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Abstract: We explore two possible generalizations of the Euler formula for the complex
κ-exponential, which give two different sets of κ-deformed cyclic functions endowed with
different analytical properties. In a case, the κ-sine and κ-cosine functions take real
values on R and are characterized by an asymptotic log-periodic behavior. In the other
case, the κ-cyclic functions take real values only in the region ∣x∣ ≤ 1/∣κ∣, while, for
∣x∣ > 1/∣κ∣, they assume purely imaginary values with an increasing modulus. However,
the main mathematical properties of the standard cyclic functions, opportunely reformulated
in the formalism of the κ-mathematics, are fulfilled by the two sets of the κ-trigonometric
functions. In both cases, we study the orthogonality and the completeness relations and
introduce their respective generalized Fourier series for square integrable functions.
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1. Introduction

In mathematical analysis, the generalized Fourier series is a powerful tool to study the spectral
decomposition of a given function over a certain orthogonal base defined on a Hilbert space. For a
square integrable function f(x) ∶ [a, b]→R, the generalized Fourier series is defined as:

f(x) =
∞
∑
n=0

cn un(x) , (1)
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where un(x) is a complete set of functions on the interval [a, b] fulfilling the orthogonality condition:

⟨un, um⟩w =
b

∫
a

un(x)um(x)w(x)dx , (2)

for a certain weight function w(x), whilst the coefficients of the series are given by:

cn =
⟨f, un⟩w
⟨un, un⟩w

. (3)

Often, the functions un(x) are related to a Sturm–Liouville problem for a second order differential
equation:

d

dx
(p(x) dun(x)

dx
) + (−q(x) + λw(x)) un(x) = 0 , (4)

for given real functions p(x) and q(x) and eigenvalue λ, with suitable boundary conditions:

a1 un(a) + a2
dun(x)
dx

RRRRRRRRRRRx=a
= 0 , b1 un(b) + b2

dun(x)
dx

RRRRRRRRRRRx=b
= 0 , (5)

where ai and bi are constants.
Depending on the nature of the problem (4), several different series expansion have been introduced in

the literature, running from the trigonometric Fourier series to analyze periodic functions, to the various
orthogonal polynomials expansion widely used in optic and quantum mechanics, the Bessel series for
cylindrical symmetric problems, and so on.

In this paper, we propose a generalized Fourier series based on a family of orthogonal functions
derived from the κ-exponential, a continuous deformation of the exponential function by means of
a parameter κ, that reduces to the standard exponential in the κ → 0 limit. The κ-exponential has
been introduced in [1] as a possible solution of a generalized Kramer equation derived from a kinetic
interaction principle. Then, the κ-exponential has been employed in statistical mechanics [2,3] to
describe a formalism useful to study non-Gibbsean statistical systems characterized by power-law
distributions that occur in physical and physical-like complex systems, often observed in the realm
of sociophysics, econophysics, biophysics, networks and in others fields. In fact, the κ-exponential
distribution is endowed by a power-law asymptotic behavior instead of the exponential shape
characterizing the Gibbs distribution. It describes the equilibrium configuration of systems governed
by the κ-entropy by means of the maximal entropy principle with suitable physical constraints. Up to
today, several papers have been written on the foundations, the theoretical consistency and the potential
applications of the κ-statistical mechanics [4–31] (see also [32] and the references therein).

As shown in [33], starting from the κ-exponential and its inverse, the κ-logarithm, it is possible to
introduce a deformed mathematical structure, the κ-mathematics, equipped by a κ-algebra and the related
κ-calculus. The κ-mathematics originates by requiring that the deformed exponential and logarithm
preserve, as much as possible, the analytical properties of the corresponding un-deformed functions.
Actually, this is a very general statement applicable to any pair of analytical functions whose shape
mimics that of the exponential and of the logarithm and permits one to introduce a pair of Abelian fields,
isomorphic to each other, with a generalized sum and product [34].
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In the framework of the κ-mathematics, we introduce two different generalizations of the complex
κ-exponential. For each of them, we obtain, by means of the Euler formula, two different sets
of κ-deformed trigonometric functions that correspond to the solutions of suitable Sturm–Liouville
boundary problems.

In a case, the κ-cyclic functions are obtained from the following complex κ-exponential:

u(x) = expκ(i⊗ x) , (6)

where ⊗ is the κ-product. It takes real values on R and has an asymptotic log-periodic behavior. In the
other case, the κ-sine and κ-cosine are obtained from the function:

u(x) = expκ(i x) , (7)

which takes real values only in the limited region ∣x∣ ≤ 1/∣κ∣, becoming purely imaginary and with an
increasing modulus for ∣x∣ > 1/∣κ∣.

The contents of this paper is as follows. In Section 2, we revisit the κ-algebra and the κ-calculus.
In Section 3, we consider the two possible generalizations of the Euler formula in the κ-formalism
and introduce the corresponding sets of cyclic-functions by studying their algebras and their analytic
properties within the κ-mathematics. The orthogonality and completeness relations for the two sets of
κ-cyclic functions are discussed in Section 4, while, in Section 5, we present the corresponding versions
of generalized Fourier series. Our conclusions are reported in Section 6.

