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Abstract: The thermodynamic behaviors of a system living in a curved space-time
are different from those of a system in a flat space-time. We have investigated the
thermodynamics for a system consisting of relativistic massless bosons. We show that a
strongly curved metric will produce a large enhancement of the degrees of freedom in the
formulae of energy and entropy of the system, as a comparison to the case in a flat space-time.
We are mainly concerned with its implications to holography, including the derivations of
holographic entropy and holographic screen.
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1. Introduction

Inspired by the area scaling of the black hole entropy and the generalized second law of
thermodynamics, it is conjectured that the maximum entropy contained in a system can not exceed
its boundary area in Planck units [1–3]. The conjecture afterwards is called holographic principle. The
entropy with an area scaling is usually called holographic entropy.

The microscopic origin of holographic entropy has always been a question to be answered. In the
original paper of holographic prinple, t’ Hooft [1] has studied the maximum entropy that can be provided
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by an ordinary quantum field theory. Assuming the system is at some temperature T , the corresponding
energy and entropy of the system can be evaluated as

E =c1zV T
4,

S =c2zV T
3,

(1)

where z is explained as the number of different particle species, c1, c2 are numerical constants of order
one which depend on the concrete properties of the particles. Such thermodynamic behaviors can easily
be found by dimensional analysis. For the system to be gravitational stable, we must require E =

c1zV T
4 ≤ Ebh ∼ L which means the energy of the system should be less than the energy of a black

hole of the same size. This leads to the critical temperature T ≤ c3z
−1/4L−1/2. Substituting it into the

formula of entropy, one gets an entropy bound for conventional field theory

S ≤ c4z
1/4A3/4, (2)

where A is the boundary area of the system. We have adopted the Planck units where
G = ~ = c = kB = 1 in order to simplify the expressions. If the number of particle species z is an
unimportant constant, the maximum entropy will be

(
A/l2p

)3/4 by recovering units, where lp is the Planck
length. Thus there is an entropy gap between the A3/4 entropy bound for conventional filed theory and
the holographic entropy [4–8]. The result is also verified by a direct examination of gravitational stable
Hilbert space for bosonic and fermionic fields [6].

To fill the entropy gap from A3/4 to A , one must resort to other mechanisms for extra degrees of
freedom (DOFs). A fast observation is that, if one assumes a large number of particle species z, the
entropy gap can be filled continuously. Especially, assuming z ∼ L2/l2p, the setting of E = Ebh ∼ L

leads to the temperature T = c3z
−1/4L−1/2 ∼ 1/L and the entropy

S = c4z
1/4A3/4 ∼ A. (3)

The scaling behaviors exactly coincide with those of black hole thermodynamics. Obviously, the large z
plays an essential role in the derivation. This scheme of introducing a large number of particle species for
overcoming the entropy gap is first suggested in [9] by Horvat. It is amazing that the entire holographic
thermodynamics can be derived in such a straightforward way. Whatever, in this context, explaining z as
the number of particle species may lead to some problems. First, it is hard to explain the origin of such
a large number of particle species which are absent in standard model of particle physics. Second, it is
hard to answer the question why the number of particle species z is related to the size of the system.

On the other hand, as suggested by Hsu [8], one should consider the influence of space-time metric in
order to fill the entropy gap. The A3/4 entropy bound may be only applicable to weak-gravitational
systems, because the original derivation only takes E ≤ Ebh as a global limitation to the system.
When the system has such a large energy, the dominant self-gravitational interaction will lead to a
strongly curved space-time metric. So a complete derivation should use the thermodynamics in a curved
space-time rather than directly using the results in the Minkowski space-time.

In this paper, we study the thermodynamics for a system living in a curved space-time using a
formulism originated and developed in [10,11]. From our result, the large value of z in Equation (3)
can be seen as an effect of space-time metric. Notice that the parameter z will not be explained as
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the number of particle species from now on, because we shall start from a system consisting of only
one kind of particles. Strong gravitational field naturally induces a large enhancement of the DOFs in
the formulae of energy and entropy for the thermodynamics of the system, which is reflected by the
parameter z. Hence we can understand the successful filling-up of the entropy gap in Equation (3)
because it has considered gravitational effect in an effective way. We shall also analyze the important
role of a large z in searching for the holographic screen for a black hole.

