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Abstract: An accelerated degradation test (ADT) is regarded as an effective alternative to 

an accelerated life test in the sense that an ADT can provide more accurate information on 

product reliability, even when few or no failures may be expected before the end of a 

practical test period. In this paper, statistical methods for optimal designing ADT plans are 

developed assuming that the degradation characteristic follows a gamma process (GP). The 

GP-based approach has an advantage that it can deal with more frequently encountered 

situations in which the degradation should always be nonnegative and strictly increasing 

over time. The optimal ADT plan is developed under the total experimental cost constraint 

by determining the optimal settings of variables such as the number of measurements, the 

measurement times, the test stress levels and the number of units allocated to each stress 

level such that the asymptotic variance of the maximum likelihood estimator of the q-th 

quantile of the lifetime distribution at the use condition is minimized. In addition, 

compromise plans are developed to provide means to check the adequacy of the assumed 

acceleration model. Finally, sensitivity analysis procedures for assessing the effects of the 

uncertainties in the pre-estimates of unknown parameters are illustrated with an example. 

Keywords: accelerated degradation test; gamma process; optimal plan; compromise plan; 

maximum likelihood estimation  

 

1. Introduction 

Strong pressure from customers and intense global competition among manufacturers have resulted 

in the production of highly reliable products. Reliability inferences based on the results of life tests or 
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accelerated life tests can be inaccurate when used to evaluate highly reliable products since few or no 

failures may be expected before the end of a practical test period. In contrast, if a degradation 

characteristic related to the failure mechanism exists, a test which monitors the behavior of the 

characteristic may provide more accurate information on product reliability. In order to accelerate the 

degradation process for highly reliable products, such a test is usually conducted under stress levels 

higher than the normal use condition. This type of test is called an accelerated degradation test (ADT) 

in the literature [1]. For statistical modeling and analysis of various degradation phenomena, the reader 

is referred to the papers in Escobar et al. [2].  

An ADT, as all other reliability tests, must be carefully designed beforehand to obtain the estimates 

of the quantities of interest as precisely as possible. A recent review of the literature by Yum et al. [3] 

on designing ADT plans shows that many researchers have designed ADT plans based on the general 

degradation path (GDP) model. For instance, see Boulanger and Escobar [4], Park and Yum [5],  

Yu [6,7], Park and Yum [8], and Shi et al. [9]. The GDP model consists of an actual degradation path 

and an error term. The actual degradation path is represented as a deterministic function of time, and 

the error term usually represents the measurement error assumed to be independent over time. Given 

this formulation, most of the GDP models developed to date do not consider the time-dependent error 

structure (Tseng and Peng [10]). For this reason, a stochastic process (SP) model that naturally incorporates 

the correlation among degradation measurements over time can represent a useful alternative.  

Currently used SP models for degradation include the Wiener process (WP), geometric Brownian 

motion (GBM), and gamma process (GP) models, among others. Tang et al. [11], Liao and Tseng [12], 

and Lim and Yum [13] developed optimal ADT plans under the assumption of a WP model for 

degradation. Liao and Elsayed [14] designed optimal ADT plans based on an accelerated geometric 

Brownian motion degradation rate (AGBMDR) model. In a WP model, the degradation may take 

negative values and does not always increase with time, while in the GBM model the degradation is 

always positive, but not strictly increasing over time. However, in certain physical situations where the 

measurement error is relatively small, the degradation should always be nonnegative and strictly 

increasing over time. In such situations, a GP model which always gives nonnegative, strictly 

increasing degradation over time is considered to be a more adequate model. Bagdonavicius and  

Nikulin [15] and Lawless and Crowder [16] modeled degradation as a GP which allows covariates. Park 

and Padgett [17,18] organized a basic framework for the degradation model using the GP as well as the 

WP and GBM.  

Despite the appropriateness of GP models for degradation, little research has been conducted on 

designing optimal ADT plans based on a GP model (Yum et al. [3]). The notable exceptions is  

Tseng et al. [19], and Pan and Sun [20] in which optimal step-stress ADT plans are developed for a 

gamma degradation process by determining the sample size, measurement frequency and termination 

time such that the asymptotic variance of the estimated mean time to failure or q-th quantile of the 

lifetime distribution is minimized under the total cost constraint, and Tsai et al. [21] in which optimal 

ADT plans with two stress variable are developed. In this paper, optimal ADT plans are developed 

based on the assumptions that a single stress variable is considered for ease of conducting the test and 

interpreting the result, the constant-stress loading method is employed and the degradation 

characteristic follows a GP. The number of measurements, the measurement times, the test stress levels 

and the number of units allocated to each stress level are determined under the total experimental cost 
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constraint such that the asymptotic variance of the maximum likelihood estimator (MLE) of the q-th 

quantile of the lifetime distribution at the use condition is minimized.  

