent change in location of the ghost image, even through strong
laboratory turbulence. We note that the single beam space-time ghost images from the turbulence case
were slightly degraded in comparison to the ghost images for the non-turbulent case.

3.3. Single Beam 3D Object Experiment Results

A 3D object was space-time ghost imaged with a single beam using the layout of Figure 10. The
experiments imaged a U.S. Revolutionary War toy soldier. Figure 14 presents a single measurement of
the toy soldier.

Figure 14. Single measurement of a 3D soldier model using the layout of Figure 10.

Measurements from these experiments were analyzed by extracting a single column of the ghost
image generated for a particular time lag and stored in an image over all the time lags computed. Results
from experiments performed when the ground glass rotation rate was 1◦ per second are presented in
Figure 15. The reference fields used in the ghost image calculations were 4 × 4 pixel spatial averages
of the area shown in Figure 14 . Figure 15a is a composite ghost image generated from 180 time-delays
and Figure 15b is a sample of a single ghost image at a single time lag.

Figure 15. (a) Sample of extracting a column of pixels at horizotonal position of a ghost
image of a 3D object as a function of the shifted frame index. (b) single ghost image at one
∆i. The ground glass rotated at 1◦ per second.

When the rotation speed of the ground glass was decreased to 1
3

◦ per second much more resolution
and information of the target can be generated as is shown in Figure 16. The increased vertical resolution
shown in Figure 16 is due to the use of 2 × 2 spatially averaged reference fields. The banding evident
in Figures 15a and 16 is due to the time lagged reference fields correlation maxima moving between
pixels. This in fact, provides sub-pixel scale information about the target. The banding has some
contouring properties that helps illustrate 3D features of the object such as being in front of a plane. It



Entropy 2015, 17 1519

should be noted that the correlations shown in Table 1 are from a multi sensor two-beam experiment
and one should be cautious in applying those results to this multi sensor single beam experiment and
that Equation (32) is derived for the two-photon interference phenomena where there is a small delay
between the measurements. However the aspects relating to the ground glass induced phases apply also
to other problems.

Figure 16. Sample of extracting a column of pixels at horizotonal position of a ghost image
of a 3D object as a function of the shifted frame index in a proper aspect ratio. The ground
glass rotated at 1

3

◦ per second.

For the cases illustrated in Figures 14–16 the soldier target model was approximately 3 cm tall and
2 cm wide from the elbow to the tip of the musket. The rotating ground glass was illuminated with a
633 nm wavelength laser. Each pixel of the camera 8 µm × 8 µm and the target occupied an area of
3 cm vertical × 2 cm horizontal (125 pixels vertical × 100 pixel horizontal) for 0.24 mm per pixel in
the vertical and 0.2 mm per pixel in the horizontal. For Figure 15a 4 × 4 spatial averaging produced
a composite pixels resolution of 0.96 mm by 0.8 mm. Since 180 time shifts were needed to generate
the composite ghost image at 13 fps the 180 shifts at a rotation rate of 1◦ per second, assuming 1ms
integration time, took 13.85 s to measure. Thus the horizontal speed of the illumination across the object
is approximately 1.44 mm/s. With the rotation speed for Figure 16 being 1

3

◦ per second the translation
of the illumination across the target took 3 times as long for a speed of approximately 0.48 mm/s.

3.4. Virtual Storage of Ghost Images in Space-Time

Our space-time ghost imaging approach has the ability to store more ghost images in the space-time
dimensions than in just the space dimensions. For example, a single ghost image may be produced by
1000 frames of data. However, 40 or more shifted quality space-time ghost images may be produced
with the same size data set using our setup, which raises the information content of each photon by more
than an order of magnitude. It is likely that further improvements in our space-time imaging approach
will raise the information content by even more orders of magnitude. Thus, we have demonstrated the
creation of space-time ghost imaging, a new type of quantum image virtual memory in space-time, and
the storage of much more information per photon measured. The moved ghost images are in fact new
images that are stored in the dynamic memory in the same ghost imaging data sets thus producing more
information per photon measured than was previously realized.



