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Abstract: We propose a novel image encryption algorithm based on two pseudorandom

bit generators: Chebyshev map based and rotation equation based. The first is used for

permutation, and the second one for substitution operations. Detailed security analysis

has been provided on the novel image encryption algorithm using visual testing, key

space evaluation, histogram analysis, information entropy calculation, correlation coefficient

analysis, differential analysis, key sensitivity test, and computational and complexity

analysis. Based on the theoretical and empirical results the novel image encryption scheme

demonstrates an excellent level of security.
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1. Introduction

Over the past twenty years, the nonlinear chaotic systems have been ordinarily used in digital data

encryption and transmission. In the imaginative work [1] of J. Fridrich is shown the good potential of the

dynamical chaotic maps in symmetric image encryption. The paper highlights how to adapt nonlinear

Baker map, Cat map and Standard map on a torus or on a rectangle in order of block encryption schemes.

An improved stochastic middle multi-bits quantification scheme based on Chebyshev map is proposed

in [2]. Novel image encryption scheme with Chebyshev map based diffusion operations is presented

in [3]. A novel design method of key stream by chaotic Chebyshev function is proposed in [4]. In [5],

a secure Diffie-Hellman key agreement protocol based on Chebyshev chaotic map is presented.
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In [6], a chaotic cipher is proposed to encrypt color images through position permutation part and

Logistic map based on substitution. By using Chebyshev map and Arnold map, a bit-level permutation

image encryption algorithm is proposed [7].

In [8], based on the Lorenz attractor and perceptron algorithm, a chaotic image encryption system is

proposed. an image encryption scheme using dynamic sequences generated by multiple chaotic systems

is presented in [9]. In [10], a bit-level permutation and Chen chaotic system are proposed to encrypt

color images.

A chaos based image encryption scheme is proposed in this article. The novel algorithm is

based on a simple multiple round substitution-permutation model. It is Chebyshev map based on

permutation and rotation function based on substitution with motivation to maintain the high quality

of the encrypted images. The novelty of our approach lies in the combination of two cryptographically

strong pseudorandom generators.

In Section 2, we propose novel pseudo-random bit generator (PRBG) based on rotation function. In

Section 2.2 in order to measure randomness of the bit sequence generated by the pseudo-random scheme,

we use NIST, DIEHARD and ENT statistical packages. Section 4 presents the novel image encryption

algorithm, and extended security cryptanalysis is given. Finally, the last section concludes the paper.

2. Pseudo-Random Bit Generator Based on the Rotation Equations

2.1. Proposed Pseudorandom Scheme

In this section, one real number of rotation formula is preprocessed to a binary

pseudo-random sequence.

We are using rotation equations of the form [11,12]

xt+1 = −a− (xt − a) cos θ + yt sin θ/rt

yt+1 = −xtrt sin θ − yt cos θ

rt =

√

0.5(x2
t +

√

x4
t + 4y2t ),

(1)

where the parameters are θ = 2 and a = 2.8. The rotation Equation (1) with initial conditions x0 = 0.5,

y0 = 1.0 is graphed in Figure 1. This figure visually shows random-like positions of the points in the set.

The novel pseudorandom bit generation scheme consists of the following steps:

Step 1: The initial values x0 and y0 from Equation (1) are determined.

Step 2: The rotation equation, Equation (1), is iterated for L0 times, where L0 is a constant.

Step 3: The iteration of the Equation (1) continues, and as a result, two decimal fractions xi and yi

are generated.

Step 4: The number yi is post-processed as follows:

si = mod(abs(integer(yi × 105), 2), (2)

where mod(x, y) returns the reminder after division, abs(x) returns the absolute value of x, and

integer(x) returns the integer part of x, truncating the value at the decimal point.

The output bit si is obtained.
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Step 5: Return to Step 3 until pseudo-random bit stream limit is reached.

The rotation equations based pseudo-random bit scheme is implemented softwarely in C++

programming language, using the following initial values: x0 = 0.2343214592, y0 = −0.742190593,

and L0 = 140.

Figure 1. Rotation equations with x0 = 0.5, y0 = 1.0, θ = 2, a = 2.8, rt = 10.3 and 20,000

iterations of Equation (1).

2.2. Statistical Test Analysis of the Pseudorandom Bit Generator Based on Rotation Equations

In order to measure randomness of the rotation equation based pseudo-random bit generator, we used

NIST [13], DIEHARD [14], and ENT [15] statistical test suites.

Using the novel pseudo-random bit generator were produced 1000 sequences of 1,000,000 bits. The

results from all tests are given in Table 1.

Table 1. NIST test suite results.

NIST Proposed PRBG

Statistical Test p-Value Pass Rate

Frequency (monobit) 0.450297 989/1000

Block-frequency 0.839507 987/1000

Cumulative sums (Forward) 0.032489 988/1000

Cumulative sums (Reverse) 0.668321 987/1000

Runs 0.224821 989/1000

Longest run of Ones 0.713641 990/1000

Rank 0.457825 991/1000

FFT 0.595549 988/1000

Non-overlapping templates 0.514662 990/1000

Overlapping templates 0.035174 985/1000

Universal 0.141256 988/1000

Approximate entropy 0.307077 989/1000

Random-excursions 0.693410 613/619

Random-excursions Variant 0.557718 613/619

Serial 1 0.576961 988/1000

Serial 2 0.221317 989/1000

Linear complexity 0.459717 987/1000
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The entire NIST test is passed successfully: all the p − values are distributed uniformly in the

10 subintervals and the pass rate is also in acceptable range.