This paper is organized as follows: Section 2 introduces the assumed accelerated degradation 

model, and derives the lifetime distribution. In Section 3, the asymptotic variance of the MLE of the  

q-th quantile of the lifetime distribution at the use condition and the total experimental cost are 

described, and the corresponding optimization problem is formulated. The procedure for obtaining the 

optimal ADT plan is presented in Section 4. In Section 5, a compromise plan with three stress levels is 

developed for checking the adequacy of the assumed acceleration function. Sensitivity analyses of the 

test plans with respect to the uncertainties involved in the pre-estimates of unknown parameters are 

given in Section 6 with an example. Finally, conclusions and future research directions are presented in 

Section 7. 

2. Accelerated Degradation Model  

2.1. Gamma Process Degradation Model  

In the present investigation, ( )y t , the degradation characteristic at time t , is assumed to follow a 

GP with shape coefficient ( )0α′ >  and scale coefficient ( )0β > . Then, ( )y t has the following 

properties:  
1. ( )0 0y = ,  

2. { }( ) | 0y t t ≥  has stationary independent increments,  

3. ( )y t  follows a gamma distribution with a probability density function (pdf):  

( ) ( )
11 1

, 0t y
y t

f y y e t
t

α β
αα β

′ − −
′= >

′Γ
 

where tα′  and β  are the shape and scale parameters, respectively, and each increment, abyΔ

( ) ( )( )b ay t y t= − , follows a gamma distribution with shape parameter tα′Δ  and scale 

parameter β  for 0 a bt t≤ <  where b at t tΔ = −  (see Figure 1).  

 

Figure 1. Representative sample paths of a gamma process with shape coefficient α′  and 
scale coefficient β . 

b at t tΔ = −

0 at bt t time
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 2.2. Acceleration Function and Standardization  

In this paper, it is assumed that the relationship between the shape coefficient α′  of a GP and the 

stress variable s′  can be described by any one of the following (Nelson [1]):  

• Arrhenius model: ( ) ( )1 2exps sα δ δ′ ′ ′ ′ ′= − , e.g., s′  is absolute temperature  

• Power model: ( ) ( ) 2

1s s
δα δ ′′ ′ ′ ′= , e.g., s′  is voltage  

• Exponential model: ( ) ( )1 2exps sα δ δ′ ′ ′ ′ ′= , e.g., s′  is weathering variable  

where ( )1 0δ ′ >  and ( )2 0δ ′ >  are unknown constants and β  does not depend on s′ . 

It is assumed that the use stress level 0s′  and maximum stress level Ms′  are pre-specified. For 

simplicity and without loss of generality, the stress level is standardized as follows:  

0

0

0

0

0

0

1 1
,  for the Arrhenius model

1 1

ln ln
,      for the power model

ln ln

,    for the exponential model

M

M

M

s s

s s

s s
s

s s

s s

s s

 ′ ′−
 ′ ′−
 ′ ′−=  ′ ′−
 ′ ′−
 ′ ′−

 

Under the above standardization, 0 0,s = 1Ms =  and 0 1s≤ ≤ . In addition, the shape coefficient 

( )sα′ ′  can be re-expressed in terms of s  as follows: 

( ) ( )1 2exps sα δ δ= +  (1) 

where ( ) ( )1 1 2 0 2 2 0ln , 1 1 Ms s sδ δ δ δ δ′ ′ ′ ′ ′ ′= − = −  for the Arrhenius model;

( ) ( )1 1 2 0 2 2 0ln ln , ln lnMs s sδ δ δ δ δ′ ′ ′ ′ ′ ′= + = −  for the power model; ( ) ( )1 1 2 0 2 2 0ln , Ms s sδ δ δ δ δ′ ′ ′ ′ ′ ′= + = −  

for the exponential model. Note that 2δ  is always positive since 2 0δ ′ >  and 0Ms s′ ′> .  