2. Thermodynamics in Static Curved Space-Time

In this section, we shall study the thermodynamics of a system living in a static space-time with the
aim of seeing how a large z can be produced in a strong gravitational region.

First, we count the number of quantum states for a particle to occupy when it is put in a curved
space-time. In a static space-time, the energy of a particle can be defined as E = ξµk

µ, where ξµ =

(1,~0) is the killing vector of the space-time and kµ is the four momentum of the particle. Using the
fact that pµpµ = m2, the energy for a single particle is calculated as E =

√
g00(γ

αβpαpβ + m2)
1
2 ,

where γαβ is the spatial part of the metric. We also verify the energy formula from the lagrangian
L = gµν ẋ

µẋν combined with a Legendre transformation. According to the uncertainty principle, the
number of possible single-particle states with energy less than w is

P (w) =

∫
Θ
(
w −√g00(γαβpαpβ +m2)

1
2

) dxαdpα
(2π)3

, (4)

where dxαdpα is the invariant phase space element and the Heaviside step function Θ(x) is used.
Accordingly, the momentum integral requires to count all the momenta satisfying γαβpαpβ ≤ w2/g00 −
m2 and gives a volume 4π

3

√
γ(w2/g00 −m2)3/2 in the momentum space [10]. It leads to

P (w) =
1

(2π)3

∫
√
γd3x

4π

3
(
w2

g00
−m2)3/2. (5)

With Equation (5) in hand, we can study the thermodynamic behaviors for a system living in a curved
space-time. For simplicity, we consider an idea gas consisting of one kind of relativistic massless bosons
with m = 0. The number of possible polarizations is also set to be 1. Then the number of quantum states
with energy between w to w + dw is

g(w)dw =
∂P (w)

∂w
dw =

1

(2π)3

∫
√
γd3x

4πw2dw

(
√
g00)3

. (6)

At the temperature T = 1/β, the particles are assigned to the quantum states according to the
Bose-Einstein distribution. Then we get the energy of the system as

U =

∫
w

eβw − 1
g(w)dw

=
1

(2π)3

∫
√
γd3x

∫
w

eβw − 1

4πw2dw

(
√
g00)3

= c1T
4

∫ √
γ

(
√
g00)3

d3x,

(7)
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where c1 = π2/30. The temperature and energy of the system are measured by the Killing observer of
the space-time, which can be seen from the definition of the single-particle energy. The entropy of the
system is

S = lnΞ + βU = −
∫

ln(1− e−βw)g(w)dw + βU

= c2T
3

∫ √
γ

(
√
g00)3

d3x,
(8)

where c2 = 2π2/45, and Ξ is the partition function of the thermodynamic system [12]. Obviously, the
influence of the metric is reflected by the non-trivial factor

√
γ/(
√
g00)

3.
In order to see clearly how the corresponding thermodynamic behaviors can be changed in a strongly

curved space-time, an example will be useful. Consider a thermodynamic system which is subject to an
external space-time metric, e.g., the Schwarzschild metric

ds2 =

(
1− 2M

r

)
dt2 − 1

1− 2M
r

dr2 − r2dΩ. (9)

For convenience of comparison, after substituting the metric into Equations (7) and (8), the formulae of
energy and entropy can be recast into the form

U = c1zV T
4,

S = c2zV T
3,

(10)

where V =
∫ √

γd3x is the spatial volume of the system, and z is defined as

z =

∫ √
γ/(
√
g00)

3d3x

V
=

∫
1

(1− 2M
r

)2
r2drdΩ∫

1√
1− 2M

r

r2drdΩ
. (11)

The integral above is over the region occupied by the thermodynamic system. When the system is far
from the black hole, z ' 1, so we recover the familiar thermodynamics for a bosonic system consisting of
relativistic massless particles like photon gas in a flat space-time, which is U = c1V T

4 and S = c2V T
3.

When the system lives in a strong gravitational region close to the black hole, a large number z emerges
and changes the thermodynamic behaviors of the system. It is extremely noticeable that z diverges when
one edge of the system touches the event horizon, so one must choose some cutoff near the horizon.