The minimum pass rate for each statistical test with the exception of the random-excursion

(variant) test is approximately 980 for a sample size of 1000 zero-one sequences. The minimum

pass rate for the random excursion (variant) test is approximately 605 for a sample size of 619 binary

sequences for Rotation equations based pseudorandom bit generator. The proposed scheme possesses

random-like properties.

For the DIEHARD tests, we generated a file with 80 million bits from the proposed pseudorandom

bit generator. The results are placed in Table 2. All P-values are in acceptable range of [0, 1).

Table 2. DIEHARD statistical test results.

DIEHARD, Statistical Test Proposed PRBG, p-Value

Birthday spacings 0.339750

Overlapping 5-permutation 0.215056

Binary rank (31 × 31) 0.662314

Binary rank (32 × 32) 0.429881

Binary rank (6 × 8) 0.517681

Bitstream 0.448843

OPSO 0.542452

OQSO 0.491857

DNA 0.481574

Stream count-the-ones 0.983115

Byte count-the-ones 0.551900

Parking lot 0.551864

Minimum distance 0.447679

3D spheres 0.549807

Squeeze 0.265792

Overlapping sums 0.443169

Runs up 0.848733

Runs down 0.447462

Craps 0.295968

We tested the output of a string of 125,000,000 bytes of the proposed Rotation equations based

pseudorandom bit generation scheme. The results are summarized in Table 3. The proposed

pseudorandom bit generator passed all the tests of ENT.

Table 3. ENT statistical test results.

ENT, Statistical Test Proposed PRBG, Results

Entropy 7.999998 bits per byte OC would reduce the

Optimum compression size of this 125,000,000 byte file by 0%.

χ
2 distribution For 125,000,000 samples is 271.19, and randomly

would exceed this value 23.21% of the time.

Arithmetic mean value 127.4982 (127.5 = random)

Monte Carlo π estim. 3.141377330 (error 0.01%)

Serial correl. coeff. 0.000001 (totally uncorrelated = 0.0)
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3. Pseudo-Random Bit Generator Based on the Chebyshev Map

In this section we will describe the Chebyshev map [16,17] based pseudorandom bit generator

proposed in [18].

In [19], a pseudorandom bit stream is generated by comparing the outputs of two Chebyshev maps.

In [20], the real numbers of two Chebyshev polynomials are post-processed and combined with a simple

threshold function to a binary pseudorandom stream. The described scheme modify the generators

in [19] and [20] by simple avoiding the threshold functions and speed up the bit extracting process with

increasing the number of chaotic maps. The scheme is based on the following four Chebyshev maps:

Tn1
(x1) = 2x1Tn1−1(x1)− Tn1−2(x1)

Tn2
(x2) = 2x2Tn2−1(x2)− Tn2−2(x2)

Tn3
(x3) = 2x3Tn3−1(x3)− Tn3−2(x3)

Tn4
(x4) = 2x4Tn4−1(x4)− Tn4−2(x4),

(3)

where T1(x1), T1(x2), T1(x3), and T1(x4) are the initial values. The modified algorithm consists of the

following steps:

Step 1: The initial values T1(x1), T1(x2), T1(x3), and T1(x4) of the four Chebyshev maps from

Equation (3) are determined.

Step 2: The four Chebyshev maps from Equation (3) are iterated for K, L, M and N times,

respectively, to avoid the harmful effects of transitional procedures.

Step 3: The iteration of the Equation (3) continues, and as a result, four real fractions Ti(x1), Tj(x2),

Tk(x3), and Tl(x4), are generated and post-processed as follows:

sm1
= mod(integer(abs(Ti(x1)× 1015)), 2)

sm2
= mod(integer(abs(Tj(x2)× 1015)), 2)

sm3
= mod(integer(abs(Tk(x3)× 1015)), 2)

sm4
= mod(integer(abs(Tl(x4)× 1015)), 2),

(4)

where abs(x) returns the absolute value of x, integer(x) returns the integer part of x, truncating the

value at the decimal point, and mod(x, y) returns the reminder after division. The four output bits sm1
,

sm2
, sm3

, and sm4
are obtained.

Step 4: Return to Step 3 until the bit stream limit is reached.

The algorithm has good statistical properties measured by NIST, DIEHARD and ENT test packages.

4. Image Encryption Algorithm Based on Chebyshev Map and Rotation Equation

Here we describe an image encryption algorithm based on the proposed rotation equation based

pseudo-random bit generator, Section 2, and Chebyshev map based pseudorandom bit generator [18].

We also present security analysis of the encrypted images.
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4.1. Encryption Algorithm

The novel image encryption algorithm is a simple modification of the substitution-permutation

scheme [1]. Here every single pixel encryption is based on pixel shuffling and pixel substitution, and on

multiple overall rounds.

We consider plain images of n × n size. The binary length of n is n0. The encryption process is

divided in two parts. In the first part we generate buffer image B of n × n size by relocating the pixels

of the plain image P by Chebyshev map based PRBG. In the second part we generate ciphered image

C of n × n size by transforming the buffer pixel values by rotation equation based PRBG. The image

encryption begins, with an empty buffer image. The entire encryption process is given below:

Step 1: The Chebyshev map based PRBG is iterated six times to produce 24 bits. These bits constitute

a binary number bj .