2. κ-Mathematics Formalism

Let us begin by revisiting the main aspects of the κ-algebra and its related calculus on which is based
the formalism used in this work.

2.1. κ-Algebra

We introduce the κ-algebra starting from the κ-numbers defined in:

x{κ} =
1

κ
arcsinh (κx) , (8)

and by their dual:

x{κ} = 1

κ
sinh (κx) , (9)

with:

(x{κ})
{κ} = (x{κ}){κ} = x . (10)

The generalized sum and product are defined on the κ-numbers space Rκ ≡ {x{κ} ∶ −∞ < x < ∞} as
follows:

x{κ} ⊕ y{κ} = (x + y){κ} , (11)

x{κ} ⊗ y{κ} = (x ⋅ y){κ} , (12)
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and, by replacing x{κ} → x (and x→ x{κ}), we get:

x⊕ y = (x{κ} + y{κ})
{κ}

, (13)

x⊗ y = (x{κ} ⋅ y{κ})
{κ}

. (14)

They are, respectively: associative, x⊕ (y⊕z) = (x⊕y)⊕z and x⊗ (y⊗z) = (x⊗y)⊗z; commutative,
x⊕y = y⊕x and x⊗y = y⊗x; distributed, x⊗(y⊕z) = x⊗y⊕x⊗z with x, y, z ∈Rκ. In addition, there
exist the null element for the sum: x⊕∅ = ∅⊕x = x; and the identity for the product: x⊗ I = I ⊗x = x;
as well as the opposite: x ⊕ (−x) = (−x) ⊕ x = ∅; and the inverse: x ⊗ (1/x) = (1/x) ⊗ x = I , for any
x ∈ Rκ. Therefore, the algebraic structure (Rκ, ⊕, ⊗) forms an Abelian field isomorph to the field of
the ordinary real numbers (R, +, ⋅).

For the sake of completeness, let us observe that it is also possible to introduce an algebraic structure
on the space of the κ-numbers Rκ ≡ {x{κ} ∶ −∞ < x < ∞} isomorphic to (R, +, ⋅), endowed by a
generalized sum and product different from the ones given in Equations (11) and (12). We remand the
interested reader to [34] for the details.
Explicitly, Equations (13) and (14) are given by:

x⊕ y = 1

κ
sinh (arcsinh (κx) + arcsinh (κy) ) , (15)

x⊗ y = 1

κ
sinh(1

κ
arcsinh (κx) ⋅ arcsinh (κy)) , (16)

with ∅ ≡ 0, I ≡ κ−1 sinhκ, (−x) ≡ −x and (1/x) ≡ κ−1 sinh(κ2/arcsinhκx). In this way, the difference
x⊖ y = x⊕ (−y) and the quotient x⊘ y = x⊗ (1/y) arise from Equations (15) and (16) as:

x⊖ y = 1

κ
sinh (arcsinh (κx) − arcsinh (κy) ) , (17)

x⊘ y = 1

κ
sinh(κ arcsinh (κx)

arcsinh (κy)
) . (18)

Clearly, in the κ→ 0 limit, Equations (15)–(18) reduce to the standard elementary operations on the real
numbers, as well as the field (Rκ, ⊕, ⊗) reduces to (R, +, ⋅ ).

In addition, by iteration, from the κ-sum and the κ-product, we obtain the definition of product by a
κ-integer:

x⊕ x⊕ . . .⊕ x = n{κ} ⊗ x , (19)

and that of power by a κ-integer:

x⊗ x⊗ . . .⊗ x = x◯⋀ n{κ} . (20)

Explicitly, they are given by:

n{κ} ⊗ x = 1

κ
sinh (narcsinh (κx) ) , (21)

and:

x◯⋀ n{κ} = 1

κ
sinh (κ1−n arcsinhn (κx)) . (22)
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In particular, this last relation can be rewritten in:

(x◯⋀ n{κ})
{κ}
= (x{κ})

n
, (23)

and can be generalized to define the exponentiation to arbitrary real numbers:

(x◯⋀ a){κ} = (x{κ})
a{κ} . (24)

We introduce the κ-exponential and its inverse function, the κ-logarithm [1–3], defined in:

expκ x = (κx +
√
1 + κ2 x2)

1/κ
≡ exp(1

κ
arcsinh (κx)) , (25)

lnκ x =
xκ − x−κ

2κ
≡ 1

κ
sinh (κ lnx) , (26)

with:

lnκ (expκ x) = expκ (lnκ x) = x . (27)

They recover the standard exponential and logarithm in the κ→ 0 limit: exp0 x = expx and ln0 x = lnx.
Useful relations concerning these functions are the symmetry under reflection of the deformation
parameter: expκ x = exp−κ x, lnκ x = ln−κ x; the scaling relations: expκ(ax) = (expκ′ x)a, lnκ xa =
a lnκ′ x, with κ′ = aκ; and the algebraic properties:

expκ x expκ(−x) = 1 , lnκ x + lnκ(1/x) = 0 , (28)

analogous to the well-known relations of the standard exponential and logarithm.
By using the definitions of the κ-numbers and κ-exponential, we obtain:

expκ x = expx{κ} , expκ x
{κ} = expx . (29)