Entropy 2015, 17 1520

4. Theory for Space-Time Ghost Imaging

A theory for space-time ghost imaging is developed below as an extension of conventional spatial
ghost imaging. Space-time ghost imaging achieves ghost images with non-coincident measurements
in addition to coincident measurements. Conventional spatial ghost imaging only uses coincident
measurements at two different photo-sensors, a reference beam sensor and a photon bucket sensor.
In thermal Ghost Imaging the beam splitter acts as a quantum operator on the photon quantum
wavefunction. In quantum theory, a unitary operator relates the field operators at the input ports of the
beamsplitter with the field operators at its output ports as a unitary transformation. The electromagnetic
fields propagate from the source to the beamsplitter and then to the photo-detectors, following certain
physical rules. With coincidence measurements we expect to be able to extract a ghost image. Ghost
Imaging is the result of the turbulence-free point-to-point image-forming correlation, which is caused by
two-photon interference: that is, superposition between paired two-photon amplitudes, corresponding to
two different yet indistinguishable alternative ways of triggering a joint-detection event by two randomly
distributed independent photons. An analysis illustrating the basic concepts follows. The analysis will
be divided into three steps. First, we show that the point-to-point correlation between the object plane
and the image plane is the result of two-photon interference. Second, we show that this correlation is
turbulence-free. Third, we summarize the theory that effectively explains the results.

A joint-detection of two independent point photo-detectors measures the probability of observing
a joint-detection event of two photons at space-time points (r1, t1) and (r2, t2), and is given by the
Glauber’s theory of photo-detection [20,21],

G(2)(r1, t1; r2, t2) =
〈
〈E(−)

1 E
(−)
2 E

(+)
2 E

(+)
1 〉QM

〉
Ensemble

= tr
{
ρ̂E(−)(r1, t1)E(−)(r2, t2)E(+)(r2, t2)E(+)(r1, t1)

}
. (6)

Here ρ̂ is the density operator and the quantized thermal field, E(−)(rj, tj) and E(+)(rj, tj) are the
negative and positive field operators at space-time coordinate (rj, tj). As is well known the coincidence
counting rate of two photon counting detectors is proportional to G(2)(r1, t1; r2, t2). To calculate the
point-to-point correlation between the object plane and the image plane, we need (1) to estimate the
state, or the density matrix, of the thermal radiation; and (2) to propagate the field operators from the
radiation source to the object and the image planes. We will first estimate the state of thermal radiation at
the single-photon level for photon counting measurements to explore the physics behind ghost imaging as
two-photon interference. It is important to realize that in addition to timescales representing turbulence,
sensor measurements, ground glass rotation and scattering, the lifetime of a radiative process must be
considered and it is dependent on the Einstein A coefficient [22] which is fundamentally quantum in
nature. Multiphoton ghost imaging experiments with different Einstein A coefficients will produce
interference characteristic of those coefficients and therefore must be considered quantum. Thus, ghost
imaging is fundamentally a quantum process and speckle theory does not readily account for such effects.
A complete model will have all these space and time effects including the Einstein A coefficient.

A large transverse sized chaotic thermal source can be modeled as a large number of independent and
randomly distributed point sub-sources [1,2,15,16,23]. Each point sub-source may in turn consist of a
large number of independent atoms that are in their ground state, but some can be excited to a higher
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energy level E2 and later return back to its ground state E1. It is reasonable to assume that each atomic
transition generates a field in the following single-photon state

|Ψ 〉 ' | 0 〉+ ε
∑
k,s

f(k, s) â†k,s | 0 〉. (7)

Here, |ε| � 1 is the probability amplitude for the atomic transition. Since higher order terms
representing multi-photon emissions have terms of ε2, ε3, ... and that the magnitude of ε is small these
terms fall off rapidly and can be safely neglected. The term f(k, s) = 〈Ψk,s |Ψ 〉 is the probability
amplitude for the radiation field to be in the single-photon state of wave number k and polarization s:
|Ψk,s 〉 = | 1k,s 〉 = â†k,s | 0 〉. We assume a continuous distribution for k and one polarization for this
simplified two-level system. The chaotic nature of the sub-radiations leads to a density operator that can
be approximated as:

ρ̂ ' | 0 〉〈 0 |+ |ε|2
∫
d~κ â†(~κ)| 0 〉〈 0 |â(~κ) + |ε|4

∫
d~κ d~κ′ â†(~κ)â†(~κ′) | 0 〉〈 0 | â(~κ′)â(~κ), (8)

where ~κ is the transverse wavevector. To simplify the calculation, we will focus on the transverse spatial
correlation by assuming single-frequency transitions with monochromatic light as usual. Basically we
are modeling the light source as an incoherent statistical mixture of single-photon states and two-photon
states with equal probability of having any transverse momentum. The spatial part of the second-order
coherence function is thus calculated as:

G(2)(~ρ1, z1; ~ρ2, z2) '
∫
d~κ d~κ′

∣∣〈 0 |E(+)(~ρ2, z2)E(+)(~ρ1, z1)â†(~κ)â†(~κ′) | 0 〉
∣∣2 , (9)

where ~ρj is the transverse coordinate of the jth photo-detector, j = 1, 2. The transverse part of the
electric field operator can be written as:

E(+)(~ρj, zj) ∝
∫
d~κ gj(~ρj, zj;~κ) â(~κ), (10)

where gj(~ρj, zj;~κ) is the Green’s function, which propagates the field from the source to the
photo-detector [24,25]. Substituting the field operators into Equation (9) we have

G(2)(~ρ1, z1; ~ρ2, z2) =

∫
d~κ d~κ′

∣∣∣ 1√
2

[
g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′) + g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ)

]∣∣∣2. (11)

It is a key point that Equation (11) indicates interference between two quantum amplitudes,
corresponding to two alternatives, different yet indistinguishable, which leads to a joint photo-detection
event. This interference involves both arms of the optical setup as well as two distant photo-detection
events at (~ρ1, z1) and (~ρ2, z2), respectively.

Figure 17 schematically illustrates the two alternatives for a pair of mode ~κ and ~κ′ to produce a
joint photo-detection event. It is interesting to see that this superposition plays the same role as the
symmetrized wavefunction of identical particles. The superposition of each pair of these amplitudes
produces an individual interference in the joint-detection space of (~ρ1, z1, t1; ~ρ2, z2, t2). A large number
of these sub-interferences simply add together resulting in a point-to-point G(2)(~ρ1, z1; ~ρ2, z2) function.
It is easy to see that each pair of the two-photon amplitudes illustrated in Figure 17 will superpose
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constructively whenever D1 and D2 are placed in the positions satisfying ~ρ1 ' ~ρ2 and z1 ' z2; and
consequently, G(2)(~ρ1, z1; ~ρ2, z2) achieves its maximum value as the result of the sum of these individual
constructive interferences. In other coordinates, however, the superposition of each individual pair of
the two-photon amplitudes may yield different values between constructive maximum and destructive
minimum due to unequal optical path propagation, resulting in an averaged background constant sum.

Figure 17. Schematic illustration of the two alternatives for a pair of mode ~κ and ~κ′ to
produce a joint photo-detection event.

It is straightforward to verify the above interference picture mathematically. The Fresnel near field
Green’s function of free-propagation can be approximated as:

g1(~ρ1, z1;~κ) =

∫
d~ρs

{
−iω
2πc

ei
ω
c
z1

z1

e
i ω
2cz1
|~ρ1−~ρs|2

}
e−i~κ·~ρs , (12)

g2(~ρ2, z2;~κ) =

∫
d ~ρs′

{
−iω
2πc

ei
ω
c
z2

z2

e
i ω
2cz2
|~ρ2− ~ρs′ |2

}
e−i~κ· ~ρs′ , (13)

where ~ρs and ~ρs′ are transverse vectors in the source plane, and the field has propagated from the source
to the ~ρ1 plane and ~ρ2 plane in arms 1 and 2, respectively. Substituting the Green’s functions into
Equation (11), the interference term (cross term of Equation (11)) turns to out be∣∣∣∣∫ d~ρs e

i ω
cd

(~ρ1−~ρ2)·~ρs
∣∣∣∣2 = somb2

[
R

d

ω

c
|~ρ1 − ~ρ2|

]
(14)

when choosing z1 = z2. Where ω is the frequency of the electromagnetic radiation and 2R is the diameter
of the imaging lens, d is the distance from the source to the detector, and R

d
is one half the angular size

of illumination source as viewed from the detectors. The normalized second-order correlation function
g

(2)
n−cor between the object plane and the image plane is therefore given by

g
(2)
n−cor(~ρ1; ~ρ2) ' 1 + somb2

[
R

d

ω

c
|~ρ1 − ~ρ2|

]
' 1 + δ(~ρnd1 − ~ρnd2). (15)

Note that g(2)
n−cor is not the Green’s function which is also typically written as g. It is to be realized

that the argument of the somb function is nondimensional. The δ functions below are understood to be
nondimensional where the arguments have been rescaled to allow them to be nondimensional and the
normalized vector is ~ρndi =

(
R
d
ω
c

)
~ρi. From the Einstein, Podolsky and Rosen (EPR) [26] type nonlocal
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perspective, two photons that created a joint detection event of two distant photo-detectors have equal
probabilities to be found at any coordinates on the object plane and the image plane, however, if one of
them is observed at a certain position on the object (image) plane, the other one has twice chance to be
observed in a unique position on the image (object) plane.