Step 2: The jth column-vector is circularly shifted for mod (bj) times.

Step 3: Repeating Steps 1–2 until all of the columns, j = 1 . . . n, are processed, and the buffered

image B is produced.

Step 4: The rotation equation based PRBG is iterated to produce n × n × 8 bits for a monochrome

image or n× n× 24 bits for a color image.

Step 5: Do XOR operation between the pseudo-random bit sequence and all of the buffer pixels in

the buffered image to produce the encrypted image C ′.

Step 6: Repeating Steps 1–5 for T ≥ 1 times, until encrypted image C is produced.

4.2. Security Analysis

The proposed image encryption algorithm is implemented in C++ programming language. All

statistical results presented have been taken by T = 1.

Twenty eight 8-bit monochrome images and sixteen 24-bit color images have been encrypted for the

statistical analysis. The test images are selected from the Miscellaneous volume of USC-SIPI image

database. It is available and maintained by the University of Southern California Signal and Image

Processing Institute (http://sipi.usc.edu/database/). The color image names are from 4.1.01 to 4.1.08,

size 256 × 256 pixels, from 4.2.01 to 4.2.07, size 512 × 512 pixels, and House, size 512 × 512 pixels.

The monochrome images are from 5.1.09 to 5.1.14, size 256 × 256 pixels, from 5.2.08 to 5.2.10,

size 512 × 512 pixels, 5.3.01 and 5.3.02, size 1024 × 1024 pixels, from 7.1.01 to 7.1.10, 7.2.01,

size 512 × 512 pixels, and Boat, Elaine, Gray21, Numbers, Ruler, size 512 × 512 pixels, and Testpat,

size 1024 × 1024 pixels.

4.2.1. Key Space Analysis

The set of all initial numbers compose the key space. The key space of the novel image

encryption scheme has six secret key values x0 = 0.2343214591, y0 = −0.742190593 , T1(x1) =

0.702938119500914, T1(x2) = −0.3001928364928377, T1(x3) = 0.1385946382912478, and T1(x4) =

−0.2871955600387584, fixed as key K1. As stated in IEEE floating-point standard [21], the

computational precision of the 64-bit double-precision number is about 10−15. The key space of the

http://sipi.usc.edu/database/
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novel scheme is (1015)6 = 1090 ≈ 2298. Furthermore, the initial iteration numbers K, L, M and N can

also be used as a part of the key size.

Compared with similar image encryption algorithms [22–27], and [28] the proposed one has enough

key space size, Table 4. The larger parameter space is based on the proposed combination of two different

pseudorandom bit generators.

Table 4. Keyspace comparisons.

Encryption Algorithm Key Space

Proposed scheme 2298

Reference [22] 2197

Reference [23] 2292

Reference [24] 2149

Reference [25] 2256

Reference [26] 297

Reference [27] 2400

Reference [28] 2140

4.2.2. Visual Testing

The novel image encryption scheme is tested by using visual review. The inspection does not detect

analogy between plain images and their corresponding encrypted images. As an example, Figure 2 shows

the image 4.2.06 Sailboat on lake, Figure 2a, and its encrypted version, Figure 2b. The encrypted image

doesn’t keep any segmented color clusters and source figures.

(a) (b)

Figure 2. Comparison of the plain image and the encrypted image: (a) original picture

4.2.06 Sailboat on lake; (b) encrypted image of 4.2.06 Sailboat on lake.
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4.2.3. Histogram Analysis

Histogram analysis of three channels (red, green, and blue) of the plain and encrypted images is

given. Figure 3 shows the histograms of the 256 × 256 plain 4.1.08 Jelly beans and encrypted 4.1.08

Jelly beans. It is observed that the histograms of the encrypted image are significantly different from that

of the plain image.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Histogram analysis of plain image and encrypted image: (a), (c), and (e) show

the histograms of red, green, and blue channels of the plain picture 4.1.08 Jelly beans;

(b), (d), and (f) show the histograms of red, green, and blue channels of encrypted picture

4.1.08 Jelly beans.

For mathematical quantity analysis of red, green and blue channels of the encrypted image 4.1.08

Jelly beans, we employed Kolmogorov–Smirnov Goodness-of-Fit Test to evaluate an uniformity. The

normality was detected with Normal Quantile Plots (NormQuant.xls, Dr Scott Guth at Mt San Antonio

College). The Fugure 4 shows the the Normal quantile plots. The obtained correlation coefficients

of 0.999198758 (red histogram), 0.998107709 (green histogram), and 0.997868951 (blue histogram) are

larger than critical values 0.989519603 (α = 0.01), 0.995880763 (α = 0.05), and 0.99710484 (α = 0.1).

Therefore, the data follow the normal distribution. Similar results of uniformity are obtained in [29].
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(a) (b) (c)

Figure 4. Kolmogorov–Smirnov test of the histograms of the encrypted image 4.1.08 Jelly

beans: (a), (b), and (c) show the Normal quantile plots of the red, green, and blue histograms.

In addition of histogram analysis, the results of the average pixel intensity are given in Tables 5 and 6.

They validate the uniformity in distribution of red, green and blue channels of the encrypted images.

Table 5. Average pixel intensity of 24-bit color plain images and encrypted images.