That is, the κ-exponential of a real number coincides with the standard exponential of the corresponding
κ-number. Differently, for the κ-logarithm, we have:

lnκ x = (lnx){κ} , (lnκ x){κ} = lnx , (30)

that is, the κ-logarithm of a real number is given by the κ-number of the corresponding logarithm.
These relations, jointly with the definition of the κ-sum and the κ-product, give us the following

properties:

expκ(x⊕ y) = expκ x ⋅ expκ y , lnκ(x ⋅ y) = lnκ x⊕ lnκ y , (31)

and, by iteration, we obtain:

expκ (n{κ} ⊗ x) = (expκ x)n , lnκ x
n = n{κ} ⊗ lnκ x . (32)

Finally, let us make the following consideration. Accounting for Equations (8) and (9), which here we
rewrite in x{κ} = f(x) and x{κ} = f−1(x), with f(x) = κ−1 arcsinh(κx), the κ-sum and the κ-product
can be redefined as:

x⊕ y = f−1(f(x) + f(y)) , x⊗ y = f−1(f(x) ⋅ f(y)) . (33)
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We introduce a new continuous deformation of the standard exponential and logarithm according to:

ẽxpκx = f−1 ○ exp ○f(x) , l̃nκx = f−1 ○ ln ○f(x) , (34)

with l̃nκ(ẽxpκx) = ẽxpκ(l̃nκx) = x and where f ○ g(x) means f(g(x)). They recover the standard
exponential and logarithm in the κ → 0 limit. Actually, these functions are related to the κ-exponential
and the κ-logarithm, as follows:

(ẽxpκx){κ} ≡ expκ x , lnκ x ≡ l̃nκx
{κ} , (35)

although they fulfil the relations:

ẽxpκ(x⊕ y) = ẽxpκx⊗ ẽxpκy , l̃nκ(x⊗ y) = l̃nκx⊕ l̃nκy , (36)

which, in the picture of the κ-algebra, turn out to be more symmetric than Equations (31).

2.2. κ-Calculus

As shown in the previous section, the algebraic relations of the standard exponential and logarithm can
be opportunely reformulated by means of the κ-algebra. This formal equivalence between the standard
mathematics and the κ-deformed formalism can be pushed over throughout the κ-calculus.
Following [6], we introduce the κ-differential dκx according to:

dκx = lim
dx→0
(x + dx)⊖ x , (37)

and recalling the definition of the κ-difference, we obtain:

dκx =
dx√

1 + κ2 x2
+ o(dx) . (38)

Therefore, at the first order in dx, the κ-differential coincides with the differential of the κ-numbers:

dκx ≡ dx{κ} . (39)

In the same way, the κ-differential of a function can be expressed in:

dκf(x) = lim
dx→0

f(x + dx)⊖ f(x) , (40)

and after a bit of algebra, we get:

dκf(x) =
df(x)√

1 + κ2 f(x)2
+ o(dx) . (41)

In this way, we can show that dκ(a⊕ x) = dκx, dκ(x⊕ y) = dκx + dκy, as well as dκ(a⊗ x) = a{κ} ⋅ dκx.
In this sense, the κ-differential is κ-linear:

dκ((a⊗ x)⊕ (b⊗ y)) = a{κ} dκx + b{κ} dκy , (42)

where a and b are constants and fulfill the Leibniz rule:

dκ(x⊗ y) = dκx ⋅ y{κ} + x{κ} ⋅ dκy . (43)
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We define the κ-derivative according to:

( d

dx
)
κ

≡ d

dκx
, (44)

which is related to the standard derivative by:

d

dκx
=
√
1 + κ2 x2

d

dx
. (45)

As a consequence, it can be shown that the κ-exponential corresponds to the eigenfunction of the
κ-derivative:

d

dκx
expκ x = expκ x , (46)

that is, the quantity expκ(x)dκx coincides with the exact differential d expκ x. Many relations of the
standard calculus still hold if opportunely reformulated in the κ-formalism. For example, we have:

d

dκx
expκ(c⊕ x) = expκ(c⊕ x) , (47)

d

dκx
expκ(c⊗ x) = c{κ} expκ(c⊗ x) . (48)

Finally, we introduce the κ-integral as the inverse operator of the κ-derivative according to:

( d

dx
)
κ

(∫ f(x)dκx) = ∫ (
d

dx
)
κ

f(x)dκx = f(x) , (49)

extending, in this way, the fundamental theorem of the integral calculus to the κ-formalism.
It is worthwhile to note that the κ-integral can be written as a weighted integral:

∫ f(x)dκx = ∫
f(x)√
1 + κ2 x2

dx ≡ ∫ f(x)w(x)dx , (50)

where:

w(x) = 1√
1 + κ2 x2

, (51)

and under a changing of variable, the κ-integral transforms according to:

