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Abstract: Safety control of concrete dams is required due to the potential great loss of life 

and property in case of dam failure. The purpose of this paper is to feed back the 

operational control loads for concrete dam displacement using the maximum entropy method. 

The proposed method is not aimed at a judgement about the safety conditions of the dam. 

When a strong trend-line effect is evident, the method should be carefully applied. In these 

cases, the hydrostatic and temperature effects are added to the irreversible displacements, 

thus maximum operational loads should be accordingly reduced. The probability density 

function for the extreme load effect component of dam displacement can be selected by 

employing the principle of maximum entropy, which is effective to construct the least 

subjective probability density distribution merely given the moments information from the 

stated data. The critical load effect component in the warning criterion can be determined 

through the corresponding cumulative distribution function obtained by the maximum entropy 

method. Then the control loads feedback of concrete dam displacement is realized by the 

proposed warning criterion. The proposed method is applied to a concrete dam. A comparison 

of the results shows that the maximum entropy method can feed back rational control loads 

for the dam displacement. The control loads diagram obtained can be a straightforward and 

visual tool to the operation and management department of the concrete dam. The result 

from the proposed method is recommended to be used due to minimal subjectivity. 
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1. Introduction 

Safety control of concrete dams is important because a dam failure can cause a great loss of life and 

property downstream [1,2]. Observations from concrete dams are reliable in the operational control 

because they are the most direct reflections of the dam behavior. Displacement has been regarded as 

one of the most important monitoring items for dam safety, and an interpretation model of dam 

displacement has been established to explain and predict this feature. The practical interpretation 

model of a concrete dam can be obtained by inputting the observations (environmental loads and 

displacements) into the theoretical model. The model establishes the relationship between the 

environmental loads and the corresponding displacements. Adverse combinations of environmental 

loads contribute enormously to extreme displacements which may indicate a warning about the state of 

the dam. Critical control loads can be fed back to the operation and management department by 

analyzing the practical interpretation model and the operation situation of the dam. Then actual 

operational control can be performed by dam operators. 

In recent decades, dam displacement analysis has concentrated on the interpretation, prediction and 

safety monitoring index determination [3–8]. Other research on feedback analysis of operation and 

control loads based on displacement observations is a rare occurrence. However, operational control 

loads are significant for the management of concrete dams. When acquainted with the control loads, 

the relevant staff will be reminded to adjust the operation plan when the environmental loads are close 

to the critical control loads. 

Operation and control loads feedback for the crack deformation in concrete dams has been analyzed 

in several references [9–11]. Gu et al. [9] put forward the feedback analysis method of operation and 

control loads for concrete dams with cracks and derived the control loads formula. Li et al. [10] 

applied the Kolmogorov–Smirnov (K–S) test method to find the probability density functions of stress 

intensity factors based on which the fracture toughness of concrete dams was inverted to carry out the 

control loads feedback for the crack deformation. Lei et al. [11] also applied the Kolmogorov–Smirnov 

test method to invert the fracture toughness which is used to determine the control loads for crack 

deformation. 

In statistics, the Kolmogorov–Smirnov test is a nonparametric test of the equality of continuous, 

one-dimensional probability distributions that can be used to compare a sample with a reference 

probability distribution. The Kolmogorov–Smirnov statistic quantifies a distance between the empirical 

distribution function of the sample and the cumulative distribution function of the reference distribution. 

The null distribution of this statistic is calculated under the null hypothesis that the sample is drawn 

from the reference distribution. The null distribution is accepted for the sample if the statistic 

converges to zero. Therefore, Kolmogorov–Smirnov test has a high subjective content. 

Compared with the Kolmogorov–Smirnov test, the maximum entropy method (MEM) [12–14] 

selects the least subjective probability density function (PDF) which maximizes the entropy subject to 
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the moment constraints. The rationale of this approach is that only the moment constraints from the 

stated prior data are considered. It is based on Shannon’s measure of uncertainty and has been used for 

estimating distribution functions. In recent years, The maximum entropy method has achieved good 

performances in the structural reliability analysis [15,16], the geotechnical engineering back analysis [17], 

the probability distribution of rock mechanics parameters [18] and many other fields [19–22]. 

In this study, the maximum entropy method is used to approximate the probability density function 

for the extreme load effect component of dam displacement. The critical load effect component is 

determined by taking a certain exceedance probability in the cumulative distribution function (CDF) 

obtained by the proposed method. The rationale of this approach is that the PDF maximizing entropy is 

the least subjective PDF subject to the moment information. 

The remainder of this paper is organized as follows: in Section 2, an interpretation model of 

concrete dam displacement is presented. In Section 3, we outline the maximum entropy method for 

selecting the approximate density distribution function of the extreme load effect component from 

knowledge of moments. The critical load effect component in the warning criterion is determined by 

the corresponding cumulative distribution function and then the control loads feedback for dam 

displacement is realized by the proposed warning criterion. A numerical example is analyzed using the 

proposed method and the corresponding results are discussed in Section 4. Finally, some conclusions 

are given in Section 5. 

