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Abstract: This paper is an extension of previous work which characterises soil behaviours 

using the grading entropy diagram. The present work looks at the piping process in 

granular soils, by considering some new data from flood-protection dikes. The piping 

process is divided into three parts here: particle movement at the micro scale to segregate 

free water; sand boil development (which is the initiation of the pipe), and pipe growth. In 

the first part of the process, which occurs during the rising flood, the increase in shear 

stress along the dike base may cause segregation of water into micro pipes if the subsoil in 

the dike base is relatively loose. This occurs at the maximum dike base shear stress level 

(ratio of shear stress and strength) zone which is close to the toe. In the second part of the 

process, the shear strain increment causes a sudden, asymmetric slide and cracking of the 

dike leading to the localized excess pore pressure, liquefaction and the formation of a sand 
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boil. In the third part of the process, the soil erosion initiated through the sand boil 

continues, and the pipe grows. The piping in the Hungarian dikes often occurs in a two-

layer system; where the base layer is coarser with higher permeability and the cover layer 

is finer with lower permeability. The new data presented here show that the soils ejected 

from the sand boils are generally silty sands and sands, which are prone to both erosion (on 

the basis of the entropy criterion) and liquefaction. They originate from the cover layer 

which is basically identical to the soil used in the Dutch backward erosion experiments. 

Keywords: grading entropy; entropy based erosion; piping; liquefaction  

 

1. Introduction 

There is a characteristic two-layer soil condition below many of the flood protection dikes in 

Hungary, in which a lower permeability, fine sandy silt cover-layer overlies a saturated, higher 

permeability sandy gravel base material. In several situations, these have been affected by piping [1–6]. 

It is unclear, however, if the upper layer or the base layer is washed out during dike failure. 

The piping phenomena in Hungarian dikes can be classified into three categories on the basis of the 

speed of the process in the flood experiences of Hungary (Figure 1, [5–7]). In each case, the formation 

of sand boils, close to the toe (usually at deepest points of the surface or in a weak point of the surface 

such as a palaeochannel), is a common feature among piping failures. In the stretch of the Danube 

River between Rajka and Horany, the distance of the toe to a palaeochannel is 0–10 m in 29%, 11–50 m 

in 62% and 51–200 m in 9% of cases [5].  

(a) (b)

(c)

unstable cover 
layer

permeable base 
soil

mitigation by

 

Figure 1. Piping in two-layer system (a) and (b) slow piping: (a) Sand boil with sand 

transport, and crack due to localized collapse, and (b) the mitigation of slow piping by 

hydraulic surcharging on the land-side (after [7]). (c) Fast piping on thick and loose cover 

layer, deposited in an old meander with arching; this process also starts with a sand boil 

(adapted from [3]).  
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In the first category, a sand boil forms at the land-side toe. Pipe development is slow and evident 

from small seepages and outwash of soil. If the pipe reaches the surface of the high permeability base 

material, it generally stops. Otherwise, piping can be mitigated by surcharging the water level above 

the land-side end of the pipe, thereby decreasing the hydraulic gradient to a non-critical magnitude.  

In the second category, continued outwash leads to the development of cavities or “pipes” in the soil 

which ultimately progress to failure. Not many of such cases are known in Hungary. Part of these pipes 

forms in the cover layer (probably similar to that described in the Dutch tests [8–10]), but another part 

of the pipe is likely to continue into the base layer. 

In the third category, the failure is extremely quick, with collapse occurring almost at the same time 

as the sand boils appear adjacent to the landside toe. In one case (July 15, 1954 at Ásványráró [3,5]), a 

0.5 m diameter geyser suddenly appeared at 5 m from the landside toe, throwing off the cover layer. 

Within 2 seconds, the pipe reached the riverside. A funnel developed at the waterline and the dike 

collapsed. In this case, the silty sand layer was extremely loose and thick. A similar case occurred in 

1965 in Csicsó [5]. 

The process is still not well-understood despite several large scale tests having been  

conducted ([5,8–11]). This technical note is an extension of a previous work [12] to provide some 

clarification regarding the failure mechanism in cases of piping. It combines a short description of an 

entropy based internal stability criterion (see further details in [13]) and the description of the piping 

failure mechanism in Hungarian dikes, with some additional research. 

In this paper, it is hypothesized that piping is the result of a more complex process where local soil 

densification, due to the increasing shear stress and decreasing shear resistance, and possibly even due 

to the shear waves caused by crack formation during lateral spreading, may play a key role in pipe 

formation, by ensuring kinematic conditions for the outwash. The suggested process is intimately 

linked to a local volume decrease in soils with void ratios greater than that at the critical state, in the 

vicinity of the maximum shear stress point, which is close to the dike toe. The various piping 

categories differ in the size of these vicinities, depending on the relative density of the soils and the 

shear strength of the base and cover layers. The idea that the special Hungarian two-layered subsoil 

conditions may result in a larger hydraulic gradient and a smaller shear resistance than expected in 

situations of homogeneous soils is also explored. 

In previous work [12], it was proposed that the soils washed-out from beneath the dikes originate 

from the cover layer, on the basis of only four samples. In this paper, the idea is tested further using 

measured data for 20 additional washed-out soil samples. These are presented using the entropy 

diagram, and compared with the soils from the natural base strata at some dike failure sites. Moreover, 

the failure mechanism is explained by analyzing the stress and volumetric strain variations in the dike 

base during flooding in the Hungarian experience.  