2.3. Lifetime Distribution  

When the degradation characteristic ( )y t  follows a GP with shape coefficient ( )sα  and scale 

coefficient β , ( )y t  strictly increases over time. Let T  be the lifetime defined as the first passage time 

to the failure level cy . Then, the cumulative distribution function (cdf) of T  can be obtained as follows:  

( ) { } ( ){ }

( ) ( )
( )

( )
( )

( )
( )

1

1

1 1
                 =

1
                

,
                         

c

c

s c

s t y

s ty

s t x

y

c

G t P T t P y t y

y e dy
s t

x e dx
s t

s t y

s t

α β
α

α

β

α β

α

α β
α

∞ − −

∞ − −

= < = >

Γ   

=
Γ   
Γ   =

Γ   




 (2) 

where ( ),a bΓ  is the incomplete gamma function defined as:  
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( ) 1, a z

b
a b z e dz

∞ − −Γ =  .  

In addition, the pdf of T  is obtained as follows (Park and Padgett [17]):  

( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 22

0 0

,

, ln
1 1        

ln ,

c

s

s t

c
c c c

c c

s t y
g t

t s t

s t s ty
s t y y F ys s t s ts t

s t
s t s t s t y s t y s t

α

α β
α

α αβ
α β β βα α αα

α
α α α β α β α

 Γ∂  =
∂  Γ  

  
  Γ + ⋅ −    + + =     Γ   

         +Γ Ψ − Γ − Γ Ψ           

 

where ( )0 xΨ  is the digamma function defined as ( ) ( )0 lnx x xΨ = ∂ Γ ∂  ( ) ( )x x′= Γ Γ  and ( )p qF ⋅  is 

the generalized hypergeometric function defined by:  

( ) ( )
( ) ( )

11

01 1

, ,, ,

, , !, ,

k
pp k k

p q
kq qk k

a aa a z
F z

b b kb b

∞

=

 
= ⋅  

 



 

  

with ( ) ( ) ( )1 1i i i ik
a a a a k= ⋅ + + −  and ( )

0
1ia = .  

3. Formulation of ADT Design Problem  

3.1. Optimization Criterion and Constraint  

Various optimization criteria have been proposed for designing ADT plans. The most frequently 

used criteria include the (asymptotic) variance and mean squared error (MSE) of the estimator of the  

q-th quantile (or the mean) of the lifetime distribution at the use condition (Park and Yum [5];  

Yu [6,7]; Li and Kececioglu [22,23]; Park and Yum [8]; Liao and Tseng [12]; Shi et al. [9]; and  

Tseng et al. [19]). In addition to these criteria, Boulanger and Escobar [4] and Liao and Elsayed [14] 

considered the generalized variance, namely, the determinant of the Fisher information matrix of the 

MLEs of unknown parameters, and Tang et al. [11] considered the total experimental cost. These 

optimization criteria have been also used as constraint. Among constraints, the total experimental cost 

is frequently used (Li and Kececioglu [22]; Liao and Tseng [12]; and Tseng et al. [19]). In addition to 

the constraint, Tang et al. [11] considered the precision constraint using the asymptotic variance of the 

estimator of the mean lifetime at the use condition. In this paper, the asymptotic variance of the MLE 

of the q-th quantile of the lifetime distribution at the use condition is adopted as an optimization 

criterion and the total experimental cost as a constraint.  

3.2. The Asymptotic Variance of the MLE of the q-th Quantile of the Lifetime Distribution 

In the following, we consider a constant-stress loading ADT where in  test units among 

( )1

r

ii
n n

=
=  total test units are allocated to each stress level is  ( 1, 2, ,i r=  ) and the stress is loaded 

constantly until the test is over. Let ijm  be the number of measurements for the j-th unit 

( )1, 2, , ij n=   at the stress level is . It is assumed that ijm m=  for all i and j. In addition, the 

measurement times ( ), 1, 2, ,ijkt k m=   for the j-th test unit at the stress level is  are determined such 
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that the measurement time interval, ( )( )1ijk ijk ij kt t t −Δ = − , is the same as tΔ  for all i, j and k where 

( )1 ijkij kt t− < , 0 0ijt = , and ijmt t m= Δ ⋅ . For the j-th unit at the stress level is , let ijky  be the degradation 

characteristic measured at ijkt  for 1, 2, , ,i r=  1, 2, , ij n=   and 1, 2, , .k m=   Then, each 

degradation increment ( )1ijk ijk ij ky y y −Δ = −  ( )( )1ijk ij ky y −>  follows a gamma distribution with the 

following pdf:  

( ) ( ) ( ) ( ) ( ) ( )11 1
exp , 0, , 0

α

α α β
βα β

Δ −

Δ Δ

Δ 
Δ = Δ − Δ > >  Γ Δ   

i

i

s t ijk
y ijk ijk ijk is t

i

y
f y y y s

s t
 (3)

From Equations (1) and (3), the log likelihood function for n test units is given by: 

( ) ( )
1 1 1

ln 1 ln ln ln
inr m

ijk
i ijk i i

i j k

y
L A y A A β

β= = =

Δ 
= − Δ − − Γ − 

 
   

where ( ) ( )1 2expi i iA s t s tα δ δ = Δ = + Δ  . The MLEs of 1 2,δ δ  and β , which is 1 2
ˆ ˆ,δ δ  and β̂ , can be 

obtained by solving the simultaneous equations: 1 2ln 0, ln 0L Lδ δ∂ ∂ = ∂ ∂ =  and ln 0L β∂ ∂ = . 