File 24-bit Color Plain Image 24-bit Color Encrypted Image

Name Red Green Blue Red Green Blue

4.1.01 75.827 52.559 46.305 127.330 127.232 127.469

4.1.02 42.075 30.086 27.540 127.419 127.259 127.130

4.1.03 137.603 139.958 144.018 127.583 127.169 127.948

4.1.04 129.218 99.267 125.199 127.429 127.336 127.197

4.1.05 146.564 133.000 142.023 127.942 127.725 127.803

4.1.06 132.202 124.902 143.263 127.112 127.829 127.138

4.1.07 179.204 180.650 142.348 127.561 127.372 127.490

4.1.08 174.897 170.866 128.346 126.495 127.420 127.414

4.2.01 176.270 70.494 108.898 127.415 127.515 127.244

4.2.02 234.195 208.644 163.552 127.503 127.451 127.515

4.2.03 137.391 128.859 113.117 127.752 128.344 127.385

4.2.04 180.224 99.051 105.410 127.530 127.407 127.690

4.2.05 177.577 177.852 190.214 127.396 127.504 127.438

4.2.06 131.007 124.304 114.893 127.663 127.598 127.551

4.2.07 149.821 115.568 66.534 127.327 127.369 127.488

House 155.436 168.226 142.209 127.397 127.452 127.609

Table 6. Average pixel intensity of 8-bit grayscale plain images and encrypted images.

File Name 8-bit Grayscale Plain Image 8-bit Grayscale Encrypted Image

5.1.09 127.760 127.118

5.1.10 140.507 127.283

5.1.11 193.554 127.627

5.1.12 185.980 127.785

5.1.13 225.915 127.904



Entropy 2015, 17 2126

Table 6. cont.

File Name 8-bit Grayscale Plain Image 8-bit Grayscale Encrypted Image

5.1.14 104.470 127.870

5.2.08 123.177 127.489

5.2.09 180.572 127.555

5.2.10 113.802 127.500

5.3.01 89.008 127.499

5.3.02 82.995 127.458

7.1.01 107.114 127.273

7.1.02 175.335 127.494

7.1.03 132.385 127.670

7.1.04 116.118 127.422

7.1.05 106.393 127.431

7.1.06 90.483 127.377

7.1.07 108.239 127.350

7.1.08 127.188 127.594

7.1.09 125.604 127.403

7.1.10 119.273 127.327

7.2.01 32.514 122.464

Boat 129.708 127.434

Elaine 136.357 127.422

Gray21 127.038 127.758

Numbers 103.519 127.350

Ruler 226.940 127.661

Testpat 124.616 127.589

4.2.4. Information Entropy Analysis

The information entropy H(X) is a statistical measure of uncertainty in communication theory [30].

It is defined as follows:

H(X) = −
255
∑

i=0

p(xi)log2p(xi), (5)

where X is a discrete random variable, p(xi) is the probability density function of the occurrence of

the symbol xi. Let us consider that there are 256 values of the information source in red, green, blue,

and grey colors of the image with the same probability. We can get the perfect entropy H(X) = 8,

corresponding to a truly random sample.

The information entropy of red, green, blue and grey colors of the plain and their corresponding

encrypted images are computed and displayed in Tables 7 and 8.
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Table 7. Entropy results of 24-bit plain images and encrypted images.

File 24-bit Plain Image 24-bit Encrypted Image

Name Red Green Blue Red Green Blue

4.1.01 6.42005 6.44568 6.38071 7.99732 7.99712 7.99730

4.1.02 6.24989 5.96415 5.93092 7.99760 7.99713 7.99750

4.1.03 5.65663 5.37385 5.71166 7.99719 7.99711 7.99726

4.1.04 7.25487 7.27038 6.78250 7.99683 7.99700 7.99719

4.1.05 6.43105 6.53893 6.23204 7.99734 7.99682 7.99709

4.1.06 7.21044 7.41361 6.92074 7.99712 7.99739 7.99714

4.1.07 5.26262 5.69473 6.54641 7.99714 7.99621 7.99736

4.1.08 5.79199 6.21951 6.79864 7.99737 7.99714 7.99730

4.2.01 6.94806 6.88446 6.12645 7.99926 7.99936 7.99926

4.2.02 4.33719 6.66433 6.42881 7.96825 7.99941 7.99940

4.2.03 7.70667 7.47443 7.75222 7.99930 7.99934 7.99929

4.2.04 7.25310 7.59404 6.96843 7.99936 7.99935 7.99936

4.2.05 6.71777 6.79898 6.21377 7.99930 7.99937 7.99931

4.2.06 7.31239 7.64285 7.21364 7.99929 7.99930 7.99925

4.2.07 7.33883 7.49625 7.05831 7.99923 7.99922 7.99937

House 7.41527 7.22948 7.43538 7.99932 7.99932 7.99937

Table 8. Entropy results of 8-bit plain images and encrypted images.

File 8-bit Grayscale 8-bit Grayscale

Name Plain Image Encrypted Image

5.1.09 6.70931 7.99718

5.1.10 7.31181 7.99717

5.1.11 6.45228 7.96999

5.1.12 6.70567 7.99757

5.1.13 1.54831 7.99735

5.1.14 7.34243 7.99674

5.2.08 7.20100 7.99934

5.2.09 6.99399 7.99930

5.2.10 5.70556 7.99926

5.3.01 7.52374 7.99983

5.3.02 6.83033 7.99981

7.1.01 6.02741 7.99929

7.1.02 4.00450 7.99931

7.1.03 5.49574 7.99925

7.1.04 6.10742 7.99923

7.1.05 6.56320 7.99929

7.1.06 6.69528 7.99933
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Table 8. cont.