The hypothesised complex process is confirmed in this paper by analyzing the liquefaction 

susceptibility of materials taken from the sand boil, consideration of the hydraulic conditions of 

seepage with dynamic water-front effects, and analysis of a theory of lateral spreading, showing that a 

sudden cracking displacement with some additional dynamic effects due to the decrease in the soil 

friction during the movement of the soil body is likely to occur. 
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2. Elements of the Analysis  

2.1. Review of the Grading Entropy Based Rules 

2.1.1. Statistical Cells (Fractions and Elementary Cells)  

Grading entropy is a measure which reflects the range and frequency of different sized particles in a 

soil [13–16]. This is most simply determined from a mechanical sieve analysis. A cell system of 

particle sizes is used as the basis to apply the statistical entropy theory of a discrete distribution and the 

successive sieve hole diameters generally have a multiplier of two. The double statistical cell system is 

used, defined by an arbitrary elementary cell width, d0, and a non-uniform sized cell system (“fraction 

system”) defined on the pattern of the classical sieve aperture diameters. The diameter range for 

fraction j (j = 1, 2, 3 …, N; see Table 1) is: 

j j-1
0 02 2 ,d d d≥ >  (1)

For granular soils, the smallest particles are caused by crushing which can produce particles not less 

than the size of some microns. For plastic soils, the diameters can be much smaller, however, the 

concept is not significantly influenced by the selection of the elementary cell width d0. 

Table 1. Definitions of fractions and cells, where d0 is the elementary cell width. 

Fraction j 1 ... 23 24 

Limits d0 to 2 d0 ... 222 d0 to 223 d0 223 d0 to 224 d0 

2.1.2. Space of Possible Grading Curves  

The relative frequencies of the fractions xi of each grading curve satisfy the following equation: 

max min

min

 1

  

1, 0, 1
j j N

i i
i j

x x N
= + −

=

= ≥ ≥  (2)

Equation (2) defines an N − 1 dimensional, closed simplex (which is the generalised N − 1 

dimensional analogy of the 2 dimensional triangle or, three-dimensional tetrahedron) if the relative 

frequencies xi are identified with the barycentre coordinates of the simplex points. The vertices can be 

numbered “continuously” from jmin to jmax, and therefore, it is considered to be continuous. 

2.1.3. Grading Entropy and Entropy Coordinates  

The grading entropy S can be separated into the sum of two parts, comprising the base entropy So 

and entropy increment ΔS: 

oS S S= + Δ  (3) 

The first part is the base entropy, which takes into account the relative spread of particle sizes 

within the entire size distribution, is defined by:  
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S  x S
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=  (4) 

In Equation (4), Soi is the grading entropy of the i-th fraction, given by: 

oiS i=  (5) 

The second part is the entropy increment, which accounts for the relative distribution of particles 

across all of the defined fractions, is defined by: 

0

1
ln .

ln 2
i

i i
x

S  x x
≠

Δ = −   (6) 

The grading entropy parameters defined above are strongly dependent on whether a soil is primarily 

coarse or fine grained: a coarse and a fine soil, with the same number of fractions present with the 

same relative frequencies, will have different grading entropy values. However, the grading entropy 

parameters can be normalised to allow the relative entropy of fine and coarse soils to be compared. 

The normalized base entropy, the so-called relative base entropy A, is defined as: 

,
minmax

min

oo

oo

S S

S S
=A

−
−

 
(7) 

where So max and So min are the base entropies of the largest and the smallest fractions in the mixture, 

respectively. The normalized entropy increment B is defined as: 

N

S
B

ln

Δ=
  

 

2.1.4. The Meaning of the Base Entropy Coordinates  

Using the concept of a fraction serial number i, an abstract, normalized, mean grain diameter can be 

defined denoted by kmean:  

min

max min

mean
mean

i  i
k

i  i

−=
−

 (8) 

where imean is a mean grain diameter, in terms of the serial number of the fractions:  

max

min

i

mean i
i i

i = x i
=
  (9) 

The base entropy So is equal to the abstract, mean diameter imean, whereas the relative base entropy A is 

equal to the abstract, normalised, mean diameter kmean. 

2.1.5. Entropy Diagrams  

The entire information of particle size distributions can be described using either the entropy or 

normalised entropy parameters, and if the entropy parameters are used as coordinates, then soils with 
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different grain size distributions can be represented and compared directly on entropy diagrams, where 

the base entropy is the abscissa and the entropy increment is the ordinate. As indicated by Figure 1, a 

map can be defined for a specified simplex ΔN,i, determined by the number of fractions N and the serial 

number of the smallest fraction imin: this is the normalized entropy map fn: ΔN →[A, B] (Figure 2).  

This map, between the N-1 dimensional simplex and the two dimensional space of entropy 

coordinates, is continuous on the open simplex and can continuously be extended to the closed 

simplex. Therefore, the image of normalized entropy map—the normalized entropy diagram—is 

compact, like the simplex. It follows then that the image of compact the simplex has a maximum and a 

minimum value for every possible value of A.  

(a) (b) 

Figure 2. (a) The simplified normalized entropy diagram. (b) Internal stability criterion for 

a seven-fraction soil in a normalized diagram: _I_ piping, _II_ stable, _III_suffosion; the 

boundary line between II and III is approximate [13]. 