Hence, the corresponding MLE of the q-th quantile of the lifetime distribution at the use condition ( ,0qt ) 

is ( )1
,0 0

ˆ
q̂t G q−= . Let F  be the Fisher information matrix obtained by taking expectations of the 

negative second partial derivatives of ln L  with respect to unknown parameters 1 2, andδ δ β   

(Lawless [24]). Then, it is shown in Appendix A that: 

2 2

1 1 1

2 2

1 1

2
1

r r r
i

i i i i i i i i
i i i

r r
i i

i i i i i
i i

r
i

i
i

A
n A B n A B s n

A s
m n A B s n

A
symmetric n

β

β

β

= = =

= =

=

 
 
 
 

=  
 
 
 
 

  

 



F  (4)

where ( )1i iB A= Ψ  is the trigamma function defined as ( )2 2ln i iA A∂ Γ ∂  for 1,2, ,i r=  . Define:  

( )

( )

( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0 0 0
0 2 22

0
0 0 0 0 00 ,0

0

1 0 0 0 0 0 0 0 0 0
1

0 ,0

2
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0 ,0
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1 1
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q q
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t tA
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t t t t t
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A
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u
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G t
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  Γ + ⋅ −  ′  + +∂   ′Γ   ∂  +Γ Ψ − Γ − Γ Ψ     ∂  = = =   ∂
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∂  

u

( ) ( )
1

0exp qt

c cy Aβ

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 Γ 

 

where ( )0 1 ,0expqt

qA tδ=  and c cyβ β= . Then, by using the delta method, the asymptotic variance of 

the MLE of the q-th quantile of the lifetime distribution at the use condition is obtained as follows 

(Liao and Tseng [12]): 
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( )
( ){ }

( )
( ){ }

1
,0 0 ,02 2

1 1
0 0 0 0

1 1ˆˆAvar Avar t
q qt G t

g G q g G q

−

− −
 = =       

u F u  

where the superscript t represents a transposition.  

3.3. Total Experimental Cost  

The total experimental cost comprises three parts:  

1. Operation cost which includes the labor cost can be formulated as opC t m⋅Δ ⋅ , where opC  is the 

unit cost of operation.  

2. Measurement cost which involves the cost of measurement equipments and test materials can be 

generated as mC m n⋅ ⋅ , where mC  is the unit cost of measurement.  

3. Sample cost which is related to number of test samples can be expressed as sC n⋅ , where sC  is 

the unit cost of the device.  

Therefore the total cost of conducting the ADT ( )TC  is given by op m sTC C t m C m n C n= ⋅Δ ⋅ + ⋅ ⋅ + ⋅ .  

3.4. Formulation of the Problem  

The ADT design problem with two stress levels is formulated in this section. For the case of two 

stress levels, the objective function is given by (see Appendix B): 

( )
( ){ }

2 2
1 1 3 3

,0 2
1

0 0

21 1ˆAvar q

u P u u Q u R
t

m Kg G q−

+ +=
  

 
(5)

where 

( ) ( ) ( )22 2
1 2 1 2 2 1 1 2 1 1 2 1 2 21 1K n n A A s s n B A B n B A B = − − + −  ,

( )( ) ( )22 2 2 2
1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 2 2 2P n A B s n A B s n A n A n A s n A s= + + − + , 

( )( )1 2 1 2 2 1 1 1 1 2 2 2
c

c

y
Q n n A A s s A B s A B s

β
 = − −  , 

( )
2

22 2
1 2 1 2 1 2 2 12

c

c

y
R n n A A B B s s

β
 = −   

Since ( ){ }2
1

0 01 g G q−    in Equation (5) is a scaling factor, the objective function can be reduced to:  

2 2
1 1 3 321 u P u u Q u R

v
m K

+ +=
 

(6) 

Finally, the ADT design problem with two stress levels is formulated as follows:  

Minimize     
2 2
1 1 3 321 u P u u Q u R

v
m K

+ +=  

Subject to   op m s bTC C t m C m n C n C= ⋅Δ ⋅ + ⋅ ⋅ + ⋅ ≤  

{ }1 2, , , 1, 2, 3,n n t m NΔ ∈ =   

1 20 1s s≤ < ≤  
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Note that v  is a function of 1 2, , cδ δ β  and q  as well as of the decision variables 1 2 1 2, , , ,s s n n tΔ  and m . 