File 8-bit Grayscale 8-bit Grayscale

Name Plain Image Encrypted Image

7.1.07 5.99160 7.99931

7.1.08 5.05345 7.99923

7.1.09 6.18981 7.99219

7.1.10 5.90879 7.99937

7.2.01 5.64145 7.99984

Boat 7.19137 7.99928

Elaine 7.50598 7.99922

Gray21 4.39230 7.99932

Numbers 7.72925 7.99934

Ruler 0.50003 7.99927

Testpat 4.40773 7.99982

From the obtained results it is clear that the entropies of red, green, blue, and grey colors of the

encrypted images are very close to the ideal value, which is an indication that the new chaos-based

image encryption scheme is secure and credible upon information entropy attempt. In addition, Table 9

summarizes the information entropy values for Lena and Peppers encrypted images compared with

values in [7,31–33]. As we can see that although they are all close to the ideal entropy value, the results

of the novel algorithm are larger than those of corresponding methods.

Table 9. Information entropy comparisons.

Encryption 4.2.04 Lena 4.2.07 Peppers

Algorithm Red Green Blue Red Green Blue

Proposed scheme 7.99936 7.99935 7.99936 7.99923 7.99922 7.99937

Reference [7] 7.98710 7.98810 7.98780 7.98770 7.98810 7.98770

Reference [31] 7.99930 8.00080 8.00070 – – –

Reference [32] 7.98970 7.98770 7.98960 7.98940 7.98840 7.98660

Reference [34] 7.99724 7.99683 7.99715 – – –

Reference [33] 7.99927 7.99924 7.99911 – – –

4.2.5. Correlation Coefficient Analysis

Because of the existing correlation either in horizontal, vertical, or diagonal direction of the plain

image pixels, the correlation coefficient r between two adjacent pixels (ai, bi) is computed [35].

r =
cov(a, b)

√

D(a)
√

D(b)
, (6)



Entropy 2015, 17 2129

where

D(a) =
1

M

M
∑

i=1

(ai − ā)2, (7)

D(b) =
1

M

M
∑

i=1

(bi − b̄)2, (8)

cov(a, b) =
M
∑

i=1

(ai − ā)(bi − b̄), (9)

M is the total number of couples (ai, bi), obtained from the image, and ā, b̄ are the mean values of ai

and bi, respectively. Correlation coefficient r can range in the interval of [−1.00,+1.00].

Table 10 shows the results of horizontal, vertical, and diagonal adjacent pixels correlation coefficients

computations of the plain images and the corresponding encrypted images. It is clear that the novel chaos

based image encryption scheme does not keep any linear dependencies between observed pixels in all

three directions: the inspected horizontal, vertical and diagonal correlation coefficients of the encrypted

images are close to 0. Overall, the correlation coefficients of the proposed algorithm are analogous with

results of four other image encryption schemes [10,25,27–29], Table 11.

Table 10. Horizontal, vertical and diagonal correlation coefficients of adjacent pixels in the

plain and encrypted images.

File Plain Image Correlation Encrypted Image Correlation

Name Horizontal Vertical Diagonal Horizontal Vertical Diagonal

4.1.01 0.971188 0.965984 0.949514 –0.000534 0.000234 –0.001845

4.1.02 0.930295 0.956492 0.900074 –0.000300 –0.003734 0.008957

4.1.03 0.974448 0.921184 0.896931 –0.007803 –0.010133 0.003399

4.1.04 0.973557 0.980473 0.961080 0.003453 –0.009509 –0.009399

4.1.05 0.978595 0.957145 0.945483 0.004011 –0.002541 0.002727

4.1.06 0.965978 0.937247 0.927815 0.001987 –0.002162 0.003613

4.1.07 0.982519 0.984660 0.970220 –0.003301 0.001817 –0.004506

4.1.08 0.974626 0.977833 0.952514 0.005680 –0.008603 –0.008341

4.2.01 0.980782 0.990701 0.974648 0.001730 –0.004172 0.001539

4.2.02 0.950537 0.912459 0.901982 –0.001518 –0.000623 0.003056

4.2.03 0.878222 0.784600 0.755893 0.003984 –0.004631 0.003949

4.2.04 0.968723 0.983264 0.956063 –0.003761 0.001775 0.000686

4.2.05 0.966548 0.949166 0.932570 –0.001662 0.000894 0.003358

4.2.06 0.974732 0.972170 0.958270 –0.004090 –0.005167 0.000130

4.2.07 0.970430 0.977396 0.958278 –0.000116 –0.000307 –0.002276

House 0.958335 0.957411 0.928622 –0.002882 –0.004121 0.004594

5.1.09 0.899288 0.938482 0.901437 0.012628 –0.011439 –0.007696

5.1.10 0.901616 0.848045 0.818578 –0.002971 –0.000897 0.003682
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Table 10. cont.

