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Abstract: Traditional centroid-based clustering algorithms for heterogeneous data with 

numerical and non-numerical features result in different levels of inaccurate clustering. 

This is because the Hamming distance used for dissimilarity measurement of non-numerical 

values does not provide optimal distances between different values, and problems arise 

from attempts to combine the Euclidean distance and Hamming distance. In this study, the 

mutual information (MI)-based unsupervised feature transformation (UFT), which can 

transform non-numerical features into numerical features without information loss, was 

utilized with the conventional k-means algorithm for heterogeneous data clustering. For the 

original non-numerical features, UFT can provide numerical values which preserve the 

structure of the original non-numerical features and have the property of continuous values 

at the same time. Experiments and analysis of real-world datasets showed that, the integrated 

UFT-k-means clustering algorithm outperformed others for heterogeneous data with both 

numerical and non-numerical features. 

Keywords: feature transformation; k-means; clustering heterogeneous data; numerical 

features; non-numerical features 
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1. Introduction 

Most conventional clustering methods can only handle either numerical data or non-numerical  

data [1–10], however, many real world datasets are heterogeneous, consisting of a mixture of both. As 

an example one of the most widely used clustering method, k-means, cannot handle heterogeneous 

data properly because the Euclidean distance between vectors of mixed numerical and non-numerical 

data cannot be measured directly [1]. To perform heterogeneous data clustering, several algorithms 

have been proposed, these can broadly be divided into two types: (1) those that cluster heterogeneous 

data directly and (2) those that cluster heterogeneous data based on feature transformation.  

For the first type, based on hierarchical clustering, algorithms include the similarity-based 

agglomerative clustering (SBAC) [11], extended self-organizing map [12] and the clustering algorithm 

based on variance and entropy (CAVE) [13]. Among them, SBAC uses the Goodall dissimilarity 

measurement [14] which measures distance and density for numerical and non-numerical data. 

Meanwhile, the extended self-organizing map and CAVE construct distance hierarchies which are 

applicable for heterogeneous data. However, hierarchical clustering is computationally intensive and 

not appropriate for high-dimensional datasets. Compared with hierarchical clustering, centroid-based 

clustering is less computationally intensive and more efficient to apply. As a typical centroid-based 

clustering for heterogeneous data, k-prototypes employs a dissimilarity measurement which calculates 

the Euclidean and Hamming distance for the numerical and non-numerical data respectively and then 

integrates the two distances [15]. However, the weighting of the Hamming distance needs to be set and 

modified manually. At the same time, combining the Euclidean and Hamming distance linearly is 

problematic as the physical meanings of the two distances are different. To solve this problem, 

Kullback–Leibler information fuzzy c-means combined with Gauss-multinomial distribution (KL-

FCM-GM) has been proposed [16]. This method employs the negative log-likelihood of the Gaussian 

distribution combined with a fuzziness item as dissimilarity measurement to cluster mixed data in a 

comprehensive way. By taking the negative log of the probability density function, KL-FCM-GM can 

avoid having to combine the Euclidean and Hamming distance directly. However, the KL-FCM-GM 

still needs a parameter to control the amount of fuzziness. Also, the assumption of a Gauss-multinomial 

distribution may be inappropriate for the numerical parts of some datasets. In 2013, an improved  

k-prototypes [17] clustering method which is based on fuzzy k-prototypes [18] was proposed. This 

method can optimize the weight for each feature (numerical or non-numerical) iteratively. However, 

the improved k-prototypes still requires the combination of the Euclidean and Hamming distances to 

measure the dissimilarity. 

The other type of clustering algorithms for heterogeneous data employ feature transformation to 

unify the format of the data and then clustering algorithms dealing with one feature format (numerical 

or non-numerical) can be applied. For example, SpectralCAT [19] transforms numerical features into 

non-numerical features for heterogeneous data clustering. However, this kind of transformation 

removes the distances between data contained in the original numerical data and hence, may cause 

information loss [12]. On the other hand, feature calibration (FC) is a classical method which can 

transform non-numerical features into numerical features [20], it is a supervised algorithm which 

employs the probability distributions of the class labels to substitute the original non-numerical values. 
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However, clustering is an unsupervised problem which does not employ the information from class 

labels. As a result, FC is not appropriate for heterogeneous data clustering. 