∫ f(x)dκx = ∫ f(y(x))J(x)dκy , (52)

with:

J(x) = (dy(x)
dx
)
−1 √1 + κ2 y(x)2
√
1 + κ2 x2

. (53)

3. Euler Formula and κ-Cyclic Trigonometric Functions

In this section, we present two possible κ-deformations of the Euler formula for the complex
exponential and derive the corresponding trigonometric functions in the framework of the κ-formalism.
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3.1. First Case

The first possible definition of the complex κ-exponential is given by:

(expκ x)
i = expκ(i{κ} ⊗ x) ≡ exp (i x{κ}) , (54)

where:

i{κ} = i sinκ
κ

. (55)

The complex number z = (expk x)i describes the unitary circle in the complex plane like the function
exp(i x) does. Therefore, Function (54) has a unitary modulus for any x ∈ R. However, noting that
∣x∣ > ∣x{κ}∣, as well as the difference ∣x− x{κ}∣ increases as ∣x∣→∞, it follows that the circle is revolving
around slowly as ∣x∣ grows. This implies that the function (expκ x)i maps the unitary circle with a period
that increases as ∣x∣ increases.

We introduce the first family of κ-deformed cyclic functions C(1) ≡ {sinκ x, cosκ x, tanκ x} according
to the Euler formula:

(expκ x)
i = cosκ x + i sinκ x . (56)

By observing that:

[(expκ x)
i]∗ = (expκ(−x))

i
, (57)

where ∗ means the complex conjugate; we obtain:

sinκ x =
(expκ x)

i − (expκ(−x))
i

2 i
,

cosκ x =
(expκ x)

i + (expκ(−x))
i

2
, (58)

tanκ x =
sinκ x

cosκ x
,

and accounting for Equation (54), the functions in C(1) are related to the standard trigonometric
functions as:

sinκ x = sinx{κ} , cosκ x = cosx{κ} , (59)

that is, the κ-trigonometric functions of a real number x coincide with the corresponding standard
trigonometric functions of the κ-number x{κ}. As a consequence, the κ-cyclic functions are periodic like
the standard functions sinx and cosx, although their period is not constant, but increases for ∣x∣→∞, in
agreement with our previous considerations.

This can be easily verified observing that:

sinκ x = sinκ x
′ when x′ = (x{κ} + 2nπ){κ} , (60)

so that, for large x, we obtain:

∆lnx ≃ 2nπ κ , (61)
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where ∆lnx = lnx′ − lnx. This behavior is shown in Figure 1, where we plot the function sinκ x for
several values of κ. The same picture is reproduced in Figure 2 in a linear-log scale, where it is clear
as the periods become constant for large ∣x∣, whilst it grows as the parameter κ increases, in agreement
with Equation (61).
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Figure 1. Linear-linear plot of sinκ x given in Equation (58) for several values of the
deformation parameter κ.
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Figure 2. Linear-log plot of sinκ x given in Equation (58) for several values of the
deformation parameter κ.
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Within the κ-formalism, it is straightforward to verify that the functions in C(1) preserve the algebraic
structure of the ordinary cyclic functions. The standard relations are recovered in the κ → 0 limit. For
example:

sin2
κ x + cos2κ x = 1 ,

sinκ(x⊕ y) = sinκ x cosκ y + cosκ x sinκ y , (62)

sinκ(2{κ} ⊗ x) = 2 sinκ x cosκ y ,

(cosκ x + i sinκ x)n = cosκ(n{κ} ⊗ x) + i sinκ(n{κ} ⊗ x) ,

as well as the main κ-derivative relations:

d

dκx
sinκ x = cosκ x ,

d

dκx
cosκ x = − sinκ x , (63)

d

dκx
tanκ x = −

1

cos2κ x
,

to show a few.
Finally, let us observe that the functions sinκ x and cosκ x can be derived starting from the following

κ-differential equation:

d2 u(x)
dκx2

+ a2{κ} u(x) = 0 , (64)

with a{κ} a constant, which can be rewritten in the form of a Sturm–Liouville equation:

d

dx
(
√
1 + κ2 x2

du(x)
dx
) +

a2{κ}√
1 + κ2 x2

u(x) = 0 , (65)

corresponding to Equation (4) with p(x) =
√
1 + κ2 x2, q(x) = 0 and the weight function w(x) =

1/
√
1 + κ2 x2. It is easy to verify that a solution of Equation (65), fulfilling the boundary conditions:

u(−h) = u(h) = 0 , (66)

is given by

u(x) ≡ φn(x) = A sinκ(an ⊗ x) , (67)

while a solution that fulfills the condition:

u′(−h) = u′(h) = 0 , (68)

where u′(x) = du(x)/dx is:

u(x) ≡ ϕn(x) = A cosκ(an ⊗ x) , (69)

provided that an ≡ (nπ/h{κ}){κ}.
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3.2. Second Case