File Plain Image Correlation Encrypted Image Correlation

Name Horizontal Vertical Diagonal Horizontal Vertical Diagonal

5.1.11 0.955978 0.911356 0.891780 0.001757 –0.010444 0.001124

5.1.12 0.958841 0.973631 0.941568 0.009575 –0.002502 –0.000582

5.1.13 0.891950 0.849254 0.773639 0.000347 0.004691 –0.009999

5.1.14 0.946683 0.917624 0.852637 0.008773 –0.011971 0.000220

5.2.08 0.943933 0.868680 0.854776 –0.002389 –0.003528 –0.003059

5.2.09 0.900711 0.853424 0.803347 0.000783 –0.003316 –0.000207

5.2.10 0.941082 0.926039 0.898433 –0.006168 –0.007614 0.000369

5.3.01 0.977635 0.980525 0.967295 0.000606 0.000090 0.002417

5.3.02 0.909186 0.903231 0.858377 0.000502 0.001669 –0.000435

7.1.01 0.962015 0.920872 0.907585 –0.002843 0.000667 0.004116

7.1.02 0.946484 0.941026 0.895893 –0.003666 –0.001386 –0.001295

7.1.03 0.945493 0.929797 0.901696 –0.002931 –0.004124 0.003147

7.1.04 0.978887 0.966321 0.958102 –0.004028 –0.001065 –0.000901

7.1.05 0.941926 0.911431 0.893487 0.001735 –0.003046 –0.002081

7.1.06 0.940461 0.905249 0.886455 –0.001395 –0.003363 –0.001516

7.1.07 0.887121 0.879316 0.840438 –0.000608 0.000682 –0.000090

7.1.08 0.957101 0.929417 0.921126 –0.006136 –0.005571 0.003652

7.1.09 0.965857 0.929621 0.916903 –0.000695 –0.004547 –0.002457

7.1.10 0.964329 0.946928 0.931265 –0.000346 –0.001810 0.000957

7.2.01 0.964733 0.946692 0.944943 0.000677 0.000223 –0.001154

Boat 0.938283 0.971483 0.922259 0.001274 –0.003782 –0.000244

Elaine 0.975731 0.972933 0.969378 –0.001623 –0.002870 –0.001629

Gray21 0.996526 0.999838 0.996371 –0.000561 –0.002572 –0.000039

Numbers 0.768787 0.736467 0.634922 –0.005458 –0.002220 –0.003611

Ruler 0.544408 0.549529 0.003915 –0.001015 –0.004925 0.002669

Testpat 0.818682 0.841158 0.762415 0.001008 –0.001107 –0.001103

Table 11. Horizontal, vertical and diagonal correlation coefficients comparisons.

Encryption Image Correlation of Encrypted Image of 4.2.04 Lena

Algorithm Horizontal Vertical Diagonal

Proposed scheme –0.003761 0.001775 0.000686

Reference [25] 0.019732 0.002467 0.004438

Reference [10] –0.0574 –0.0035 0.0578

Reference [29] 0.0004 0.0021 –0.0038

Reference [27] 0.001354 –0.000254 –0.000327

Reference [28] 0.002016 –0.000916 0.001651
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In addition, correlation coefficients between the corresponding pixel of the plain and their encrypted

images are given in Table 13 (Columns 1, 2, 3, and 4). The computed correlation values are very

close to 0.00.

4.2.6. Differential Attack

In general, a common characteristic of an image encryption scheme is to be sensitive to minor

modifications in the plain images. Differential analysis allows that an adversary is able to create small

changes in the plain image and revise the encrypted image. The alternation level can be computed

by means of two formulae, namely, the number of pixels change rate (NPCR) and the unified average

changing intensity (UACI) [35,36].

Let us assume encrypted images before and after one pixel modification in a plain image are C1 and

C2. The NPCR and UACI are defined as follows:

NPCR =

∑W−1

i=0

∑H−1

j=0
D(i, j)

W ×H
× 100%, (10)

UACI =
1

W ×H

(

W−1
∑

i=0

H−1
∑

j=0

|C1(i, j)− C2(i, j)|

255

)

× 100%, (11)

where D is a two-dimensional set, having the same size as image C1 or C2, and W and H are respectively

the width and height of the image. The set D(i, j) is defined by C1(i, j) and C2(i, j), if C1(i, j) =

C2(i, j) then D(i, j) = 1; otherwise, D(i, j) = 0. The NPCR and UACI test results from the proposed

chaos based algorithm are shown in Tables 12 and 15 (Columns 2 and 3).

Table 12. NPCR and UACI results of encrypted 24-bit plain images and encrypted with one

pixel difference 24-bit plain images.

File NPCR Test UACI Test

Name Red Green Blue Red Green Blue

4.1.01 99.5987 99.6307 99.5941 33.3430 33.4454 33.4751

4.1.02 99.5804 99.6124 99.5758 33.3778 33.4066 33.4268

4.1.03 99.5789 99.5926 99.6155 36.3228 33.5826 33.4725

4.1.04 99.6262 99.5880 99.5728 33.6492 33.4109 33.4568

4.1.05 99.5773 99.5758 99.6368 33.3521 33.4299 33.4417

4.1.06 99.5819 99.5453 99.5605 33.4896 33.3675 33.3237

4.1.07 99.6048 99.5865 99.6124 33.5262 33.6109 33.4652

4.1.08 99.5743 99.5621 99.6201 33.5528 33.5090 33.4787

4.2.01 99.6174 99.5922 99.5911 33.4989 33.5431 33.4665

4.2.02 99.6113 99.6094 99.6094 33.4586 33.4940 33.4936

4.2.03 99.6334 99.5998 99.6208 33.4858 33.5439 33.5361

4.2.04 99.6021 99.6075 99.6029 33.4693 33.5366 33.5408

4.2.05 99.6120 99.6155 99.6040 33.4792 33.4006 33.3745

4.2.06 99.6155 99.6147 99.5914 33.4927 33.5608 33.4377

4.2.07 99.6014 99.6311 99.5895 33.4260 33.4912 33.4121

House 99.6307 99.5995 99.6063 33.5282 33.5377 33.4830
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The obtained NPCR and UACI values for all of the images are larger than the critical values proposed

in [36] and similar to the values presented in [10]. The values point out that the novel image encryption

algorithm is vastly sensitive regarding to small changes in the plain images and has a vigorous strength

of contrary differential cryptanalysis.