2.1.6. Particle Migration Criterion 

The particle migration criterion (Figure 2b) was elaborated on the basis of vertical water flow tests 

(“suffosion or wash-out tests”) made on artificial mixtures of natural soil grains [13]. In these tests, the 

soil is placed into a cylindrical permeameter (20 cm height and 10 cm diameter) bounded at the bottom 

by a sieve. The mesh would permit passage of particles smaller than 1.2 mm but retain particles larger 

than 1.2 mm. The downward hydraulic gradient is between 4 and 5. By characterizing the sands from the 

top and bottom parts of the permeameter at the end of the test, the particle movements can be detected.  

Representing the results in terms of the entropy increment Β and the relative base entropy A, the soil 

structure stability zones were identified (note only half of the symmetric diagram is shown).  

These are as follows. If A < 2/3 (Zone I), the large grains do not have a structure: the coarser 

particles “float” in the matrix of the finer ones. The mixture is unstable and piping may occur.  

If A > 2/3, the coarser particles form a skeleton and total erosion cannot occur. In Zone II, the 

structure of smaller and larger particles is inherently stable, and there are no particle movements: the 

larger particles retain the smaller particles, and the smaller particles support the larger ones. In Zone 

III, the fines may migrate in the presence of seepage flow (“suffosion”), but they are unable to cause 

collapse of the structural skeleton of coarser particles. The division curve between zones II and III 
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connects the maximum entropy points of the mixtures with fraction number less than N. Note the shape 

of the line between II and III is approximate here.  

2.2. Sand Boils and Liquefaction Rules  

Liquefaction is a phenomenon observed in sands and silty sands, generally in response to seismic 

loadings [17,18]. The rapid stress oscillations associated with seismic events generate shear stresses 

and the soil skeleton structure may tend to have a volume decrease, which causes an increase in excess 

pore water pressures in the soil, which overcome inter-granular friction and reduce the shear strength 

of soil.  

Liquefaction is commonly associated with the formation of sand boils [17–20]. These appear as 

small sand volcanos, indicating elevated pore pressures at depth. They arise because liquefaction in 

loose saturated sands at depth allows the sand grains to move around and fall into a more tightly 

packed arrangement, producing bodies of segregated water within the soil. The water bodies, being of 

lower density, then rise through the overlying soil, like magma in the earth’s crust, until they vent at 

the surface. In rising, the water carries some suspended sediment, which flows from the vent of the 

sand boil, like lava from a volcano, forming a cone around it. This is illustrated in Figure 3. A similar 

process takes place if fine sand (tailings) materials are exposed to centrifugation which may cause 

particle segregation, assemblage formation and flow channeling. 

 

Figure 3. The possible sand boil formation mechanism. The volume collapse can be 

caused by several reasons, e.g. due to creep or due to shear level increment, causing local 

densification of the soil.  

The potential for sands to liquefy can be evaluated according to the two classical liquefaction 

criteria of Tsuchida [21] for soils with small uniformity coefficients and soils with large uniformity 

coefficients, illustrated in Figure 4. Similar criteria were given by Smoltczyk [22] and by Numata, and 

Mori [23] for soils with small uniformity coefficient. According to their results, the ejected soils are 

non-plastic and of uniform grain size. Their clay content is lower than 10%, but their fines content 

widely ranges from 0%–100%.  

Loose saturated sand Sand “collapses” to give critical 
void ratio and water segregates 

Bodies of water rise and vent at 
surface, carrying sand with them 
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Figure 4. The liquefaction criteria of Tsuchida (a) for soils with small uniformity 

coefficient and (b) soils with large uniformity coefficient.  

2.3. Soil Liquefaction Resistance  

Liquefaction of loose, saturated sands may be caused by cyclic, dynamic or static (monotonically 

increasing) undrained loading. Liquefaction of an element of soil can only occur if shear stresses 

applied under undrained conditions are greater than or equal to those required to initiate liquefaction. 

The increase in shear stress required to initiate liquefaction is referred as the static liquefaction 

resistance of soil [17,18]. The static liquefaction resistance decreases with decreasing relative density 

and confining pressure, and it decreases dramatically with increasing initial shear stress level. At high 

initial shear stress levels, the initiation of liquefaction is observed to result from increases in shear 

stress under undrained conditions of only a few percent of the initial shear stress [17,18].  

2.4. Piping by Backward Erosion 

The mechanism of piping by backward erosion has generally been studied in homogeneous cover 

layers and has been formulated on the basis of the results of laboratory small scale or larger full-scale 

experiments. The findings of the Dutch experiments [8–10] are shown as a series of five phases in 

Figure 5. The phenomenon is triggered by a continuous increase in the river-side water level (Figure 5a). 

In the first phase (Figure 5b), seepage from the river-side to the land-side is established. In the 

experiments, seepage occurred as soon as a hydraulic head difference was applied. In phase 2 (Figure 5c), 

after increasing the hydraulic head difference, seepage appeared as boils at the landside toe, indicating 

that water is flowing in a concentrated path, eroding sand, probably from a localized pipe underneath 

the levee. The sand transport did not cease, but occurred continuously for several minutes. In phase 3, 

widening of the pipe was observed in all experiments (Figure 5d,e). In phase 4, failure and 

breakthrough occurred, accompanied by a violent flow of sand and water, mud fountains, cracks in the 

levee and subsidence of the levee (Figure 5f).  