The second generalization of the complex κ-exponential follows by replacing the argument of the
κ-exponential with a purely imaginary quantity: x → i x. This definition was firstly introduced in [32],
and the resulting complex κ-exponential reads:

expκ(i x) ≡ exp(i x){κ} = exp(i x[κ]) , (70)

where the numbers x[κ] and their dual x[κ] are given by:

x[κ] =
1

κ
arcsin(κx) , x[κ] = 1

κ
sin(κx) , (71)

with (x[κ])[κ] = (x[κ])[κ] = x. They are related to the numbers x{κ}, that is x[κ] = x{κ′}, according to the
parameter transformation:

κ→ κ′ = i κ , (72)

as well as, by using the scaling properties of expκ x, Equation (70) is related to Equation (54) as:

expκ(i x) = (expi κ x)
i ≡ (expκ′ x)

i
. (73)

However, Function (70) is characterized by an unitary modulus for ∣x∣ ≤ 1/∣κ∣, while, for ∣x∣ > 1/∣κ∣, the
value of ∣ expκ(i x)∣ increases monotonically:

∣ expκ(i x)∣ = 1 for ∣x∣ ≤ 1/∣κ∣ , (74)

∣ expκ(i x)∣ = (κx +
√
κ2 x2 − 1)

1/κ
for ∣x∣ > 1/∣κ∣ . (75)

According to the Euler formula, we introduce a second family of κ-deformed trigonometric functions
C(2) ≡ {Sinκx, Cosκx, Tanκx} given by:

expκ(i x) = Cosκx + iSinκx , (76)

and in this case, the definitions of the κ-cyclic functions become:

Sinκx =
expκ(i x) − expκ(−i x)

2 i
,

Cosκx =
expκ(i x) + expκ(−i x)

2
, (77)

Tanκx =
Sinκx

Cosκx
.

Remark that, as follows from Equation (70), the functions in C(2) are linked to the standard
trigonometric functions as:

Sinκx = sinx[κ] , Cosκx = cosx[κ] . (78)

Notice that the quantities [x]κ take real values for ∣x∣ ≤ 1/∣κ∣, and consequently, like expκ(i x), the
functions in C(2) have a real image and modulus unitary only in the interval ∣x∣ ≤ 1/∣κ∣. In additions,
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the wavelength of Sinκx and Cosκx reduces for ∣x∣ → 1/∣κ∣, as well as it increases as ∣κ∣ grows. For
∣κ∣ > 1/4, the periods of these functions become grater than their real domain, and the functions cease to
be periodic.

These facts are shown in Figure 3, where we plot the shape of Sinκx given in Equation (77), in its real
domain, for several values of the deformation parameter κ.

-10 -5 0 5 10

-1

0

1

 

 

 

 Si
n

 x

x

 = 0.1

-2 0 2

-1

0

1

  

 

 

Si
n

 x

 = 0.3

x

-1,0 -0,5 0,0 0,5 1,0

-1

0

1

  

 

 x

 = 0.9

Si
n

 x

-1 0 1

-1

0

1

 

 

 

 Si
n

 x

x

 = 0.6

Figure 3. Linear-linear plot of Sinκx given in Equation (77), in its real domain ∣x∣ ≤ 1/∣κ∣,
for several values of the deformation parameter κ.

In passing, let us observe that the relation (i x){κ} = i x[κ] introduces a different definition for the
κ-sum and the κ-product, which follows from Equation (33) with f(x) = κ−1 arcsin(κx). They are
given by:

x⊕ y = 1

κ
sin (arcsin (κx) + arcsin (κy) ) , (79)

x⊗ y = 1

κ
sin(1

κ
arcsin (κx) ⋅ arcsin (κy)) , (80)

as well as the κ-derivative becomes:

( d

dx
)
[κ]
≡ d

d[κ]x
= dx

dx[κ]

d

dx
=
√
1 − κ2 x2

d

dx
, (81)

so that d[κ]x = dx[κ].
Consequently, all of the fundamental relations of the trigonometric functions, including the related

calculus, turn out to be re-obtained in the corresponding κ-formalism. For instance, we have:
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Sin2
κx +Cos2κx = 1 ,

Sinκ(x⊕ y) = SinκxCosκy +CosκxSinκy , (82)

Sinκ(2[κ]⊗x) = 2SinκxCosκy ,

(Cosκx + iSinκx)n = Cosκ (n[κ]⊗x) + iSinκ (n[κ]⊗x) ,

as well as:

d

d[κ]x
Sinκx = Cosκx ,

d

d[κ]x
Cosκx = −Sinκx , (83)

d

d[κ]x
Tanκ(x) = −

1

Cos2κx
,

and so on.
Finally, we can obtain the functions Sinκx and Cosκx from a Sturm–Liouville problem. In fact, they

are related to the following differential equation:

d2 u(x)
d[κ]x2

+ a2[κ] u(x) = 0 , (84)

which coincides with Equation (4) with p(x) =
√
1 − κ2 x2, q(x) = 0 and w(x) = 1/

√
1 − κ2 x2. A

solution of Equation (84) fulfilling the boundary condition u(−h) = u(h) = 0 is given by:

u(x) ≡ φn = ASinκ(an⊗x) , (85)

while under the condition u′(−h) = u′(h) = 0, the solution is:

u(x) ≡ ϕn = ACosκ(an⊗x) , (86)

where an = (nπ/h[κ])[κ].