In this study, we propose a mutual information (MI)-based unsupervised feature transformation 

(UFT), which can transform non-numerical features into numerical features, with conventional  

k-means algorithm for heterogeneous data clustering. Although Gaussian mixture models (GMM) [21] 

can also be used with UFT for heterogeneous data clustering, they can have issues associated with 

initialization dependence and instability [22]. As the feature transformation procedure of UFT depends 

on adding distance to every value of the original non-numerical features, the transformed numerical 

values provide more choices of initializations which can make the GMM even less stable. For 

comparison, GMM was also used together with UFT in the experimental part of real-world datasets. 

Although hierarchical clustering algorithms can also be used with UFT for heterogeneous data 

clustering, they are computationally intensive for datasets with large sample sizes. Furthermore, 

hierarchical clustering algorithms are sensitive to outliers and cannot update the clustering structure 

while processing data. As a result, the k-means clustering algorithm was chosen in this study. This 

integrated UFT-k-means has three key advantages: (1) other than the number of clusters (k), no other 

parameter is required for the clustering procedure; (2) UFT for non-numerical features is mutual 

information (MI)-based and therefore robust; (3) UFT can provide optimal numerical values for the 

original non-numerical features and avoids the use of the Hamming distance in the dissimilarity 

measurement for clustering. Furthermore, by unifying the data to be purely numerical, the UFT can 

enable principle component analysis (PCA) which can be useful for data visualization of heterogeneous 

data. The rest of this paper is organized as follows: Section 2 introduces the UFT and integrated UFT-

k-means. Section 3 shows the results and analysis of experiments. Section 4 concludes this study. 

2. Unsupervised Feature Transformation (UFT) and UFT-k-means 

The proposed UFT aims at finding a numerical substitution X  for a non-numerical feature X , 
which satisfies the condition of ( ) ( );I X X H X= . This condition assures the MI between the 

transformed numerical feature and the original non-numerical feature to be the same in terms of the 
entropy of the original non-numerical feature. As ( ) ( );H X I X X= , from the perspective of 

information theory, the transformed numerical feature contains the same information as the original 

non-numerical feature. This condition is critical because it ensures that the original feature information 

is preserved, when non-numerical features are transformed into numerical features. It is also worth 

noting that the transformation is independent of class label. This is critical because the bias introduced 

by class label can be reduced. 
Assume X  is numerical substitution for non-numerical feature { | 1, , }iX x i n= =  , then: 

( ) ( ) ( ), .
i

i X iX x x
p x x x p x p x x== = =   (1)

Use iP  to denote ( )iXP x x= , then: 
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Assume that every group of numerical substitution for non-numerical value obeys a Gaussian 

distribution and the substitution for non-numerical feature also obeys a Gaussian distribution. The 

reasons behind the choice of Gaussian distribution are: (1) it can describe common probability 

distributions of numerical data in real-world situations; (2) it has useful properties which can simplify 

the expressions of MI and entropy; (3) compared with other distributions which also describe 

numerical data (such as uniform distribution), the parameters of Gaussian distribution are easier to 

estimate without the prior knowledge of data range. These assumptions can be expressed as 

( )~ ,i i iX x x μ σ=  , { }1, ,i n∈   and ( )~ ,X μ σ  . Then: 
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Based on the Gaussian distribution assumption, two parts of Equation (2) can be simplified as 

Equation (5): 
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Let ( ) ( );I X X H X= , then: 
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Because ( )( )22
X

p x x dxσ μ= −     : 
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Then Equation (6) can be rewritten as: 
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The solutions of the above equation are not unique. Here, we choose the following solutions for 

simplicity: 

{ }1, ,i n∀ ∈  , 
2

2 2

1

i ip

σ
σ

= . (9)

Because 2 2 2 2
i i i

i

p σ μ σ μ + = +  , based on the above solutions, we obtain: 
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Because i i
i

p μ μ= , then: 

2
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  =  + = 
 
   . (11)

Based on (10) minus (11), we obtain: 
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Then for solving iμ , we have two equations: 

( )2 3 21i j i j i
i j i

p p pμ μ σ
≠

 − = − 
 

  ; (13)

i i
i

p μ μ= . (14)

Equations (12) and (13) can only solve two variables, which means they are only suitable for the 

non-numerical features containing two values. The solution of the equations is not unique, when there 
are more than two values. To solve this problem, assumptions are added here. As iμ  is one-

dimensional value, we assume 1 2 nμ μ μ> > >  and: 

{ }1, , 1i n∀ ∈ − , 1i i Dμ μ +− = . (15)
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The assumption of (15) implies that the distances between neighboring pairs of iμ  are equal. The 

purpose of assumption (15) is to find the closed-form solution of Equations (13) and (14) and simplify 

the problem. Although the distance between each pair of means is fixed, the transformed distribution 

of each non-numerical value can still be controlled by standard deviation which can be solved 

correspondingly for every value of the original non-numerical features. Based on assumption (15), the 

solution can be obtained as follows: 