We have obtained our main result that the large z in Equation (10) includes certain effects of the
curved space-time. It explains the successful derivation of the holographic entropy in Equation (3) by
introducing a large number of particle species [9], since the relevant influence of space-time metric is
included effectively. As we argued in the introduction part, directly inserting a very large number z in
Equation (3) and explaining it as the number of particle species are questionable. By comparison, due to
our formulism, the emergence of z in Equation (10) is a deduced result rather than an assumption. In fact,
to strictly derive the holographic thermodynamics, one should consider a large self-gravitational system,
use a metric generated by itself and construct the thermodynamics based on the metric. The details could
be very complex. Interestingly, the thermodynamics with a large z may be taken as an effective theory
for such a complex system, and the derivation of the holographic thermodynamics becomes possible due
to the large z.
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For clarity, here we provide a detailed discussion on the thermodynamics of a system in a black
hole background and show how the energy and entropy of the system change when it is lowering to the
horizon of the black hole. We shall discuss two distinct processes, which are respectively an isothermal
process and an adiabatic process. First is the isothermal process. Our result (10) shows a continuous
increase of the energy and entropy when the system approaches the black hole. To be precise, consider
a small box of photon gas and lower the system slowly to the horizon by means of a string. To maintain
the temperature observed by a distinct observer, the system must be contact with a thermal reservoir and
absorbs heat to compensate the gravitational redshift of the temperature in the lowering process. One
can easily expect a continuous increase of the entropy of the system because of the absorption of heat. In
contrast, the thermodynamic behaviors of the system will be very different when the system is lowering
adiabatically to the horizon along with an extraction of work to the outside through the string attached
to it. The increase of the value of z will not cause any increase of the entropy in the lowering process.
Because z =

∫ √
γ/(
√
g00)3d3x∫ √
γd3x

∼ 1/(
√
g00)

3, its effect is offset by the redshift of T 3 and consequently the
entropy is left unchanged. Actually according to Equation (10) there is always S ∼ U/T . The entropy
is unchanged because of the simultaneous redshift of the energy and the temperature.

3. Thermodynamic Spheres and Holography

In this section, we still use the Schwarzschild metric (9) but turn to analyze the thermodynamic
behaviors of 2-dimensional systems living on the spheres surrounding the black hole. There have
been some works on this kind of topic in the literature. In [13] the thermodynamic properties and the
Bose-Einstein condensations on stretched horizons are extensively studied. In [14] the thermodynamics
for quantum photons living on astrophysical spheres is constructed. We will still focus on the effect of
the curved space-time metric on the thermodynamics of the system and point out that the induced large
z always plays an important role in the derivation of a holographic screen.

The formulism above can be easily generalized to a 2-dimensional system living in a curved
space-time. Consider an idea gas of relativistic massless bosons confined in the system. The number of
quantum states with energy between w and w + dw will be

g(w)dw =
1

(2π)2

∫
√
γ2d

2x
2πwdw

(
√
g00)2

. (12)

At the temperature T = 1/β, using the Bose-Einstein distribution, the energy of the system is

U =

∫
w

eβw − 1
g(w)dw

=
1

(2π)2

∫
√
γ2d

2x
w

eβw − 1

2πwdw

(
√
g00)2

,

= c1T
3

∫ √
γ2

g00
d2x,

(13)
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where c1 = ζ(3)/π ' 1.202/π. Notice the energy distribution 1
g00

w2

eβw−1dw was obtained in [14] by a
standard quantization procedure for the photons on spheres, which verifies the present formulism we
adopt. The corresponding entropy is

S = lnΞ + βU = −
∫

ln(1− e−βw)g(w)dw + βU

= c2T
2

∫ √
γ2

g00
d2x,

(14)

where c2 = 3ζ(3)/(2π) ' 1.803/π.
On the sphere of some radius R which surrounds the Schwarzschild black hole, the term g00(R) is

just a constant, so the formulae (13) and (14) can be directly calculated as

U = c1zART
3, S = c2zART

2, (15)

with

AR =

∫
√
γ2d

2x =

∫
R2 sin θdθdϕ = 4πR2, (16)

z = 1/g00(R) = 1/(1− 2M

R
). (17)

Now AR is the volume of the 2-dimensional system and z reflects the effect of the curved space-time
metric. As in the 3-dimensional case, the emergence of z is a deduced result rather than an assumption.
When the sphere is far from the black hole, z → 1, we recover the conventional thermodynamics U =

c1ART
3, S = c2ART

2 for a 2-dimensional bosonic gas in a flat space-time. In contrast, when the sphere
is located in a strong gravitational region close to the horizon of the black hole, we get a very large z in
Equation (15).