4. Orthogonality and Completeness Relations

In this section, we discuss the orthogonality and completeness relations for the two family C(1) and
C(2) of the κ-trigonometric functions.

Firstly, we introduce in the space of the square-integrable functions L2[−h, h] the scalar product:

⟨f, g⟩w =
h

∫
−h

f(x) g(x)w(x)dx , (87)

where w(x) is a suitable weight function. When w(x) = 1/
√
1 + κ2 x2, Equation (87) reduces to the

κ-integral (50). Therefore, we define the scalar product in the κ-formalism according to:

⟨f, g⟩{κ} =
h

∫
−h

f(x) g(x)d{κ}x . (88)
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Let Φ(1) be the set of square-integrable functions L2[−h, h] given by:

Φ(1) = {φn ≡
1√
h
sinκ(an ⊗ x), ϕm ≡

1√
h
cosκ(am ⊗ x)} , (89)

where an are given constant, with n = 1, 2, . . . and m = 0, 1, . . ..
Accounting for the results presented in Section 3.1, it is straightforward to show that Φ(1) forms a set

of orthogonal functions in L2[−h, h] when:

an =
1

κ
sinh( nπ κ2

arcsinh(κh)
) ≡ ( nπ

h{κ}
)
{κ}

. (90)

This can be easily verified by considering, for instance, the following scalar product:

⟨φn, ϕm⟩{κ} =
h

∫
−h

sinκ(an ⊗ x) cosκ(am ⊗ x)d{κ}x

=
h

∫
−h

sin(an ⊗ x){κ} cos(am ⊗ x){κ} dx{κ}

=
h

∫
−h

sin ((an){κ} x{κ}) cos ((am){κ} x{κ}) dx{κ} , (91)

and denoting y = x{κ} and a′n = (an){κ}, we obtain:

⟨φn, ϕm⟩{κ} =
h{κ}

∫
−h{κ}

sin(a′n y) cos(a′m y)dy , (92)

which coincides with the orthogonality condition between the sine and the cosine functions in
the standard Fourier series theory. Orthogonality is recovered for a′n = nπ/h{κ}, which implies
Equation (90).

Actually, this was expected, since, as is known, any pair of solutions of a Sturm–Liouville problem
belonging to different eigenvalues is orthogonal with respect to an opportunely weighed scalar product.

In the same way, the completeness relation follows from the Sturm–Liouville theory and it is stated
by the relation:

∞
∑
n=1

un(x)un(y)w(x) = δ(x − y) , (93)

where un(x) are eigenfunctions of the given problem. In order to prove the completeness relation for
the system C(1) we start by the well-known relation:

2

h

∞
∑
n=1

sin(nπ
h

x) sin(nπ
h

y) = δ(x − y) . (94)

Substituting x→ x{κ}, the sine function transforms as:

sin(nπ
h

x) → sin(nπ
h

x{κ})

= sinκ (
nπ

h
x{κ})

{κ}

≡ sinκ (an ⊗ x) , (95)
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with an given in Equation (90).
On the other hand, the right-hand side of Equation (94) changes in:

δ(x − y) → δ (x{κ} − y{κ}) = δ(x − y)
√
1 + κ2 x2 , (96)

according to the following propriety of the Dirac delta function:

δ(f(x)) =∑
i

δ(x − xi)
df(x)/dx∣

x=xi

. (97)

By inserting Equations (95) and (96) into Equation (94), we finally obtain:

2

h

∞
∑
n=1

sinκ (an ⊗ x) sinκ (an ⊗ y) 1√
1 + κ2 x2

= δ(x − y) , (98)

which is the required completeness relation for the κ-sine functions. Similar arguments can be applied
to derive the completeness relation of the κ-cosine functions stated in:

2

h

∞
∑
n=0

cosκ (an ⊗ x) cosκ (an ⊗ y) 1√
1 + κ2 x2

= δ(x − y) . (99)

Passing to the family C(2), we do not have a significant difference with respect to the arguments
discussed above. Therefore, we can affirm that the set of functions:

Φ(2) =
⎧⎪⎪⎨⎪⎪⎩
φn ≡

√
2

h
Sinκ(an⊗x), ϕm ≡

√
2

h
Cosκ(am⊗x)

⎫⎪⎪⎬⎪⎪⎭
, (100)

with:

an =
1

κ
sinh( nπ κ2

arcsin(κh)
) ≡ ( nπ

h[κ]
)
[κ]

, (101)

form a system orthonormal and completed in the space of the square-integrable functions L2(−h, h) ⊆
L2(−1/∣κ∣, 1/∣κ∣).