Figure 18. Two alternate but indistinguishable ways to trigger a photon detection at D1

at time t1 and a photon detection at D2 at time t2 from a rotating ground glass where one
photon is emitted from subsource a and the other photon is emitted from subsource b. For
the joint detections to occur with the time separations the average phases at φa and φb must
also translate as a function of time with the ground glass rotation. The vertical dashed line
indicates the ground glass is translated vertically from position R01 to R02.

It is now necessary to introduce the ground glass effect directly into the space-time ghost imaging
theory. Martienssen and Spiller [27] demonstrated that quickly rotating ground glass can convert a
coherent laser beam into a chaotic radiation source suitable for optical experiments. Martienssen and
Spiller characterized the time varying effect of ground glass on coherent radiation. In fact, ground glass is
currently being used in fundamental experiments on studying the quantum superposition of coherent and
pseudo-thermal light [11]. In the following we introduce a new model for ground glass that incorporates
both time and space phase disturbance effects into the ghost imaging process. Starting from the G(2)

equation we introduce phase disturbances that represent the effects of ground glass at each subsource
position as measured at the detector points (see Figure 18). A relatively wide laser beam intersects
a portion of the ground glass and light scatters off many disturbance elements on the ground glass.
The scattering radiation contributions summed over the subsource elements and scattering elements
interfere in the ghost imaging process. We expect that when the phase disturbances ϕA(~ρA, ~ρ2, t2, ~κ),

ϕA(~ρA, ~ρ1, t1, ~κ), ϕB(~ρB, ~ρ1, t1, ~κ
′) and ϕB(~ρB, ~ρ2, t2, ~κ

′) cancel in the probability amplitude formulation
due to alternate and indistinguishable superpositions [28] at certain measurement space-time points, then
the ghost image of the object can readily be seen in the imaging plane. A clear image cannot be formed
at those space-time points where the phase disturbances do not cancel,

G(2)(~ρ1, z1; ~ρ2, z2) =

∫
d~κ d~κ′ • 1√

2
[g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ) + g2(~ρ2, z2;~κ) g1(~ρ1, z1;~κ

′
)]2. (16)

The cross term is

G
(2)
crossterm =

∫
d~κ d~κ′• | 1√

2
[g2(~ρ2, z2;~κ′) g1(~ρ1, z1;~κ) g∗2(~ρ2, z2;~κ) g∗1(~ρ1, z1;~κ′)] | + · · · (17)
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Also,

g1(~ρ1, z1;~κ) =

∫
d~ρs e

i ω
2cz1
|~ρ1−~ρs|2 e−i~κ·~ρs • eiϕA( ~ρs,t1) (18)

g2(~ρ2, z2;~κ′) =

∫
d ~ρs′ e

i ω
2cz2
|~ρ2− ~ρs′ |2 e−i~κ

′· ~ρs′ • eiϕB( ~ρs′ ,t2) (19)

g∗1(~ρ1, z1;~κ′) =

∫
d ~ρs′ e

−i ω
2cz1
|~ρ1− ~ρs′ |2 e+i~κ′· ~ρs′ • e−iϕB( ~ρs′ ,t1) (20)

g∗2(~ρ2, z2;~κ) =

∫
d~ρs e

−i ω
2cz2
|~ρ2− ~ρs|2 e+i~κ· ~ρs • e−iϕA( ~ρs,t2) (21)

It is possible to integrate over ~κ and ~κ′ first to produce Dirac delta functions.

g1(~ρ1, z1)g∗2(~ρ2, z2) =

∫
d ~ρs′

∫
d~ρs e

i ω
2cz1
|~ρ1−~ρs|2e

−i ω
2cz2
|~ρ2− ~ρs′ |2 δ(~ρs − ~ρs′) • eiϕA( ~ρs,t1)e−iϕA( ~ρs′ ,t1)