( )231 i i j
i i j

D p p p i jσ
≠

 = − − 
 

  . { }, 1, ,i j n∈   (16)

Using (14) and (15), we obtain: 

( ) ( )
1

i

i k
k

n i n k p Dμ μ
=

 = + − − −  
 . { }1, ,i n∈   (17)

From (16) and (17), we obtain 

( ) ( ) ( )23

1

1
i

i k i i j
k i i j

n i n k p p p p i jμ μ σ
= ≠

   = + − − − − −     
   . { }1, ,i n∈   (18)

And (9) shows the corresponding standard deviations: 

i ipσ σ= . { }1, ,i n∈   (19)

The values of numerical features in datasets should be normalized to unify the scale of data. Here 
we adopted a widely used way setting ( )*X X μ σ= −  to normalize transformed numerical data. This 

method measures the relative position of data points related to the mean and standard deviation of the 

corresponding feature. Thus, the parameters μ and σ in (18) and (19) can be eliminated. As a result, 

(18) and (19) can be normalized as: 

( ) ( ) ( ) ( )2* 3

1

1
i

i i k i i j
k i i j

n i n k p p p p i jμ μ μ σ
= ≠

   = − = − − − − −     
   . { }1, ,i n∈   (20)

*
i i ipσ σ σ= = . { }1, ,i n∈   (21)

Depending on ( )* *~ ,i i iX x x μ σ=   { }1, ,i n∈  , the numerical substitution X  for the original 

non-numerical feature X  can be generated. Besides, the values of transformed feature can be normalized 

at the same time. Combining the UFT with k-means, data mixed with numerical and non-numerical 

features can be unified to be purely numerical and then clustered effectively. Figure 1 shows the 

experimental design of UFT-k-means. 
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Figure 1. The experimental design of UFT-k-means. 

In this study, UFT-k-means was applied to heterogeneous data clustering and compared with  

k-prototypes, improved k-prototypes and KL-FCM-GM. 

3. Experiments and Analysis  

3.1. A Modified Real-World Dataset for Validation 

The Seeds dataset, which is a benchmark dataset downloaded from UCI [23] and has seven 

numerical features, 210 samples and three classes, was analyzed to demonstrate the algorithm 

performance. To test the proposed UFT-k-means in a controlled manner, F2 and F3 of the Seeds dataset 

were discretized (bins = 3) to generate a heterogeneous dataset with numerical and non-numerical 

features. The results of clustering were compared between UFT-k-means and conventional methods  

(k-prototypes, improved k-prototypes and KL-FCM-GM). The parameters of k-prototypes, improved  

k-prototypes and KL-FCM-GM were chosen based on previously reported criteria. The specific 

searching ranges of parameters are: (1) for k-prototypes, the weight of non-numerical features, γ, was 

chosen within (0,10] [15]; (2) for improved k-prototypes, the exponent of feature significance, λ, 

should be more than 1 [17], in this study, the range was chosen as (1,5] because small modification of 

the exponent value may influence the clustering results to a large extent; (3) for KL-FCM-GM, the 

degree of fuzziness, λ, was chosen within (1,3] as suggested in [16]. The best performances and the 

corresponding parameter values are presented in Table 1. 

Table 1. Clustering accuracies for the Seeds dataset with heterogeneous features. 

Clustering Algorithms Accuracy 

UFT-k-means 89.05% 
k-prototypes 86.67% (γ = 2) 

Improved k-prototypes 84.76% (λ = 2.5) 
KL-FCM-GM 57.62% (λ = 1.1) 

Table 1 shows that, for the Seeds dataset with heterogeneous features, UFT-k-means outperformed 

the other clustering algorithms, this is because UFT transformed the non-numerical features into 

numerical features without information loss. Each transformed feature has the properties of a 

numerical feature whilst retaining the structure of the non-numerical feature. As a result, the 

transformed numerical dataset can provide reasonable estimates of the Euclidean distance of the 
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original non-numerical values to k-means. Besides, another major benefit of the clustering procedure 

of UFT-k-means is that it is not biased by any parameters. For conventional k-prototypes, the algorithm 

is parameter dependent and the combination of Euclidean and Hamming distance may not be 

appropriate for the Seeds dataset with heterogeneous features. Although the improved k-prototypes 

employs a fuzzy method to control the ratio between Euclidean and Hamming distance, it still has the 

same disadvantages as k-prototypes. For KL-FCM-GM, the clustering accuracy is only 57.62% 

probably due to the unsuitable assumption of the Gauss-multinomial distribution for the numerical 

features of the Seeds dataset. Besides, KL-FCM-GM needs a parameter to control the fuzziness which 

may also influence the result of the clustering. The clustering results for different algorithms and the 

true labels of the Seeds dataset with heterogeneous features are compared in Figure 2. The first two 

principle components (PC1 and PC2) of the original numerical Seeds dataset were used in Figure 2 to 

illustrate the distribution of clusters. 