5. Generalized Fourier Series

In mathematical analysis, generalized Fourier series are introduced as special cases of decompositions
over a given orthonormal basis of an inner product space.

By specializing to the present situation, any square-integrable function f(x) ∶ (−h, h) → R,
satisfying the boundary conditions (66) with an odd parity, may be expanded in the κ-sine Fourier series
with respect to the orthogonal base φn ∈ Φ(1) according to:

f(x) =
∞
∑
n=1

sn sinκ(an ⊗ x) , (102)

where the coefficients sn are unique constants given by:

sn = ⟨f(x), φn(x)⟩{κ} ≡
√

2

h

h

∫
0

f(x) sinκ(an ⊗ x)d{κ}x , n = 1, 2, . . . . (103)
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In the same way, any square-integrable function f(x) ∶ (−h, h)→R, satisfying the boundary conditions
(68) with an even parity, may be expanded in the κ-cosine Fourier series with respect to the orthogonal
base ϕn ∈ Φ(1), according to:

f(x) = c0 +
∞
∑
n=1

cn cosκ(an ⊗ x) , (104)

where the coefficients c0 and cn are unique constants given by:

c0 = ⟨f(x), 1⟩{κ} ≡
√

2

h

h

∫
0

f(x)d{κ}x , (105)

cn = ⟨f(x), φn(x)⟩{κ} ≡
√

2

h

h

∫
0

f(x) cosκ(an ⊗ x)d{κ}x , n = 1, 2, . . . , (106)

and more in general, any square-integrable function f(x) ∶ (−h, h) → R, with no well-defined parity,
may be expanded in the κ-Fourier series with respect to the orthogonal base Φ(1), according to:

f(x) = c0 +
∞
∑
n=1
(sn sinκ(an ⊗ x) + cn cosκ(an ⊗ x)) , (107)

with coefficients given in Equations (103), (105) and (106).
The κ-Fourier series (107) can be eventually written in the complex form by using formulas (58) as:

f(x) =
∞
∑

n=−∞
γn (expκ(an ⊗ x))i , (108)

where the complex Fourier coefficients are given by:

γn =
1√
2h

h

∫
0

f(x) (expκ(an ⊗ x))i d{κ}x , (109)

and are related to the real Fourier coefficients in γ−n = (cn − i sn)/2 and γn = (cn + i sn)/2.
The completeness of the system Φ(1) implies the Parseval relation for the coefficients cn and sn:

c20 +
∞
∑
n=1
(c2n + s2n) =

2

h

h

∫
0

f(x)2 d{κ}x , (110)

or more in general, for any two real functions f(x) and g(x) belonging to L2(−h, h) and than expandable
in the complex Fourier series with coefficients γn and δn, we have:

∞
∑

n=−∞
γn δ

∗
n =

1

2h

h

∫
0

f(x) g(x)d{κ}x , (111)

from which the Parseval theorem (110) follows for f(x) = g(x).
At this point, it is worth stating that the κ-Fourier series (107) actually is equivalent to a standard

Fourier series of a suitably-transformed function. In fact, by means of the substitution x → x{κ}, it is
straightforward to change Equation (107) in:

f (x{κ}) = c0 +
∞
∑
n=1
(sn sin(a′n x) + cn cos(a′n x)) , (112)



Entropy 2015, 17 2828

where the Fourier coefficients are now given by:

sn =
√

2

h

h{κ}

∫
0

f (x{κ}) sin(a′n x)dx , n = 1, 2, . . . , (113)

cn =
√

2

h

h{κ}

∫
0

f (x{κ}) cos(a′n x)dx , n = 0, 1, . . . , (114)

with a′n = 2π n/h. They coincide with the well-known relations of the standard Fourier theory for the
expansion of the function f (x{κ}).

Finally, all of the above considerations still hold, opportunely modified, for the set of functions C(2).
Explicitly, any square-integrable function f(x) ∶ (−h, h) ⊆ (−1/∣κ∣, 1/∣κ∣)→R admits a decomposition
in the orthogonal base Φ(2) as:

f(x) = c0 +
∞
∑
n=1
(sn Sinκ(an⊗x) + cnCosκ(an⊗x)) , (115)

where the coefficients sn and cn are the unique constants given by:

sn = ⟨f(x), φn(x)⟩[κ] ≡
√

2

h

h

∫
0

f(x)Sinκ(an⊗x)d[κ]x , n = 1, 2, . . . , (116)

cn = ⟨f(x), ϕn(x)⟩[κ] ≡
√

2

h

h

∫
0

f(x)Cosκ(an⊗x)d[κ]x , n = 0, 1, 2, . . . , (117)

with ϕ0(x) ≡ 1 and fulfilling the Parseval relation:

c20 +
∞
∑
n=1
(c2n + s2n) =

2

h

h

∫
0

f(x)2 d[κ]x . (118)

Furthermore, in this case, the κ-Fourier series (115) of the function f(x) is equivalent to a standard
Fourier series of the transformed function f(x[κ]).