=

∫
d~ρs e

i ω
2cz1
|~ρ1−~ρs|2e

−i ω
2cz2
|~ρ2−~ρs|2 • eiϕA( ~ρs,t1)e−iϕA( ~ρs,t2) (22)

g2(~ρ2, z2)g∗1(~ρ1, z1) =

∫
d ~ρs′

∫
d~ρs e

i ω
2cz2
|~ρ2− ~ρs′ |2e

−i ω
2cz1
|~ρ1−~ρs|2δ(~ρs − ~ρs′) • e−iϕB( ~ρs′ ,t2)e+iϕB( ~ρs,t1)

=

∫
d~ρs e

i ω
2cz2
|~ρ2−~ρs|2e

−i ω
2cz1
|~ρ1− ~ρs|2 • eiϕB( ~ρs,t2)e−iϕB( ~ρs,t1) (23)

G
(2)
crossterm = g1(~ρ1, z1)g∗2(~ρ2, z2)g2(~ρ2, z2)g∗1(~ρ1, z1)

=

∫
e
i ω
2cz1
|~ρ1−~ρs|2e

−i ω
2cz2
|~ρ2−~ρs|2 eiϕA(~ρs,t1)−iϕA(~ρs,t2)d~ρs

•
∫

e
i ω
2cz1
|~ρ1− ~ρs′ |2e

−i ω
2cz2
|~ρ2− ~ρs′ |2eiϕB( ~ρs′ ,t2)−iϕB( ~ρs′ ,t1)d ~ρs′ (24)

G
(2)
crossterm =

∫
ei

ω
cd

(~ρ1−~ρ2)·~ρs eiϕA(~ρs,t1)−iϕA(~ρs,t2)d~ρs •
∫

e−i
ω
cd

(~ρ1−~ρ2)·~ρs′eiϕB(~ρs′ ,t2)−iϕB(~ρs′ ,t1)d ~ρs′ (25)

But the phase disturbances

eiϕs′ (~ρs′ ,t2,~κ
′) = exp

[
iϕs′

(
(~ρs0′ +

t2∫
t20

−→v (t′)dt′, t2, ~κ
′)

)]
(26)

and

eiϕs(~ρs0,t1,~κ) = exp

[
iϕs

(
~ρs +

t1∫
t10

−→v (t′) dt′, t1, ~κ

)]
(27)

will influence the positions ~ρ1 = ~ρ10 +
t1∫
t10

−→v (t′) dt′ and ~ρ2 = ~ρ20 +
t2∫
t20

−→v (t′)dt′ due to the scattering

disturbance at shifted time and locations due to the movement of the ground glass at velocity−→v .Actually,
the effect in the measurement plane is proportional to the velocity of the ground glass movement. On the

ground glass at ~ρs0′ a phase disturbance is related to the position ~ρs′ −
t2∫
t20

−→v (t′)dt′ in the source plane so
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that ~ρs0′ = ~ρs′ −
t2∫
t20

−→v (t′)dt′. Consequently, we substitute the position of the phase disturbance motions

into the following and obtain

g1(~ρ1, z1;~κ) =

∫ {
−iω
2πc

ei
ω
c
z1

z1

exp

(
i
ω

2cz1

|~ρ10 −
t1∫
t10

−→v (t′) dt′ − ~ρs|2
)}

e−i~κ·~ρs • eiϕs( ~ρs,t1,~κ)d~ρs, (28)

g2(~ρ2, z2;~κ′) =

∫ {
−iω
2πc

ei
ω
c
z2

z2

exp

(
i
ω

2cz2

|~ρ20 −
t2∫
t20

−→v (t′)dt′ − ~ρs′ |2
)}

e−i~κ
′·~ρs′ • eiϕs′ (~ρs′ ,t2,~κ

′)d ~ρs′ ,

(29)

with an equivalent integral over the transverse vectors in the ground glass frame of reference.
Only at the translated positions can the phases ϕs and ϕs′ end up with a null result and interference

creating a space-time ghost image occur. That is

~ρ1 = ~ρ10 −
t1∫
t10

−→v (t′) dt′, (30)

and

~ρ2 = ~ρ20 +
t2∫
t20

−→v (t′)dt′. (31)

The interference term (cross term) turns to out be∣∣∣∣∫ d~ρs e
i ω
cd

(~ρ1−~ρ2)·~ρs
∣∣∣∣2 (

∫
ei

ω
cd

(~ρ1−~ρ2)· ~ρs eiϕA( ~ρs,t1)−iϕA( ~ρs,t2)d~ρs) • (

∫
e−i

ω
cd

(~ρ1−~ρ2)· ~ρs′ eiϕB( ~ρs′ ,t1)−iϕB( ~ρs′ ,t2)d ~ρs′)