4.2.7. Key Sensitivity Test

The strong key sensitivity is another characteristic of the correlation analysis. a good image

encryption scheme should be sensitive regarding the secret key i.e. a negligible change of the secret

key. We encrypted the 48 images with two similar secret keys: K1 and K2 (x0 = 0.2343214592,

y0 = −0.742190593, T1(x1) = 0.7029381194009314, T1(x2) = −0.3001928364928377, T1(x3) =

0.1385946382912478, and T1(x4) = −0.2871955600387584). The results are shown in Table 13

(Columns 5, 6, 7, and 8). It is clear that the novel image encryption method is strong key sensitive:

the correlation coefficients are relatively close to zero.

Table 13. Correlation coefficients between the corresponding pixels of the plain and

encrypted images—Columns 1, 2, 3, and 4. Correlation coefficients between the

corresponding pixels of the encrypted images with keys K1 and K2—Columns 5, 6, 7, and 8.

File Correlation File Correlation File Correlation File Correlation

Name Coefficient Name Coefficient Name Coefficient (K1,K2) Name Coefficient (K1,K2)

4.1.01 0.00450439 5.2.08 –0.00177677 4.1.01 –0.0007753 5.2.08 –0.0008165

4.1.02 0.00039956 5.2.09 0.00163655 4.1.02 0.0037336 5.2.09 0.0000242

4.1.03 0.00386160 5.2.10 0.00285459 4.1.03 0.0003091 5.2.10 –0.0007335

4.1.04 0.00866526 5.3.01 –0.00032223 4.1.04 –0.0001636 5.3.01 –0.0002775

4.1.05 0.00353008 5.3.02 0.00055174 4.1.05 0.0049155 5.3.02 0.0013214

4.1.06 0.00202353 7.1.01 –0.00111200 4.1.06 –0.0047615 7.1.01 0.0026200

4.1.07 –0.00337130 7.1.02 –0.00232477 4.1.07 –0.0039018 7.1.02 0.0035445

4.1.08 –0.00339438 7.1.03 –0.00281014 4.1.08 0.0022217 7.1.03 0.0004484

4.2.01 –0.00078462 7.1.04 0.00220779 4.2.01 0.0002696 7.1.04 0.0011823

4.2.02 –0.00148823 7.1.05 0.00051300 4.2.02 –0.0021341 7.1.05 –0.0015177

4.2.03 –0.00016366 7.1.06 0.00000058 4.2.03 –0.0008931 7.1.06 0.0041168

4.2.04 –0.00032519 7.1.07 –0.00137758 4.2.04 0.0032183 7.1.07 –0.0008043

4.2.05 0.00044032 7.1.08 –0.00051899 4.2.05 0.0046435 7.1.08 0.0047454

4.2.06 –0.00324635 7.1.09 –0.00030899 4.2.06 –0.0024745 7.1.09 –0.0010962

4.2.07 –0.00058506 7.1.10 0.0025460 4.2.07 –0.0000077 7.1.10 –0.0027879

House –0.00252335 7.2.01 0.00170215 House 0.0009227 7.2.01 –0.0000272

5.1.09 0.00243208 Boat –0.00425251 5.1.09 –0.0020602 Boat –0.0011746

5.1.10 –0.00025318 Elaine 0.00280115 5.1.10 0.0024437 Elaine –0.0017324

5.1.11 –0.00365694 Gray21 0.00348155 5.1.11 0.0021018 Gray21 0.0023155

5.1.12 –0.00179198 Numbers 0.00124149 5.1.12 0.0000859 Numbers 0.0009983

5.1.13 0.00302971 Ruler 0.00037308 5.1.13 –0.0051945 Ruler –0.0007557

5.1.14 0.00056840 Testpat –0.00010024 5.1.14 0.0010020 Testpat –0.0010965
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Moreover, another round of the NPCR and UACI tests are established. In this case, C1 and C2 are

two encrypted images, obtained from one plain image by the novel encryption scheme using the keys K1

and K2. The results are displayed in Tables 14 and 15 (Columns 4 and 5).

Table 14. NPCR and UACI results of encrypted 24-bit plain images with keys K1 and K2.