4. Optimum ADT Plans  

4.1. Pre-Estimation  

The objective function v  in Equation (6) depends on the unknown parameters 1 2,δ δ  and cβ , 

which need to be estimated in advance. Pre-estimates of these parameters could be obtained based on 

engineering judgement and/or preliminary experiments. In this paper, it is suggested to conduct a 

preliminary experiment at the maximum stress level ( 1s = ), and in addition guess the value of the 
failure probability ( 0p ) until a specific time point (τ ) at the use condition. Using the MLE method for 

the data from the preliminary experiment at the maximum stress level, the three unknown parameters, 

1 2,δ δ  and cβ  cannot be estimated separately, but 1 2δ δ+  and cβ  can be estimated. For separation, the 

information on 0p  can be utilized. First, 0p  can be expressed as follows using Equation (2):  

( )
( )
1

0

1

exp ,

exp
c

p
δ τ β

δ τ
 Γ  =
 Γ  

. (7)

Then, 1δ  can be numerically estimated by inserting the pre-estimate of cβ  obtained from the 

preliminary experiment into (7), and 2δ  can be estimated by subtracting the pre-estimate of 1δ  from 

that of 1 2δ δ+ .  

4.2. Optimization  

It is difficult to obtain the analytic expression of the optimal solution since v  is highly complicated. 

There is simulation method such as simulated annealing to search the optimal solution, but it takes 

relatively long time to obtain the global optimum. In this paper, considering the simplicity in the 

constraint structure and the integer restriction on the decision variables except the stress levels, the 

optimal solution can be fast determined through the following algorithm (as part of which a simple 

grid search method is employed for determining the optimal stress levels where the distance between 

adjacent grid points is 0.01) and Figure 2 shows the flow chart of the algorithm (see Tseng et al. [19])  

Algorithm:  

Step1. Obtain the upper bound for the possible number of test units  

b op
b

m s

C C
n

C C

− 
=  + 

 

where x    is the largest integer less than x .  

Step 2. Set 1n = .  

Step 3. Obtain the upper bound of the measurement time interval for fixed n .  

( )b m s
b

op

C C n C n
t

C

 − ⋅ + ⋅
Δ =  

  
 

Step 4. Set 1tΔ = .  

Step 5. Set the number of measurements ( )m  as large as possible since v  is the decreasing function of m .  
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b s

op m

C C n
m

C t C n

 − ⋅=  ⋅ Δ + ⋅  
 

Step 6. Find the combination of 1 2,n n N∈  such that 1 2n n n+ = .  

Step 7. Calculate v  for all possible combinations of grid values of each stress level which 
satisfy 1 20 1s s≤ < ≤ .  

Step 8. Set 1t tΔ = Δ + , and repeat step 5 through 7 until bt tΔ = Δ .  

Step 9. Set 1n n= + , and repeat step 3 through 8 until bn n= .  

Step 10. The optimal solution is determined as the combination of the decision variables  
( 1 2 1 2, , , , ,t m n n s sΔ ) for which v  is minimized  

 

 

Figure 2. Flow chart of obtaining the optimal solution. 
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b s

op m
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=
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for which v is minimized

1t tΔ = Δ +

1n n= +
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b

m s

C C
n

C C

− 
=  + 

bt tΔ = Δ
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5. Compromise Plans  

Since the optimal ADT plan developed in Section 4 involves two stress levels, it does not provide 

means to check the validity of the assumed acceleration model. For the case of three stress levels, the 
asymptotic variance of ,0q̂t  can be obtained in a similar manner as for the case of two stress levels as 

follows:  

( )
( ){ } ( ){ }

2 2
1 1 3 3

,0 2 2
1 1

0 0 0 0

21 1 1ˆAvar
c c c

c
q c

u P u u Q u R
t v

m Kg G q g G q− −

+ += =
      

  

where:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( )