= somb2

[
R

d

ω

c
|~ρ10 − ~ρ20 +

t1∫
t10

−→v (t′) dt′ −
t2∫
t20

−→v (t′)dt′|

]
. (32)

As an approximation

g
(2)
n−cor(~ρ1; ~ρ2) ' 1 + somb2

[
R

d

ω

c
|~ρ1 − ~ρ2|

]
(33)

' 1 + δ(~ρn1 − ~ρn2) (34)

' 1 + δ

[
~ρnd10 +

(
t1∫
t10

−→v (t′) dt′

)
nd

− ~ρnd20 −

(
t2∫
t20

−→vn(t′)dt′

)
nd

]
(35)

' 1 + δ

[
~ρnd10 − ~ρnd20 +

(
t1∫
t10

−→v (t′) dt′

)
nd

−

(
t2∫
t20

−→vn(t′)dt′

)
nd

]
. (36)

Recall that the argument of the somb function is nondimensional. Similarly, the δ functions
are understood to be nondimensional and the variables have been rescaled to allow them to be
nondimensional,

~ρndi =

(
R

d

ω

c

)
~ρi(

t1∫
t10

−→v (t′) dt′

)
nd

=

(
R

d

ω

c

)
t1∫
t10

−→v (t′) dt′(
t2∫
t20

−→vn(t′)dt′

)
nd

=

(
R

d

ω

c

)
t2∫
t20

−→v (t′)dt′]. (37)
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For a time period, the space-time ghost image is turbulence-free. Over long enough time delay as the
time separation increases, we expect some spread of the distribution away from a Dirac delta function
due to extension beyond the setup coherence time and the introduction of experimental error. We note
that the two-photon model is the first to predict this effect of the ground glass with a turbulence-free
characteristic. The non-classical character of the equation becomes evident when the somb function
from two-photon second order interference approaches a non-factorizeable δ(~ρnd1−~ρnd2) function where
the integration is over all possible subsources, Figure 19a, and the resolution exceeds classical first
order resolution. A 4f speckle correlation model, Figure 19b tends to produce factorizeable (classical)
δ(~ρnd1 − ~ρnds) · δ(~ρnd2 − ~ρnds′), where ~ρnds is the transverse position of the source of the speckle. One
has to integrate over classical measurements of ~ρnds and ~ρnds′ so the result tends to introduce classical
speckle resolution. The resolution of these correlations is limited by the speckle size since speckle
methods involve imaging the speckles. This is due to the speckle models using two classical imaging
systems to image the source onto the image and object planes. Furthermore, we have experimentally
generated ghost images with sensor photon counts of less than 10 above the background and there is
no discernible speckle. Photon counts vary even in two slit interference experiments where photons
traverse the slits one or more at a time. Physics does not tend to characterize these as speckle.
So the use of speckle models to describe interference phenomena is problematic, whereas the use of
multiphoton measurements has a sound characterization based on the fundamental photon measurement
work of Glauber.

Figure 19. Comparison between the turbulence-free lensless ghost imaging experiments
and speckle experiments. (a) Schematic setup of near field turbulence-free lensless ghost
imaging experiments [1,2,15,16]. Each subsource of the source contributes to illuminating
each point of the object and reference planes. Integrating over all the subsources produces
a non-factorizeable δ(~ρnd1 − ~ρnd2) function. (b) Schematic setup of speckle experiments
where the source of the speckle is imaged onto the object and to the reference plane. The
correlation is a product of two first order delta functions, δ(~ρnd1 − ~ρnds) · δ(~ρnd2 − ~ρnds).
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The two-photon interference model was used because it correctly predicts turbulence-free ghost
imaging while speckle models do not. Furthermore, our model incorporates phase information, produced
in this case by a rotating ground glass, from two separate times. It is through the two-photon interference
of these phases that leads to the generation of a clear image of the translated target.