An important observation during phase 4 was the behavior of the overlying clay levee. Failure 

sometimes took place shortly after the first increase of sand transport, as the widening phase extended 

rapidly beneath the land-side toe of the dike, back toward the river-side. In other cases, however, it was 

delayed due to localized settlement of the levee, which caused the pipes to collapse and close, and then 

to form again. Hence, the period from the start of sand transport to failure could be as short as 20 min 

(a) (b) 
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if the pipe remained open up to the point of failure, or as long as a few days if the widening process 

needed to be restarted due to incremental dike settlement.  

 

Figure 5. Piping by backward erosion: model test results. The first phase with increasing 

flood and time: (a) Typical dike; (b) Phase 1: Seepage initiates; (c) Phase 2: Sand boil 

appears; (d)–(e) Phase 3: Backward erosion with channel widening; and (f) Phase 4: 

Failure (adapted from [8–10]).  

In an earlier experimental study in Florida, it was revealed that the pipes are formed in several small 

tubes rather as a big pipe, the size of the tubes are in the range of the mean particle diameter [11]. 

On the basis of the laboratory tests of the VITUKI in Hungary [5], the piping process can be divided 

in two phases before the failure. In the first phase, some elementary small boils appear as water finds a 

path to the surface, with seeping water carrying the smaller grains. Then, a concentrated water spout or 

geyser appears which carries the larger grains as well, forming a crater where the carried soil is 

deposited. A third phase is then erosion during the failure.  

Since piping failures are related to generally small hydraulic gradients (e.g. as small as 0.063, see 

e.g. [24,25]), the basic research on piping in Hungary had the view that developments in soil 

mechanics research had failed to understand the basic fundamentals of piping [5,6]. A significant 

advance was understanding the importance of the relative density of the subsoil. By examining the 

spatial occurrence of piping failures, it was found that they often coincide with palaeochannels (piping 

occurred within 10 m of these in 29% of cases; at 11–50 m in 62% of cases and at 51–200 m in 9% of 

cases, [5]). This relation is possibly explained by the fact that the channel infill is deposited by 

(d) 

(e) 

(f) 

(b) 

(c) 

(a) 

river 
dike 

fine sand 

sand boil

erosion 
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different geological processes to the surrounding floodplain. It is younger, and it has a looser state 

which may vary with distance from the axis of the palaeochannel. 

2.5. Shear Stress and Strain at the Dike Base  

2.5.1. Approximate and Elastic Approach 

It has been recognized since the work of Rendulic [26] that due to the earth pressure force beneath 

the axis of the dike, some horizontal shear stresses develop in the base of the dike. The shear stress was 

approximately computed from an equation of horizontal equilibrium, formulated from the lateral earth 

pressure force (which is initially at rest, but later active).  

Assuming linearly varying earth pressure and water forces with the dike height, the shear stress 

distribution was described by a quadratic function in [27] where the maximum shear stress is acting at 

the mid length of the dike slope. Using a more precise linear elastic theory ([28]), it turns out that the 

maximum shear stress occurs close to the dike toe (see Figure 6) where the shear resistance can be 

very small.  

 

Figure 6. Shear stress beneath a trapezoidal dike: (a) Contours of shear stress, τxy; (b) 

Distributions of shear stress, τxy/γH on the base of the embankment for varying slope and 

L/H ratios (from [28]).  

(a) (b) 
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2.5.2. Asymmetric Loadings 

Horizontal stresses and shear stresses along the base of the dyke are almost symmetrical under 

normal river level conditions. However, when the river-side water level rises in a flood, asymmetric 

lateral stress conditions arise. As a result, the river-side shear stress decreases and the land-side shear 

stress increases, due to the imposition of unbalanced lateral forces (Figure 7). 

 

Figure 7. The loads on a dike during a flood. The river-side shear stress decreases and the 

landside shear stress increases due to the horizontal force arising from the flood water 

(adapted from [3]). 

2.5.3. Dike Failures Due to Base Shear Stress  

Although it is not directly related to the discussion of piping phenomena, it is important to note that 

the effects of shear stress in the base beneath a dike is also significant in other failure phenomena. Two 

reported situations are noteworthy [27,29]: the case of a soft clay or peat base and the case of an 

enclosed, thin silt or fine sand layer. In each case, shown in Figure 8, the shear conditions can be 

considered to be undrained and a sand boil can develop. In case of clay or peat (see e.g. [29]), it is 

well-recognized that the lateral displacements of the embankments may result in longitudinal cracking. 

In the case of a confined, thin silt or fine sand layer, they can even lead to complete failure [27]. 

 

Figure 8. The spreading type failures: (a) in the case of a soft clay layer, and; (b) in the 

case of a thin silt or fine sand layer (after [27]). 

2.5.4. Dynamic Effects Due to Poor Compaction  

There are situations where poor compaction of the soil in the dyke itself can contribute to dynamic 

effects which in turn, can affect the stability of underlying soils ([3]). Such a situation is shown in 

Figure 9, where seepage flow through the dyke during a flood exploits voids in the compacted soil. 