 

Figure 2. The true label and the clustering results derived by different algorithms for the 

Seeds dataset mixed with numerical and non-numerical features. 

Figure 2 shows that, among all the clustering algorithms compared, UFT-k-means provided the 

most similar clustering as the true labels of the Seeds dataset. For both k-prototypes and the improved  

k-prototypes, some of the points which originally belong to Cluster 1 were clustered as Cluster 3.  

Figure 2e shows that the clusters derived by KL-FCM-GM overlap with each other considerably 

illustrating how the KL-FCM-GM assumption of the Gauss-multinomial distribution, may not be 

appropriate for the numerical part of the Seeds dataset. The results suggest that UFT-k-means is an 

efficient clustering algorithm for heterogeneous data with numerical and non-numerical features. 
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3.2. Real-World Datasets 

Seven benchmark datasets (downloaded from UCI [23]) were used here to evaluate the performance 

of the proposed UFT-k-means compared with k-prototypes, improved k-prototypes and KL-FCM-GM. 

The data descriptions are shown in Table 2. Among them, the Soybean dataset is purely non-numerical 

and all the features were transformed into numerical features for UFT-k-means. For the Heart 

Cleveland dataset, there are 303 samples and six of them contain missing values. In this study, only the 

complete samples were kept in the dataset for clustering leaving 297 samples in Heart Cleveland 

dataset. In the Dermatology dataset, eight samples with missing values were also eliminated and 366 

complete samples were kept for clustering. The choice of parameters in k-prototypes, improved  

k-prototypes and KL-FCM-GM are within the ranges mentioned in Section 3.1. The parameters were 

chosen iteratively and only those offered the best performance were kept for clustering. To avoid the 

influence of initializations, all of the algorithms were run 100 times with the average accuracies and 

standard deviations listed in Table 3. 

Table 2. Data descriptions. 

Datasets Samples Classes 
Numerical 

Features 

Non-numerical 

Features 
Features 

Soybean 47 4 0 35 35 

Heart Statlog 270 2 6 7 13 

Heart Cleveland 297 5 6 7 13 

German 1,000 2 3 17 20 

Australia 690 2 6 8 14 

Zoo 101 7 1 15 16 

Dermatology 366 6 1 33 34 

Table 3. Clustering accuracies for different datasets varied among different clustering 

algorithms. 

Clustering 

Algorithms 

Accuracy (%, Mean ± SD) 

Soybean 
Heart 

Statlog 

Heart 

Cleveland 
German Australian Zoo Dermatology 

UFT-k-means 96.17 ± 2.57 89.64 ± 0.26 65.32 ± 0.33 75.14 ± 0.46 91.19 ± 0.51 84.85 ± 2.05 63.02 ± 1.90 

UFT-GMM 78.51 ± 9.07 83.80 ± 8.90 61.13 ± 2.18 70.07 ± 0.10 72.04 ± 3.28 74.80 ± 6.41 52.69 ± 5.54 

k-prototypes 87.45 ± 3.82 78.89 ± 2.69 59.23 ± 1.03 70.00 ± 0.00 74.67 ± 0.06 77.95 ± 2.80 52.47 ± 3.74 

Improved  

k-prototypes 
90.85 ± 4.05 82.70 ± 4.07 59.26 ± 1.04 70.00 ± 0.00 78.72 ± 0.23 81.98 ± 4.62 52.40 ± 3.02 

KL-FCM-GM 57.45 ± 4.37 74.96 ± 4.87 56.16 ± 1.06 70.00 ± 0.00 68.71 ± 1.19 40.59 ± 0.03 33.99 ± 8.02 

Table 3 shows that UFT-k-means outperformed the other algorithms for all seven benchmark 

datasets. For UFT-GMM, the standard deviation values were more than that of other clustering 

algorithms for six out of seven datasets and the average accuracies were not outstanding. This is 

because compared with k-means, GMM is more initialization dependent and the numerical data 

transformed by UFT provided even more choices of initializations which make the UFT-GMM 

relatively less stable. Since the Soybean dataset is purely non-numerical, only the non-numerical 



Entropy 2015, 17 1544 

 