The same two-photon interference model can be used for nonclassical light such as entangled photons.
In fact it can be easily extended to other particles such as electrons and neutrons. The speckle model
is not readily adaptable to such cases. While there are phase disturbances from turbulence and from
ground glass the model predicts that the adverse effects of the phase disturbances from the turbulence
is cancelled whereas the phase disturbances created by the ground glass actually enable the viewing of
the object at certain time differences at certain positions where they tend to cancel. Of course, the phase
disturbances can be characterized in terms of probability space-time moments and deviations. Thus, our
space-time quantum imaging analysis allows quantitative insight into the movement of a phase object,
such as ground glass, in the setup. Our approach uses fundamental physics based on the Glauber theory
of photo-detection [20]. Glauber has shown that his model holds not only for the effects of individual
photons but also for the effects of time averaged light and particularly he shows that quantum interference
is observable from time averaged joint intensity measurements. Furthermore our two-photon interference
model of two alternative and indistinguishable ways to generate a joint detection satisfies the Feynmann
path integral formulation [28].

Why use a quantum model for space-time ghost imaging through turbulence rather than a classical
speckle based model? First we recognize that all photons are quantum all of the time. When classical
approximations are introduced inconsistencies may appear and care must be taken to not destroy or
modify the information we are looking for. Using the quantum two-photon and multi-photon interference
theory we successfully realized the first ghost image of a remote object and extending the quantum theory
guided us to achieve turbulence-free ghost imaging beyond the capabilities of classical approaches.
Thus we are in favor of this approach for future explorations as it is consistent with more experiments
and introduces fewer errors into the physics formulation. For example, the multi-photon interference
approach in ghost imaging allows for diversity in sensor and illumination location, timing, entanglement,
size and sensitivity that is difficult to consider with classical approaches. As we all know, any theory
claiming to comprehensively model the quantum nature of photons as a classical theory has thus far
been shown to be inconsistent. Godel’s second incompleteness theorem is often interpreted to mean that
“an inconsistent model can prove everything including its own consistency.” Our turbulence-free ghost
imaging experiment cannot be correctly interpreted by a classical model or theory. Turbulence-free
ghost imaging is a nonlocal phenomenon, which is the result of a nonlocal interference involving the
superposition of two-photon amplitudes representing different alternative and indistinguishable ways for
a pair of photons to produce a joint photodetection event at a distance. The insightful quantum theorist
Feynmann recognized the importance of having a theory verified by experiments, “It doesn’t matter how
beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s
wrong”[29].
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5. Conclusions

In conclusion we have demonstrated interesting features of space-time quantum imaging where the
“reference” and “bucket” measurements need not be coincident in time to produce a ghost image of a
remote object. The clearest individual time lagged space-time double beam quantum image is the ghost
image with zero time lag, but the clarity of the images separated from this time lag is quite remarkable.
Of further interest are the results displaying the “ARL” and letter “A” ghost image translation paths across
the field of view. We believe that this effect is related to the motion of the light scattering features of
the rotating ground glass and the physics of two-photon interference. A new model was developed for
incorporating these space-time effects into ghost imaging. Our experiments demonstrate the potential
of tracking moving objects with the ghost imaging approach. These features of ghost imaging may
allow for greater adaptability and flexibility in the design and implementation of ghost imaging systems
for many applications. In particular the coherence two-photon time and space scales can be explored
with our ghost imaging experimental setup configuration. Furthermore, space-time quantum imaging
has the potential to access orders of magnitude more information stored in the photon measurement
data sets than was previously realized. In summary, the experiments provide a new testbed for exploring
the fundamental physics of quantum imaging and suggest new pathways to explore quantum information
storage and processing with multi-photon coincidence information and also in time delayed multi-photon
interference. It is apparent that the space-time quantum imaging technology concepts and inventions
can be implemented for many diverse applications to include practical ISR, quantum communications,
and medical imaging applications with entangled or thermal photon illumination sources and
detectors [30–32].

Acknowledgments

R.E. Meyers and K.S. Deacon thank the U.S. Army Research Laboratory for support. The authors
would also like to thank A. Tunick, P. Hemmer, Y. Shih and S. Karmakar for helpful discussions.

Author Contributions

Both authors were fully involved in of the research: (1) conception and design, (2) drafting and
revising, (3) final approval of the version to be published. The work progressed by a process of
ongoing discussions and interactions between the authors. Both authors have read and approved the
final manuscript.