Several phenomena may result. By flowing through saturated voids, where present, the seepage length 

(a) (b) 
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is effectively shortened, thereby increasing the hydraulic gradient for water flowing through intact soil, 

leading to localized internal erosion. Localized saturation of the void walls can lead them to collapse. 

In other areas, where voids remain air-filled, water flow is interrupted. These irregularities in the flow 

conditions and soil restructuring can cause dynamic effects as a seepage front is established in a rising 

flood, and cause aberrations in the pore pressure conditions, which can affect the stress state in the dyke. 

 

Figure 9. The seepage may involve dynamic effects, as water front moves around 

entrapped air arising from improper compaction, see e.g. [3,4]. 

2.5.5. Dynamic Effects Due to the Friction Law 

It is well known that the value of the static friction is larger than the dynamic friction, and that the 

friction law in experiments has a stick and slip nature. In rock mechanics, the phenomenon of sliding 

friction is understood in terms of the so-called rate- and state-dependent friction laws ([30]). These 

laws unify the results obtained from two types of rock experiments, being: the time dependence of 

static coefficient of friction; and the slip velocity dependence of the dynamic coefficient of friction. 

They show that the static friction increases with time (Figure 10a) and that the friction suddenly 

decreases with displacement (Figure 10b).  

 

Figure 10. The shear strain increment may involve dynamic effects, as the friction 

coefficient changes. (a) Static friction increases with time. (b) The friction suddenly 

decreases with displacement.   

The properties of dynamic friction are the following: (i) the friction coefficient under stable sliding 

conditions with a constant load-point velocity depends on the logarithm of the load-point velocity; (ii) 

the magnitude of the instantaneous jump of the frictional coefficient depends on the change of the 

logarithm of the quotient of the corresponding load-point velocities; (iii) the evolution of the frictional 

(a) (b) 

H 

l
L 

improper 
compaction 

H/L ≈ 0.12 
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coefficient to new value in stable sliding is also dependent on the instantaneous change of the load-

point velocity; (iv) oscillation occurs in some cases (e.g., large load-point velocity, polished surfaces, 

thin sand interface layer between the samples [30]).  

These phenomena have significance in situations where small but rapid movements allow transition 

from static to dynamic frictional resistance, as might occur if there is cracking within, or slippage 

beneath, a dike.  

2.5.6. Summary of Significant Factors for Piping beneath Dikes  

On the basis of the above discussions, a number of important factors can be identified which are 

potentially significant to the phenomenon of piping beneath Hungarian dikes. 

The shear stress distribution in the base of the dike can be symmetric or asymmetric depending 

upon the water level on the river-side. In the normal water level condition, the distributions of the 

river-side and land-side shear stresses are approximately symmetric. During a flood, the river-side 

shear stress decreases and the land-side shear stress increases, due to the imposition of unbalanced 

lateral forces (Figure 8a).  

The characteristic two-layer condition (Figure 1), in which a low permeability, unsaturated cover 

overlies a saturated, high permeability base material, is a particular feature of soils underlying dikes in 

Hungary. As a consequence, a larger pore water pressure can be sustained in the lower layer, and the 

shear strength at the dike base will decrease more significantly than in the homogeneous case.  

The shear strength of the subsoil is also dependent on its relative density. Very loose deposits may occur 

in abandoned old meanders and these are encountered when crossed by the present-day river channel.  

Excessive shear stress increase can cause sudden spreading displacements at the base of the dike 

due to the stick and slip nature of the frictional law. The dike may crack, even due to slight spreading. 

The water-front effect of seepage may have dynamic effects also and these could be exacerbated by a 

sudden decrease in the frictional coefficient due to sudden strains (movements) of the duke. 

The liquefaction resistance decreases with decreasing relative density and confining pressure, and it 

decreases dramatically with increasing initial shear stress level. At high initial shear stress levels, the 

initiation of liquefaction is observed to result from increases in shear stress under undrained conditions 

of only a few percent of the initial shear stress [17,18]. The initiation of static or dynamic liquefaction 

is indicated by the sand boil and pipe development which may lead to erosion. 

3. Data from Sites Where Piping Has Occurred  

The foregoing discussions demonstrate how complex the failure mechanisms of river dikes can be. 

To better understand which factors are critical for dike stability, it is necessary to first understand the 

susceptibility of the different soils involved to the identified adverse conditions.  

Galli [7] noted that dikes with piping issues seem to occur at sites which display a particular 

stratification consisting of a cover layer of fine sand or silt over a more permeable layer. This 

observation was described and validated in the previous work [12] by demonstrating that the cover 

layer was erodible, according to the criterion of Lőrincz [13]. This previous validation is reiterated for 

two typical piping sites in the next section, and then further validated by the consideration of some 

new data on soils that have been washed out during piping events, in the section that follows.  
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3.1. The Two-Layer System Properties  

Piping of the slow type (the first category in section 1) was observed at several locations along the 

Danube River during the flood period of 1965. Piping took place in soil layers which covered sandy 

gravel beds. Soil layers below the dike were explored at two piping sites: at Dunakiliti and Dunafalva. 

These data are summarized in Table 1. At Dunakiliti, strata comprised a 0.5 m thick silt layer and a 0.5 m 

thick “Mo” layer, which is a non-plastic fine sand or “sand flour”). These were underlain by a sandy 

gravel layer. At Dunafalva, strata comprised a sequence of Mo, silt, Mo and fine sand layers with 

thicknesses of 0.6, 0.9, 1.3, 0.2 m, respectively, above the sandy gravel bed. Grading curves are shown 

in Figure 11 and entropy values are given in Table 2. 