File NPCR test UACI test

Name Red Green Blue Red Green Blue

4.1.01 99.5987 99.6307 99.5941 33.3431 33.4459 33.4754

4.1.02 99.5804 99.6124 99.5758 33.3770 33.4070 33.4269

4.1.03 99.5789 99.5926 99.6155 36.3286 33.5835 33.4727

4.1.04 99.6262 99.5880 99.5728 33.6493 33.4110 33.4559

4.1.05 99.5773 99.5758 99.6368 33.3530 33.4299 33.4408

4.1.06 99.5819 99.5753 99.5605 33.4900 33.3662 33.3242

4.1.07 99.6048 99.5865 99.6124 33.5258 33.6110 33.4658

4.1.08 99.5743 99.5621 99.6201 33.5517 33.5094 33.4779

4.2.01 99.6174 99.5922 99.5911 33.4989 33.5430 33.4663

4.2.02 99.6113 99.6094 99.6094 33.4586 33.4941 33.4933

4.2.03 99.6334 99.5998 99.6208 33.4858 33.5438 33.5259

4.2.04 99.6021 99.6075 99.6029 33.4693 33.5368 33.5406

4.2.05 99.6120 99.6155 99.6040 33.4792 33.4007 33.3744

4.2.06 99.6155 99.6147 99.5941 33.4925 33.5609 33.4380

4.2.07 99.6014 99.6311 99.5895 33.4262 33.4909 33.4121

House 99.6307 99.5995 99.6063 33.5284 33.5374 33.4830

Table 15. NPCR and UACI results of encrypted 8-bit plain images and encrypted with one

pixel difference 8-bit plane images—Column 2 and Column 3; NPCR and UACI results of

encrypted 8-bit plain images with keys K1 and K2—Column 4 and Column 5.

File Name NPCR Test(1px) UACI Test(1px) NPCR Test(K1,K2) UACI Test(K1,K2)

5.1.09 99.5804 33.4011 99.5804 33.4004

5.1.10 99.5560 33.4318 99.5560 33.4312

5.1.11 99.6124 33.4197 99.6124 33.4191

5.1.12 99.5697 33.4589 99.5697 33.4592

5.1.13 99.5972 33.3431 99.5972 33.3424

5.1.14 99.6216 33.4044 99.6216 33.4050

5.2.08 99.5998 33.5342 99.5998 33.5342

5.2.09 99.6311 33.3784 99.6311 33.3783

5.2.10 99.6059 33.4327 99.6059 33.4326

5.3.01 99.5980 33.4848 99.5980 33.4848

5.3.02 99.6048 33.4401 99.6048 33.4401

7.1.01 99.5953 33.4850 99.5953 33.4851
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Table 15. Cont.

File Name NPCR Test(1px) UACI Test(1px) NPCR Test(K1,K2) UACI Test(K1,K2)

7.1.02 99.6040 33.4916 99.6040 33.4915

7.1.03 99.6204 33.5177 99.6240 33.5179

7.1.04 99.6117 33.4487 99.6117 33.4487

7.1.05 99.6002 33.4820 99.6002 33.4821

7.1.06 99.6029 33.4817 99.6029 33.4819

7.1.07 99.6170 33.4932 99.6170 33.4934

7.1.08 99.5945 33.4963 99.5945 33.4961

7.1.09 99.6063 33.4840 99.6063 33.4842

7.1.10 99.6063 33.4246 99.6063 33.4244

7.2.01 99.6170 33.4214 99.6170 33.4214

Boat 99.6204 33.5708 99.6204 33.5707

Elaine 99.5968 33.4186 99.5968 33.4186

Gray21 99.6086 33.3906 99.6086 33.3909

Numbers 99.6124 33.4232 99.6124 33.4231

Ruler 99.6208 33.4196 99.6208 33.4197

Testpat 99.6083 33.4537 99.6083 33.4537

In addition, in Figure 5, the results of two tests are shown to decrypt the encrypted with key K1 4.1.07

and 7.1.03 images, Figure 5e and Figure 5f, with the secret key K2.

We observed that the two decrypted images Figure 5e and Figure 5f have no relation with the plain

images 4.2.07 and 7.1.03, Figure 5a and Figure 5b, respectively.

4.2.8. Computational and Complexity Analysis

We have measured the average encryption time for 512 × 512 sized grayscale and color images by

using the proposed image encryption algorithm. Computational analysis has been done on a 2.40 GHz

Intel R© CoreTM i7-3630QM Dell Inspiron laptop. The results are provided in Table 16. One can see from

Table 16 that the novel image encryption algorithm runs slower only than algorithm in Reference [28].

The novel algorithm needs Θ(n2) of pixel shuffling iterations. For analysis of theoretical complexity

in substitutions, the time-consuming parts in computations are Θ(n2) iterations of calculations of a sine

and a cosine functions. Therefore, the proposed encryption scheme needs more theoretical time than the

algorithms in [27,28].

Compared to other chaotic image encryption algorithms, we can see that the running speed of the

proposed scheme is fast.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Key sensitive analysis of the plain images 4.2.07 and 7.1.03, (a) and (b), encrypted

with the key K1, (c) and (d), and decrypted with the key K2, (e) and (f).
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Table 16. Time complexity comparisons.

Encryption Average Time (ms)

Algorithm Grayscale Color

Proposed scheme 95 290

Reference [37] 105 312

Reference [38] 130 389

Reference [25] 341 1019

Reference [27] 224 296

Reference [28] 35 105

5. Conclusions

A novel image encryption scheme based on the theory of chaos is proposed in this communication.

The suggested technique combines Chebyshev polynomial based permutation, and rotation equation

based substitution. a strict security analysis on the novel scheme is given.

Detailed security analysis has been provided on the novel image encryption algorithm using visual

testing, key space evaluation, histogram analysis, information entropy calculation, correlation coefficient

analysis, differential analysis, key sensitivity test, and computational and complexity analysis.

Based on the obtained results, we can conclude that the proposed chaos based image encryption

algorithm is reasonable for the secure image communication.
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