Appendix

A. Experiment Turbulence Characterization

Atmospheric turbulence creates index of refraction variations that affect the paths of light propagation
and provides a media for the quantum interference phenomena of quantum ghost imaging. The usual
techniques for characterization of conventional optical turbulence are not generally well suited for the
characterization of the effects of turbulence on quantum ghost imaging since they are based on first order
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interference and do not readily generalize to multiphoton interference. In the experiments in the lab and
outdoors we want to document as much of the physics as possible to represent the turbulent conditions.
In this appendix we characterize key aspects of the turbulence measurements used in the analysis of our
laboratory ghost imaging experiments.

Turbulence is induced by instability mechanisms such as mechanical forcing and buoyancy and
produce time-space variations in light propagation and photon counts, i.e., optical turbulence. While
there is a world wide effort to measure and model more realistic turbulent atmospheric flows
incorporating terrain, vegetation, heating, and cooling, common optical turbulence power law scalings
are based on idealized assumptions of isotropy, homogeneity, and stationarity of the turbulence. In
practice and by advanced Navier-Stokes model solutions [33], turbulence in the atmosphere [34] is never
stationary, is generally inhomogeneous, has intermittency, and is anisotropic [35,36].

Turbulence is a result of strong stochastic space and time variations in the fluid properties such
as velocity components ui (x, t) and index of refraction η (x, t). Our experiments used realtime
imaging, Figure A1, to extract properties for objective characterization of the anisotropic inhomogeneous
turbulence. Figure A1 also shows the elongation and distortion of moving turbulent temperature fronts.
Real-time imaging of the turbulence allowed us to investigate more detailed physics in the analysis
of turbulence-free ghost imaging and its applications. Sequences of images of the laboratory optical
turbulence were captured by an infrared camera.

Figure A1. Typical Measured Real-Time Turbulence Caused by Displayed
Heating Elements.

These frames were used to compute optical flow patterns [37] from which apparent turbulent
velocities were derived. Velocity probability density functions (pdfs), velocity correlations,
〈ui (x1, t1)uj (x2, t2)〉, and their time and space scales were computed [35,36] (see Figures A2–A4).
In the anisotropic, inhomogeneous, nonstationary turbulence a distribution of large and small scales
were measured including velocity correlation space scales as small as 1–2.5 mm and turbulence velocity
correlation time scales as small as 2.5–5 ms.
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In convective turbulence there are larger magnitude vertical velocities with smaller magnitude
negative velocities [36] as shown in Figure A2. Also typical of convective turbulence are short mean
times for a velocity to go from negative to positive while the mean times for a velocity to go from
positive to negative are larger [36] which is presented in Figure A3. The vertical velocity PDF shown
in Figure A4 highlights the asymmetric and multi-modal characteristics typical of the turbulence for
these experiments.

Figure A2. Expected Values of velocity upward (red) and downward (blue) as function of
height in flow.

Figure A3. Map of time of reversal data T+, T- as a function of height.

Figure A4. PDF of ensemble averaged vertical velocities.
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While each beam distorts and spreads due to turbulence, the point-to-point two-photon correlation
between the image plane and the object plane is maintained. Small space turbulence scales indicate
that the reference and bucket beams experience independent turbulence deviations, and small time
correlations mean that image frames at different times also experience different turbulence realizations.

Optical turbulence is the variability of light propagating through η (x, t) fluctuations, and is
often characterized by the structure parameter

〈
[η (x)− η (x+r)]2

〉
= C2

nF where F is a scaling
function [38,39] that is often set to r

2
3 . C2

n is a standard means of characterizing both laboratory
and atmospheric optical turbulence and has dimensions of length−

2
3 , rendering the structure function

dimensionless. The values of C2
n is the experimental results shown here were in the range of C2

n ' 10−12

to 10−9 which is equivalent to extremely high levels of atmospheric turbulence [15]. A typical turbulence
spectrum from our experiments is shown in Figure A5. The spectrum is the energy per wavenumber.
A line overlayed on the measured spectrum indicating a −5

3
power law is based on near neutral

turbulence stability conditions and simple models assuming isotropy, energy cascade, and dissipation.
The −17

3
scaling, also overlayed, was developed from referenced optical communications atmospheric

experiments [38,39]. The spectra, time of reversal maps, flow field imaging, and velocity pdf show
that a large diversity of scales were present in the experiment turbulence flows. We can see that simple
scaling laws are inadequate for all but idealized flows. Our data indicates that our multiphoton quantum
imaging is turbulence-free even in strong anisotropic, inhomogeneous, intermittent, and nonstationary
turbulence.

Figure A5. Typical turbulence spectrum.
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