The Dunakiliti and Dunafalva cases both involve finer, unstable cover layers over more permeable 

generally stable layers, which led to arrangements that were prone to piping. Soils in the Dunakiliti 

cover layers and the Dunafalva cover layers have very similar distribution curves and they are unstable 

(erodible). Similarly, below these erodible soils, much coarser and more permeable soils are 

encountered in the river bed: the Dunakiliti deeper layer (below 1.5 m) and the Dunafalva deeper layer 

(below 3.0 m) are also very similar to each other, and very different from the surface layers. The base 

layers are generally stable with a few exceptions.  

Table 1. Stratification of Danube dike soils. 

Stratification at Dunakiliti (borehole 997) Stratification at Dunafalva (borehole 993) 

Soil type Layer boundaries [m] Soil type Layer boundaries [m]

silt 0 to 0.5 m Mo* 0 to 0.6 m 

Mo* 0.5 to 1.0 m Silt 0.6 to 1.3 m 

sandy gravel below 1.0 m Mo* 1.3 m to 2.2 m 

  fine sand 2.2 m to 3.0 m 

  sandy gravel below 3.0 m 
*Mo refers to a fine sand soil (0.02 mm–0.1 mm), referred to as “sand flour” in previous Hungarian Standard 

MSZ 14045/4-69. It is a very frequent soil type in Hungary. 

 

Figure 11. Grading curves for the Danube dike case studies. The numbers represent borehole 

numbers and depths with reference to Table 1. (a) Dunakiliti soils. (b) Dunafalva soils. 
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Table 2. Entropy data (average values) of soil layers beneath dikes at the Danube. 

Site Layer Depth [m] N [-] A [-] B [-] 

Dunakiliti Cover–Mo 0.5 9 0.50 1.19 

Dunakiliti Cover–silt 1.0 15 0.45 0.92 

Dunakiliti Permeable Base 1.5 10 0.71 > 2/3 1.22 

Dunafalva Cover–Mo 0.5 8 0.46 1.01 

Dunafalva Cover–silt 1.0 8 0.38 1.34 

Dunafalva Cover–Mo 1.5 9 0.59 1.05 

Dunafalva Cover–fine sand 2.5 10 0.56 1.01 

Dunafalva Permeable Base 3.0 10 0.81 > 2/3 0.78 

3.2. Washed Out Soil Data  

The above data is augmented by more recent data for the washed-out soil materials, sampled from 

sites of piping events at Bölcske on the Danube river, and at Tiszasas and the Tisza right bank on the 

Tisza river [12]. Typical grading curves for these soils are shown in Figures 12 and 13.  

From the grading curves, the washed out materials are classified as fine sands or silty sands, similar to 

the category of “Mo” (sand flour) in terms of the previous Hungarian Standard MSZ 14045/4-69 [31], 

which is a soil at the boundary between fine sand and coarse silt (from 0.02–0.1 mm). The ejected soils 

are basically identical to the unstable cover layer soils identified in the previous section. They have 

neither much cohesion nor a very large friction angle but the grains are incompressible, allowing the 

development of large pore water pressures upon shear loading when these soils have relatively low 

density values.  

 

Figure 12. Washed-out materials from piping sites [12]. (a) Grading curves for a Danube 

site (Bölcske). (b) Grading curves for two Tisza sites (Tiszasas, Tisza right bank). 

Figure 13 shows grading curves for the washed-out soils listed in Table A-1, with the liquefaction 

criteria of Tsuchida [21] superimposed. From the Tsuchida criteria, these soils are assessed to be prone 

to liquefaction. Further, when the entropy values for these soils are plotted on the entropy diagram 

showing the grading entropy criterion for soil structure stability, in Figure 14, they are shown in most 
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cases to have an unstable structure. The finding that these soils simultaneously satisfy both piping and 

liquefaction criteria suggests that the piping and liquefaction can be related.  

The grain size distribution curve of washed out soils (Figure 13) in each case is similar to the 

grading curves of the natural soils occurring in the cover layer soils encountered in the boreholes at the 

piping sites (Figures 11 and 12). These cover soils (silty sand and fine sand) have no cohesion, d10 

values (the size for which 10% of grains are finer) within two orders of magnitude of each other and a 

small uniformity coefficient (coefficient of uniformity Cu < 5 in half of the cases).  

Based on the results of the entropy calculations, and the position of the wash-out soils (see 

Appendix A) in Figure 14, with the exception of three soils that appear stable, the washed-out soils are 

prone to piping and are more likely to “boil” than suffose. The grading curves of the soils washed out 

are basically the same as those in the cover layer, and both the cover layer soils (average values; Table 2) 

and the wash-out soils plot amongst each other on the entropy diagram, supporting the conclusion that 

the cover layer is being washed out. The base layers are generally stable with a few exceptions, which 

were not investigated in the frame of this additional research. 

 
Figure 13. The grading curves of the washed-out soils with the linear part of the 

liquefaction criterion of Tsuchida (a) for large uniformity coefficient and (b) for small 

uniformity coefficient. 