22 2
1 2 1 2 2 1 1 2 1 1 2 2 3 3 1 2 2 1

22 2
1 3 1 3 3 1 1 3 1 1 2 2 3 3 1 3 3 1

22 2
2 3 2 3 3 2 2 3 1 1 2 2 3 3 2 3 3 2

1 2 3 1 2 3 1 1 2 1 3 1 2 2 2 1 3 2 3 3 32

cK n n A A s s B B n A n A n A n B n B

n n A A s s B B n A n A n A n B n B

n n A A s s B B n A n A n A n B n B

n n n A A A A B s s s s A B s s s s A B s

 = − + + − + 

 + − + + − + 

 + − + + − + 
− − − − − − + −( )( )1 3 2 ,s s s − 

 

( )( ) ( )22 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 3 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3

cP n A B s n A B s n A B s n A n A n A n A s n A s n A s= + + + + − + + , 

( )( ) ( )( )
( )( )

1 2 1 2 2 1 1 1 1 2 2 2 1 3 1 3 3 1 1 1 1 3 3 3

2 3 2 3 3 2 2 2 2 3 3 3

c c

c

n n A A s s A B s A B s n n A A s s A B s A B sy
Q

n n A A s s A B s A B sβ
 − − + − −

=  
+ − −  

, 

( ) ( ) ( )
2

2 2 22 2 2 2 2 2
1 2 1 2 1 2 2 1 1 3 1 3 1 3 3 1 2 3 2 3 2 3 3 22

c c

c

y
R n n A A B B s s n n A A B B s s n n A A B B s s

β
 = − + − + −  . 

Then, a compromise plan with three stress levels is developed as follows:  

1. The middle stress level 2s  and the high stress level 3s  are set to ( )1 3 2s s+  and 1, respectively.  

2. The proportion ( 2π ) of test units allocated to 2s  is predetermined ( 20 0.3π< ≤ ) and the 

number of test units allocated to 2s  is determined as 2 2n nπ= ⋅   . 

3. For given 2π , the decision variables 1 3 1, , ,n n s tΔ  and m  are determined such that cv  is 

minimized.  

6. Example and Sensitivity Analysis  

LEDs are widely used as a light source for optical fiber transmission systems and consumer 

electronics due to their high brightness, low power consumption and high reliability. An ADT is 

employed in order to estimate the 0.1-th quantile of the lifetime distribution of the LEDs at the use 

condition. A failure-related degradation characteristic ( )y t  of the LED is the percent decrease of its 

light intensity over time. It is assumed that the degradation characteristic follows a GP since the 

degradation of LED progresses monotonically as shown as the real degradation data in Liao and 

Elsayed [14]. The current is considered as the accelerating stress variable in the ADT, and the 

maximum and use stress levels are specified as 40 mA and 10 mA, respectively. In addition, the power 

model is assumed between the shape coefficient of the GP and current. The failure time of the LED is 

defined as the time when its light intensity degrades below 50% from its initial value. In other words, 

0.5cy = .  
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In order to pre-estimate the unknown parameters for optimally designing the ADT, part of the data 

in Liao and Elsayed [14] is regarded as the data obtained from a preliminary experiment. Liao and 

Elsayed [14] tested 20 units for 250 h using two stress variables, temperature and current. In this paper, 

only the current is considered as a stress variable, and the data obtained at 40 mA (and 413 K) for 50, 

100 and 150 h from 5 units are regarded as the preliminary experimental data. These data are analyzed 

using the MLE method, and the estimates of 1 2δ δ+  and cβ  are respectively obtained as −2.74 and 

7.17. In addition, the failure probability until 4 months at the use condition is estimated as 5ⅹ10−5. 

Then, the pre-estimate of 1δ  is numerically obtained as −9.32 from Equation (7), and 2δ  is estimated 

as 6.58 ( )( )1 2 1 2.74 9.32δ δ δ= + − = − − . Suppose that the cost coefficients of operation, measurement 

and sample are respectively opC = 2.7/hour, mC = 1.9/measurement and sC = 30/unit. Under several 

budgets, the optimal ADT plans for the pre-estimates are shown in Table 1. When 2000bC = , the 

optimal ADT plan is given by:  

1 2 17, 26, 6, 13, 0t m n n sΔ = = = = =  and 2 1s = . (8)

That is, the optimal plan is to allocate 6 units to the use current (= 10 mA) and 13 units to the high 

current (= 40 mA) levels, and measure 26 times every 7 h the degradation characteristic for each unit.  