 

dissimilarity measurement of k-prototypes, improved k-prototypes and KL-FCM-GM were 

implemented and their performance should be improved. However, their clustering accuracies were 

less than that of UFT-k-means for the Soybean dataset, this is because the dissimilarity between  

non-numerical values can only be measured as 0 or 1 and thus cannot provide different dissimilarities for 

different non-numerical values. For example, in a non-numerical feature, the dissimilarity between each 

pair of categories is always 1. The dissimilarities cannot be compared between all categories. Whereas, 

on the contrary, based on the structure of non-numerical feature, the UFT can transform  

non-numerical values into numerical values which provide different dissimilarities to different pairs of 

categories in the original non-numerical features. After UFT, k-means can then employ the transformed 

numerical values and calculate the Euclidean distance directly based on all of the features. As a result, 

the clustering of UFT-k-means is more reliable than the traditional methods for heterogeneous data.  

To compare the clustering results derived by the different algorithms with the true labels, the 

Soybean, German and Australian datasets were used for illustration as shown Figures 3–5. The first two 

principle components (PC1 and PC2) from the non-numerical data transformed by UFT were used to 

illustrate the clusters obtained from all the algorithms. The figures also highlight the advantage of UFT, 

in that it can be used to visualize the results of non-numerical data and heterogeneous data clustering. 

From Figure 3 it can be seen that only UFT-k-means provided four clear clusters as the true label. In 

Figure 3c, k-prototypes clustered some points which originally belong to Cluster 3 into Cluster 2. In 

Figure 3d, improved k-prototypes clustered the points which originally belong to two different clusters 

into Cluster 4. Cluster 1 and Cluster 2 overlap each other because the dissimilarity measurements of 

both k-prototypes and improved k-prototypes employ the Hamming distance which cannot provide 

different distances for different non-numerical values. For KL-FCM-GM, Figure 3e shows that the 

algorithm clustered the points which originally belong to four clusters into only two clusters. 

 

Figure 3. The true label and the clustering results derived by different algorithms for the 

Soybean dataset. 
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Figure 4 shows that, although the true labels of the German dataset overlap, the data distributions of 

the two clusters are clearly shown. Among the algorithms compared in Figure 4, only UFT-k-means 

provides similar clusters to the true label. The two clusters in Figure 4b have a clear vertical boundary. 

Figures 4c,d show the results of k-prototypes and improved k-prototypes which cannot separate the two 

clusters with vertical boundaries, this is both because of the limitations of the Hamming distance and 

because the dissimilarity measurement of the mixed Euclidean distance with Hamming distance and 

the parameter of combination may not be optimal for the German dataset. Figure 4e shows the 

overlapping of clustering results by KL-FCM-GM with boundary running in orthogonal direction. 

 

Figure 4. The true label and the clustering results derived by different algorithms for the 

German dataset. 

In Figure 5, for the Australian dataset, again the UFT-k-means provided the most similar clustering 

results with the true labels among all the algorithms. Because the information of the original  

non-numerical features is preserved, the clusters derived by UFT-k-means have a clear boundary. For  

k-prototypes and improved k-prototypes, Figures 5c,d show that some of the points which originally 
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Figure 5. The true label and the clustering results derived by different algorithms for the 

Australian dataset. 

The results of the k-prototypes and improved k-prototypes show that the algorithms have problems 

distinguishing classes because of the limitations associated with the Hamming distance as it cannot 

provide different distances between different non-numerical values. At the same time, the parameter 

combining the Euclidean distance with the Hamming distance into the mixed dissimilarity measurement 

may not be optimal. For the KL-FCM-GM which relies on the assumption of Gauss-multinomial 

distribution for numerical features this may not be appropriate for the datasets shown. 
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However, this assumption may not be appropriate for all the datasets. 

In this study, we integrated the MI-based UFT which can transform non-numerical features into 

numerical features with the conventional k-means to cluster the heterogeneous data. The transformation 

of UFT is based on MI and can preserve the information contained in the original non-numerical 

features. At the same time, the transformed numerical features have the properties of numerical values 
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and the structure of the original non-numerical features meaning the integrated UFT-k-means can 

cluster the heterogeneous data effectively. The results of simulation studies show that, the integrated 

UFT-k-means outperformed other clustering algorithms and provided reasonable clusters for one 

modified real-world dataset and five real-world benchmark datasets. Furthermore, the numerical data 

transformed by UFT can be used for PCA and visualize the results of clustering. As a result, the 

integrated UFT-k-means is an optimal choice for clustering heterogeneous data with numerical and 

non-numerical features. 
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