6. Final Remarks

In this paper, we have studied two possible generalizations of the complex exponential in the
framework of the κ-formalism. They are given by:

exp(i x)→ (expκ x)i ≡ exp(f
(m)
κ (x))

i
, (119)

where the generating function f
(m)
κ (x) is defined by:

f
(1)
κ (x) =

1

κ
arcsinh(κx) , (120)

in the first formalism and by:

f
(2)
κ (x) =

1

κ
arcsin(κx) , (121)
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in the second formalism.
The same functions introduce two different Abelian structures on the real κ-numbers x{κ} and x[κ],

which are endowed by a generalized sum and product, defined as (in the text, for the sake of notations, the
generalized operations associated with the κ-numbers x[κ] have been denoted by ⊕ and ⊗, respectively):

x⊕ y = f−1κ (fκ(x) + fκ(y)) , (122)

x⊗ y = f−1κ (fκ(x) ⋅ fκ(y)) , (123)

where fκ ≡ f (1)κ or fκ ≡ f (2)κ , respectively.
According to the Euler formula, we have introduced two families of κ-deformed cyclic functions with

different properties. The family C(1) is formed by oscillating functions defined on the whole R with a
period that increases as ∣x∣→∞. They turn out to be asymptotically log-periodic. Differently, the family
C(2) is formed by oscillating functions defined in the limited region (−1/∣κ∣, 1/∣κ∣) with a period that
shrinks as ∣x∣ → 1/∣κ∣. In both cases, we have verified that the main algebraic relations of the standard
trigonometric functions are preserved within the corresponding κ-formalism.

We have introduced two systems of κ-deformed cyclic functions Φ(m) related to two different
Sturm–Liouville problems. Orthogonality and completeness relations for the systems Φ(m) are then
obtained in the framework of the Sturm–Liouville theory and have been used to introduce two
different κ-deformed Fourier series in the space of the square-integrable functions in L2(−h, h) and
L2(−1/∣κ∣, 1/∣κ∣), respectively. In both cases, the corresponding κ-Fourier series can be recast in an
ordinary Fourier series of a suitably κ-deformed function.

In spite of this, the present formalism can be fruitfully applied to the fractional analysis of functions
defined in a fractal space, a subject that has been raising certain interest in the recent literature [35–38].
We conclude this paper by presenting briefly a possible application of the κ-Fourier expansion based
on the system of functions Φ(1) for the study of log-periodic oscillating phenomena. This is a typical
behavior that characterizes a wide class of self-similar systems having discrete scaling invariance [39].
It has been observed in different situations characterized by the presence of geometrical fractals [40] or
self-similarity distributions [41] and is often related to the renormalization-group problem [42].

Like in the standard Fourier analysis, where a periodic function may be decomposed into a
superposition of harmonic modes, giving us information about the spectral composition of the underlying
phenomena, log-periodic functions can be analyzed with the same purpose by means of the κ-cyclic
functions belonging to C(1). Without entering into the details of the problem, which are outside the
scope of the present work, we just illustrate the potentiality of the method by considering the spectral
decomposition of a trivial log-oscillating function, namely:

f(x) = cos(2πmlog(x)) . (124)

In Figure 4, we report the absolute value of the first n = 100 Fourier coefficients sn and cn of
Function (124), with m = 50, evaluated in the period [e, e2] (a) for κ = 0.0, corresponding to the standard
case and (b) for κ = 0.1. Clearly, in both cases, a large dispersion of the coefficient values around the
m = 50 harmonic is observed, although in (b), this dispersion is sensibly narrower than in (a). Thus,
in this situation, it seems that there is not a significative advantage in the use of the κ-Fourier analysis
with respect to the standard one. This occurs since the onset of the log-periodic behavior of the κ-cyclic
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functions arises in the asymptotic region and then is not yet established in the windows [e, e2]. However,
taking advantage of the periodicity of f(x), we can analyze its spectrum equivalently in the highest
region, namely [e19, e20], as shown in (c). Here, the log-periodic behavior of the κ-sine and κ-cosine
functions is almost exact, and as expected, the spectrum corresponds to that of an exact monochromatic
oscillation with only the s50 and c50 coefficients different from zero. Actually, one should expect the sole
coefficient c50 to be different from zero, since, after all, we are decomposing a monochromatic cos− log
function. The presence of both of the coefficients, is caused by the initial region where the functions φn

and ϕn do not have a log-periodic behavior. This causes a phase shift between the analyzed function and
the harmonic waves used in the expansions. This phase shift may be tuned by acting on the deformation
parameter, as shown in (d), where the only harmonic, corresponding to c50 = 1, exists.
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Figure 4. First n = 100 Fourier coefficients of the log-periodic function cos(2πm ln(x)),
with m = 50, evaluated for: (a) the standard Fourier series (κ = 0.0) in the period [e, e2];
(b) the κ-Fourier series in the period [e, e2]with κ = 0.1; (c) the κ-Fourier series in the period
[e19, e20] with κ = 0.1; and (d) the κ-Fourier series in the period [e19, e20] with κ = 0.5.
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