Here the purpose is to study the idea of holographic screen and see which sphere can be seen as the
holographic screen for the black hole. “Holographic screen” means all the information contained in the
bulk can be encoded on such a screen. Usually, one may prefer the event horizon at Rh = 2M as the
holographic screen for the black hole. However, on the event horizon g00 = 0 leads to an infinite state
density g(w)dw and further causes an embarrassing divergent thermodynamic behaviors according to
Equations (13) and (14). So we should use the stretched horizon, which is located at a Planck proper
distance away from the event horizon, as suggested in [11,13,15]. The concept of stretched horizon is a
useful idea in the discussion of black hole thermodynamics [16]. Because of quantum uncertainty, one
can not distinguish between a physical event on the stretched horizon and the one on the event horizon.
The radius R of the stretched horizon can be calculated from the requirement

lp =

∫ R

Rh

1√
1− 2M

r

dr ' 2
√
Rh(R−Rh). (18)

It gives R = Rh + l2p/(4Rh). From Equation (17), there is z = 1/g00(R) = 4R2
h/l

2
p on the stretched

horizon. If we require the corresponding 2-dimensional system has energy E = Ebh ∼ R, the
thermodynamics (15) immediately leads to

T ∼ 1/R, S ∼ R2, (19)
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which captures the familiar scaling behaviors of the black hole thermodynamics. Thus the stretched
horizon can surely be taken as the holographic screen for the black hole and the DOFs of the black hole
can be viewed as living on the stretched horizon. Notice that the large z still plays an important role
in the derivation of the holographic screen. Besides, the locally measured temperature at the stretched
horizon is calculated as Tloc = T/

√
g00(R) ∼ Tp, which is of the order of the Planck temperature. It

justifies the choice of the location of the stretched horizon, because if we put the stretched horizon closer
to the black hole, we will get a higher locally measured temperature which is physically unacceptable.

4. Conclusions

We have analyzed the thermodynamics of a system consisting of relativistic massless bosons which
lives in a static space-time. We find that a parameter z enters the formulae of energy and entropy
of the system, which includes certain effects of the curved space-time. When the system is in a flat
space-time, there is z = 1, then we retrieve the conventional thermodynamics. When the system is
in a strong gravitational region, z becomes a very large number. The non-trivial z greatly changes the
thermodynamic behaviors of the system and plays an essential role in the derivation of the holographic
entropy and holographic screen. Actually, our result indicates an important fact that, for two systems
with the same temperature T (from the point of view of a Killing observer), the system located in a more
curved space-time contains a larger entropy density.

Finally, we want to make two further comments. First, the thermodynamics (10) in a curved
space-time has been recast into the same form as the thermodynamics (1) with a large number of particle
species. It is tempting to give this a physical explanation, even though it is a vague one. As we have
shown in Equation (6), gravitational field expands the single-particle state space by a factor

√
γ/(
√
g00)

3.
Roughly speaking, it implies that the microstates provide

√
γ/(
√
g00)

3 distinct “copies” or “species” for
the particles to occupy, compared to the situation in a flat space-time. Second, in order to reach the
holographic entropy in Equation (3), the number of particle species must be taken as L2/l2p. At the same
time, the total number of particles in the system is calculated asN = Ebh/T ∼ L2/l2p. The two quantities
are of the same order of magnitude. This implies that all the particles are distinguishable from each
other by their species and this kind of model is equivalent to a model based on distinguishable particles.
In fact, it is aware very early that holographic thermodynamics can be derived from distinguishable
particles. Banks et al. have noticed that bosonic and fermionic systems do not have enough DOFs for
the holographic entropy and turn to construct a black hole model from Matrix theory which consists of
a Bolztmann gas of D0 branes [17,18]. Moreover, in loop quantum gravity, the holographic entropy
can be derived by counting the DOFs on the isolated horizon of a black hole, which consists of
horizon punctures pierced by the edges of spin network. In [19] these punctures are confirmed to be
distinguishable and the corresponding Gibbs paradox is analyzed. Moreover, it is proved in [20,21] that
infinite statistics (quantum Boltzmann statistics) saturates the holographic entropy bound. Our results
may shed light on the understanding of those works. It seems that gravitational field plays a role in
causing the particle distinguishability at least effectively and it is worthy of further study.
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