Table 1. The ADT plans under several budgets. 

bC  tΔ  m  1n  2n  1s  2s  v  Cost 

1000 6 18 3 8 0 1 7.28 × 10−3 997.8  

2000 7 26 6 13 0 1 2.74 × 10−3 2000.0  

3000 9 30 8 18 0 1 1.58 × 10−3 2991.0  

4000 9 38 9 21 0 1 1.08 × 10−3 3989.4  

The pre-estimated values of 1δ , 2δ  and cβ  used to design the above optimal plan may be different 

from the true values. It is therefore desirable to assess the sensitivity of the optimal plan to the 

uncertainties in 1δ , 2δ  and cβ . In this example, sensitivity analyses are conducted for 

misspecifications of ±10% in the pre-estimated values of 1δ , 2δ  and cβ , and the results are 

summarized in Table 2 where 0v  and *v  respectively denote v  values for the plan in (8) and for the 

optimal plan obtained using the true values of 1 2,δ δ  and cβ . The ratios ( *
0v v ) in Table 2 indicate that 

the plan in (8) is insensitive to the plausible departures of the true 1 2,δ δ  and cβ  valules from their  

pre-estimated ones.  

A compromise plan with three stress levels is needed if we want to check the adequacy of the 

assumed acceleration model. The compromise plans under various budgets for 1 9.32δ = − , 2 6.58δ = , 

7.17cβ =  and 2 0.2π =  are shown in Table 3. When 2000bC = , the compromise plan with three stress 

levels is given by: 

1 2 3 1 27, 26, 5, 3, 11, 0, 0.5t m n n n s sΔ = = = = = = =  and 2 1s = . (9) 

That is, the compromise plan with three stress levels is that 1 25, 3n n= =  and 3 11n =  are allocated 

to the use (= 10 mA), middle (= 20 mA) and high (= 40 mA) current levels, respectively, and measure  

26 times every 7 h the degradation characteristics for each unit.  
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Sensitivity analyses for the compromise plan are conducted in a similar manner as for the case of 
the optimal plan and the results are summarized in Table 4 where 0

cv  and *cv  are respectively cv  

values for the plan in (9) and for the compromise plan obtained using the true values of 1 2,δ δ  and cβ . 

The ratios ( *
0
c cv v ) in Table 4 indicate that the plan in (9) is not sensitive to the plausible departures of 

the true 1 2,δ δ  and cβ  values from their pre-estimated ones.  

Table 2. Sensitivity Analysis of the optimal ADT plan for the example. 

cβ  1δ  2δ  0v  *v  Ratio 

6.453 

−8.388 
5.922 3.88 × 106 4.10 × 106 1.0544  
6.58 3.16 × 106 3.37 × 106 1.0670  

7.238 2.63 × 106 3.07 × 106 1.1677  

−9.32 
5.922 1.39 × 103 1.50 × 103 1.0792  
6.58 1.06 × 103 1.07 × 103 1.0035  

7.238 8.56 × 104 8.65 × 104 1.0098  

−10.252 
5.922 2.89 × 102 3.39 × 102 1.1734  
6.58 2.11 × 102 2.21 × 102 1.0505  

7.238 1.61 × 102 1.62 × 102 1.0097  

7.17 

−8.388 
5.922 6.40 × 106 6.66 × 106 1.0412  
6.58 5.20 × 106 5.51 × 106 1.0580  

7.238 4.33 × 106 5.03 × 106 1.1597  

−9.32 
5.922 3.58 × 103 3.80 × 103 1.0605  
6.58 2.74 × 103 2.74 × 103 1.0000  

7.238 2.22 × 103 2.25 × 103 1.0132  

−10.252 
5.922 1.09 × 102 1.25 × 102 1.1524  
6.58 7.97 × 103 8.32 × 103 1.0436  

7.238 6.09 × 103 6.20 × 103 1.0185  

7.887 

−8.388 
5.922 9.45 × 106 9.75 × 106 1.0308  
6.58 7.69 × 106 8.08 × 106 1.0507  

7.238 6.41 × 106 7.39 × 106 1.1531  

−9.32 
5.922 7.32 × 103 7.69 × 103 1.0509  
6.58 5.60 × 103 5.60 × 103 1.0000  

7.238 4.55 × 103 4.63 × 103 1.0158  

−10.252 
5.922 2.15 × 103 2.44 × 103 1.1373  
6.58 1.58 × 103 1.64 × 103 1.0384  

7.238 1.21 × 103 1.24 × 103 1.0252  

Table 3. The compromise plans under several budgets when 2 0.2π = . 

bC  tΔ  m  1n  2n  3n  1s  2s  3s  cv  Cost 

1000 4 26 2 1 6 0 0.5 1 8.31 × 10−3 995.4  

2000 7 26 5 3 11 0 0.5 1 3.20 × 10−3 2000.0  

3000 8 42 5 3 11 0 0.5 1 1.88 × 10−3 2993.4  

4000 10 38 7 5 17 0 0.5 1 1.29 × 10−3 3989.8  
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Table 4. Sensitivity Analysis of the compromise plan for the example. 