 

Figure 14. Comparison of the washed-out soils with the cover layer and base layer soils in 

the entropy diagram.  
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4. Discussion  

4.1. The Entropy Principle Applied to Soil Mechanics 

The concept of grading entropy has a direct relationship to the classical entropy principle. The 

grading entropy of a soil, S, is a statistical entropy measure, based on two cell systems, and expressed 

in terms of two values: the base entropy, So, and the entropy increment, ΔS.  

The So, weighted mean of the fraction entropies, is monotonically and uniquely related to the mean 

grain size: an increase in the mean grain diameter cause an increase in the base entropy So. The entropy 

increment ΔS is a measure of the disorder of the grain system, which originates from the mixing of  

the fractions. 

The entropy principle of classical thermodynamics can be related to the directional properties of 

natural or spontaneous processes [32]. The second law of thermodynamics states that in any closed 

system, the entropy remains constant or increases in the ongoing processes. If the system is considered 

together with its environment, then the united system can be approximated as a closed system, and the 

total entropy increase principle holds, in this sense, for all of the processes in nature. Hence, the 

spontaneous natural process of breakdown of rocks to form particulate soils is consistent with the 

broader thermodynamic understanding of entropy 

The application of grading entropy to describe breakage in rock particles was explored in [15]. It 

was shown that there is a general increase in the grading entropy (there is a monotonic increase in the 

entropy increment ΔS and a decrease in the base entropy So, due to the decrease in the mean grain 

diameter) during particle breakage (Figure 15a), as expected. It has been further shown that the grading 

entropy decreases when particles aggregate or agglomerate to form larger particles (Figure 15b), such 

as occurs in artificially facilitated processes such as lime modification of clayey soils. 

 

Figure 15. The entropy paths for (a) breakage (spontaneous) and (b) agglomeration (lime 

modification; artificial). 
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4.2. The Entropy Based Internal Stability Rule  

The entropy-based rule for particle migration differs from other piping rules in that it involves the 

whole of the grading curve data (in two values which plot on a simple diagram) instead of some 

limited number of grading curve points. It can be implemented numerically, without any constraint on 

the shape of the grading curve. At the same time, it is extremely simple to implement and it has a 

meaningful physical interpretation.  

The relative base entropy A measures where the mean grain diameter is situated within the range of 

the particle diameters. It has a one-to-one relationship with the mean grain diameter and normalized 

grain diameter, and in this way, it can be thought of as an abstract, mean or mean normalized fraction 

number. It can be considered as a measure of internal stability by the simple fact that if enough large 

grains are available (A is equal to or larger than 2/3, the mean fraction number is close enough to the 

maximum fraction number), then large grains may form a skeleton. 

4.3. The Mechanism of Piping  

It is known from the theory of uniform filters [13,33] that the geometric condition of the formation 

of a channel for particle migration within the grain structure is that soil should have at least five 

fractions and at least three neighboring fractions are missing. This condition is clearly not met for the 

soils considered here, and therefore, the failures are not related to suffosion, but rather they reflect an 

internal erosion phenomenon: true piping. Terzaghi and Peck ([34]) showed that backwards erosion 

may start if points of zero effective stress occur in granular soils close to the toe. They suggested a 

critical hydraulic gradient of 0.8–1, however, smaller gradients may cause piping [5,24,25].  

The shear stress at the base of a symmetrically loaded dike occurs almost beneath the toes. The 

rapid rise in water level during a flood causes an asymmetric increase in the horizontal base shear 

stress in the foundation of the dike, with maximum shear stress occurring at a point close to the land-

side toe. At the same time, an increase in the excess pore water pressure and a decrease in the shear 

resistance of the base occur.  

Local densification of the soils due the increasing level of shear stress (i.e., the increased shear 

stresses and the decreased shear resistance) occurs if the cover layer is looser than the critical density, 

and this may lead to micro cavities and micro channels forming through densification. The idea of 

small diameter pipe formation is supported by the experiments of Florida University [11] where it was 

revealed that pipes form as many small tubes (with a size in the range of the mean particle diameter) 

rather as a single, big pipe. A similar process is visualized in Figure 3. 

In addition, local liquefaction may be caused by the shear waves produced by cracking of the dam 

body if shear strains become too large, or by other dynamic effects like the movement of the wetting 

front, the up-throw of the cover layer, or the dynamic effect when static friction resistance is 

overcome. (It is well known that the friction law in experiments has a stick and slip nature). This 

liquefaction allows any segregated water to rise upward, through the cover layer, to form a sand boil, 

which establishes a mechanism for soil ejection. 

Sand boil formation in the large-scale Dutch experiments is always present [8-10]. The sand used in 

those experiments is similar in gradation to the cover sand layer occurring below the dikes at the 
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piping sites in Hungary, which is erodible and prone to liquefaction. The pipe development in the 

large-scale experiments does not take place across the entire dike. 

In regard to liquefaction, it is well-known that the liquefaction resistance decreases with decreasing 

relative density and confining pressure, and it decreases dramatically with increasing initial shear 

stress level. At high initial shear stress levels, the initiation of liquefaction is observed to result from 

increases in shear stress under undrained conditions of only a few percent of the initial shear stress [17,18]. 

These conditions are found close to the dike toe.  

The possibility of liquefaction associated with piping in Hungarian river dikes during flood events 

was hypothesized in [1–3] but was not previously linked with the spreading and with the cracking of 

the dike. It can be noted that a non-earthquake induced liquefaction is mentioned in the case of the 

Aznalcóllar tailing dam failure, where the probable cause was identified as cracking and the fall of a 

block of embankment soil into the tailings [35–38].  

5. Conclusions  

5.1. The Role of the Shear Stress Level in Piping  

Since the work of Rendulic [26], it has been assumed that the shear stress in the dike base follows a 

quadratic function where the maximum shear stress acts at the mid length of the dike slope. Using a 

more precise linear elastic theory [28], it turns out that the maximum shear stress acts close to the dike 

toe. The increasing water level causes increase in the base shear stress and decrease in the base shear 

resistance at the land-side, close to the toe. If the soil density is less than the critical value, local 

densification may occur which may result in small voids or micro tubes.  

The two sides of dike may move apart slightly if shear strains become too large, with sudden 

cracking at the axis of the dike due to the change from a state of static to dynamic frictional resistance. 

Local liquefaction may be caused by the shear waves produced by cracking of the dam body. This 

liquefaction allows any segregated water to rise upward, through the cover layer, to form a sand boil, 

which establishes a mechanism for soil ejection. 

It is known that the liquefaction resistance decreases with decreasing relative density and confining 

pressure, and it decreases dramatically with increasing initial shear stress level. At high initial shear 

stress levels (which is the case close to the toe), the initiation of liquefaction is observed if the shear 

stress is increased under undrained conditions by only a few percent of the initial shear stress [17,18]. 

The liquefaction may cause sand boils, which initiate soil erosion and pipe development, which 

exploits the existing micro pipes.  

5.2. The Properties of the Two Layer System  

The special two-layer base arrangement of the dikes in Hungary (small permeability, unsaturated 

cover-layer, over a higher permeability, saturated base material) has the following properties: (i) it may 

result in a large upward hydraulic gradient and exacerbated pore water pressures at the land-side toe, 

(ii) the cover layer is prone to both piping and liquefaction, (iii) the base layer is generally stable.  

The new data show that the soils ejected from the sand boils are generally silty sands and sands, 

prone to both erosion (on the basis of the entropy criterion) and liquefaction (on the basis of the criteria 
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of [21–23]). They originated from the cover layer, which is basically identical to the soil used in the 

Dutch backward erosion experiments. The base layers are generally stable.  

5.3. Piping Process  

The piping phenomena occurring in Hungary are complex, and are related to the unstable granular 

structure, the liquefaction susceptibility and the low relative density of the cover soils; the location of 

an increasing maximum shear stress level at the toe; a decreasing shear resistance at the toe; and 

possibly, to some dynamic effects like cracking of the dike.  

Three phases are identified preceding failure: in the first phase, some micro-pipes are formed; in the 

second phase, elementary small boils are formed, with erosion of some small grains due to some 

liquefaction effects; then, a concentrated water spout or geyser appears which ejects the larger grains 

and forms a crater, around which the detached soil is deposited. If not mitigated at this point, the 

erosion may develop further, leading to failure.  

If the relative density of the cover layer is relatively high, then liquefaction is encountered in the 

vicinity of the downhill toe only. It can be hypothesized that liquefaction may occur across nearly the 

whole cross-section and it may cause immediate failure, if the relative density, and hence the shear 

resistance, of the dike base is relatively very low (which is the case when dikes cross old meanders). 

Many aspects of the work, like the stratigraphic features of each site and the role of infilled 

palaeochannels in the piping phenomenon, require additional research. 
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Appendix A  

Table A-1. Statistical size data for some of the washed-out soils. 

 Year River, bank d10 CU
1 Soil 

1 1998 Tisza jp. 0,08 3,25 Fine sand 
2 1998 Tisza jp. 0,025 8,4 Silty sand 
3 1998 Tisza jp. 0,036 4,6 Silty sand 
4 2006 Duna right bank12+150  0,0071 17,8 Silty sand 
5 2006 Duna right bank41+206  0,007 13,9 Silty sand 
6 2006 Duna right bank41+206  0,041 2,4 Sand 
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Table A-1. Cont. 

 Year River, bank d10 CU
1 Soil 

7 2006 Duna right bank41+206  0,026 4,3 Sand 
8 2006 Duna right bank41+206  0,006 15,2 Silty sand 
9 2006 Duna right bank79+420  0,026 6,5 Silty sand 

10 2006 Duna right bank79+420  0,016 10,8 Silty sand 
11 2006  Tisza right bank61+075  0,056 2,1 Fine sand 
12 2006  Tisza right bank71+300  0,049 3,5 Silty sand 
13 2006 Tisza left bank13+250  0,106 2,2 Fine sand 
14 2006 Tisza left bank13+580  0,073 2,3 Fine sand 
15 2006 Tisza left bank13+580  0,051 2,6 Fine sand 
16 2010 Sajó left bank6+266  0,007 12,6 Silty sand 
17 2010 Tisza, Millér  0,007 6,1 Silty sand 
18 2010 Tisza, Millér  0,0083 5,9 Silty sand 
19 2010 Tisza, Tiszakürt  0,17 2,2 Sand 
20 2010 Tisza, Tiszakürt  0,13 2,3 Sand 

1 Uniformity coefficient. 
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