cβ  1δ  2δ  cv  *cv  Ratio 

6.453 

−8.388 
5.922 4.52 × 106 4.74 × 106 1.0500  
6.58 3.66 × 106 3.89 × 106 1.0640  

7.238 3.06 × 106 3.52 × 106 1.1508  

−9.32 
5.922 1.63 × 103 1.74 × 103 1.0716  
6.58 1.24 × 103 1.25 × 103 1.0048  

7.238 9.93 × 104 1.01 × 103 1.0214  

−10.252 
5.922 3.37 × 102 3.93 × 102 1.1655  
6.58 2.48 × 102 2.57 × 102 1.0372  

7.238 1.88 × 102 1.89 × 102 1.0028  

7.17 

−8.388 
5.922 7.46 × 106 7.73 × 106 1.0362  
6.58 6.01 × 106 6.37 × 106 1.0604  

7.238 5.04 × 106 5.79 × 106 1.1490  

−9.32 
5.922 4.20 × 103 4.42 × 103 1.0527  
6.58 3.20 × 103 3.20 × 103 1.0000  

7.238 2.56 × 103 2.63 × 103 1.0276  

−10.252 
5.922 1.27 × 102 1.45 × 102 1.1415  
6.58 9.37 × 103 9.65 × 103 1.0297  

7.238 7.12 × 103 7.21 × 103 1.0117  

7.887 

−8.388 
5.922 1.10 × 105 1.13 × 105 1.0278  
6.58 8.85 × 106 9.37 × 106 1.0592  

7.238 7.44 × 106 8.53 × 106 1.1474  

−9.32 
5.922 8.58 × 103 8.95 × 103 1.0427  
6.58 6.54 × 103 6.54 × 103 1.0000  

7.238 5.25 × 103 5.42 × 103 1.0337  

−10.252 
5.922 2.51 × 103 2.82 × 103 1.1242  
6.58 1.86 × 103 1.90 × 103 1.0241  

7.238 1.41 × 103 1.44 × 103 1.0184  

7. Conclusions  

In this paper, optimal ADT plans are developed based on the assumption that the degradation 

characteristica follow a GP. Under the constraint that the total experimental cost does not exceed a 

predetermined budget, the decision variables such as the number of measurements, the measurement 

times, the test stress levels and the number of units allocated to each stress level are optimally 

determined by minimizing the asymptotic variance of the MLE of the q-th quantile of the lifetime 

distribution at the use condition. Compromise plans are also developed to provide means to check the 

adequacy of the assumed acceleration model. Lastly, sensitivity analyses for assessing the effects of the 

uncertainties in the pre-estimates of unknown parameters on the optimal and compromise plans are 

illustrated with an example.  

Unlike previous works on GDP-based ADT planning, the present SP-based approach is able to take 

into account the correlation among degradation measurements over time. Furthermore, compared to 

the WP- or GBM-based approach, the proposed GP-based approach can deal with more frequently 

encountered situations in which the degradation characteristic is always nonnegative and strictly 

increasing over time.  

The constant-stress loading method is assumed in the present study. A fruitful area of future research 

would be to extend the present study to the cases of other stress loading methods (e.g., progressive-stress 
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loading), compare their relative performances in terms of the statistical efficiency, sample size, total 

experimental cost, etc, and implement the various algorithm to search the optimal solution.  

Appendix  

A. Derivation of the Fisher Information Matrix 

The first partial derivatives of ln L  with respect to each unknown parameter are given by:  
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where ( )0 iAΨ  is the digamma function defined as ( ) ( )0 lni i iA A AΨ = ∂ Γ ∂  ( ) ( )i iA A′= Γ Γ . The 

second partial derivatives of ln L  with respect to each parameter are obtained as follows:  
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To evaluate the Fisher information matrix, ( )ln ijkE yΔ  is first obtained as follows: 
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In addition, since ( )ijk iE y A βΔ = , the expectations of the negative second partial derivatives of ln L  

with respect to unknown parameters are given by:  
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Then, the Fisher information matrix is given by (4).  

B. Derivation of the Asymptotic Variance of ,
ˆ

0qt  in the Case of Two Stress Levels  

For the case of two stress levels, the Fisher information matrix is given by:  
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Let 1−F  be the inverse of the Fisher information matrix defined as: 
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Then, the asymptotic variance of ,0q̂t  is obtained as follows. 
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