2. Interpretation Model of Concrete Dam Displacement 

Concrete dam displacement is the result of many effects, including environmental factors, hydraulic 

factors and geological factors. In the displacement interpretation model which has been applied in 

practice successfully, dam displacement can be approximated by the sum of three components which 

are a hydrostatic pressure component, a temperature component and a time effect component, 

respectively [3,5]: 

( ) ( ) ( )H T tδ δ δ δ ε= + + +  (1)

where δ is the observed dam displacement, δ(H) is the dam displacement caused by the hydrostatic 

pressure factor, δ(T) is the dam displacement caused by the temperature factor, δ(t) is the component 

due to the time effect, and ε  is the random error term.  

The hydrostatic pressure component δ(H) is caused by the reservoir water pressure on the dam body 

and the foundation. Through engineering mechanics analysis, δ(H) is usually approximated by 

polynomials depending on the height H of the water in the reservoir: 
4

1

( ) i
i

i

H a Hδ
=

=  (2)

where ai is the corresponding coefficient.  

The temperature component δ(T) of dam displacement is mainly caused by the temperature 

variation of the dam concrete and bedrock. Thermometer measurements of dam concrete and bedrock 

can be selected as factors in the temperature component. However, internal thermometers are normally 

not embedded in many dams during construction. Besides, dam temperature field is generally in the 
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quasi-steady state after years of operation, so the temperature can be represented with a periodic 

function. Thus, the temperature component can be expressed as follows: 
2

1 2
1

2 2
( ) sin cos

365 365i i
i

it it
T b b

π πδ
=

 = + 
 

  (3)

where t represents the cumulative number of days from the initial measured day to the day of 

observation; b1i and b2i are the regression coefficients corresponding to the temperature component. In 

the next Section 3, a different expression for the temperature displacement will be introduced, in order 

to correlate the measured temperature to the observed displacement. 

The time effect displacement δ(t) varies dramatically during the initial water impoundment, and 

then gradually but steadily over time. Through the developing trend analysis of displacement 

observations and the remaining value δ − δ(H) − δ(T), the mathematic expression of the time effect 

component can be determined reasonably. For a concrete dam operating for years, the time effect 

component can be expressed as follows:  

1 2( ) lnt c cδ θ θ= +  (4)

where 100tθ = , t  has the same meaning with that in Equation (3); 1c  and 2c  are the corresponding 

coefficients. 

Finally, with the initial reference observations into consideration, the dam displacement response in 

the interpretation model can be expressed by: 

( )
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 (5)

where the subscript 0 denotes the initial reference day of the analysis sequence. The unknown 

coefficients can be determined by the least squares method. 

3. Maximum Entropy Method for the Control Loads Feedback  

Here the maximum entropy method is used to approximate the PDF for the extreme load effect 

component of dam displacement. The load effect component is extracted from the dam displacement 

interpretation model. The critical load effect component is determined by taking a certain exceedance 

probability in the CDF obtained by the maximum entropy method. Ultimately, the proposed warning 

criterion is employed to get the control loads for dam displacement. 

3.1. Warning Criterion for Dam Displacement  

Displacements of concrete dams result from two effects: one of elastic nature (reversible and 

instantaneous) due to the variations of the hydrostatic pressure and the temperature and the other of 

inelastic nature (irreversible) such as a time effect. The time effect component of dam displacements 

comes from many aspects including long-term adverse loads, creep and plastic deformations of dam 

concrete, and self-grown volume deformations. The time effect component reflects much of the dam 

deformation trend, and it is caused primarily by the environmental loads acting on the dam. Here we 
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focus on the load effect component which is the sum of the hydrostatic pressure component and the 

temperature component. When the load effect component exceeds a certain limit, the dam 

displacement will exceed its operational value which indicates the normal behavior of the dam. Herein, 

the certain limit is defined as the critical load effect component of the dam displacement. The proposed 

method is not aimed at a judgement about the safety conditions of the dam. When a strong trend-line 

effect is evident, the method should be carefully applied. In these cases, the hydrostatic and 

temperature effects are summed to the irreversible displacements, thus maximum operational loads 

should be accordingly reduced. 

Generally, (+) signs in the dam displacement observations indicate displacements towards 

downstream and (‒) signs towards upstream. Excessive displacements towards downstream or 

upstream are both warning values for the operation of the dam. Thus, there are two critical load effect 

components of dam displacement which are for the maximum load effect components and for the 

minimum load effect components respectively. Then the warning criterion of dam displacement 

behavior is put forward as follows: 

min max

min max

min max

( , ) ( , ) ( , ), normal condition

( , ) ( , ) or ( , ) ( , ), critical condition

( , ) ( , ) or ( , ) ( , ), warning condition

C C

C C

C C

H T H T H T

H T H T H T H T

H T H T H T H T

δ δ δ

δ δ δ δ

δ δ δ δ

< <
= = 


< > 

 (6)

where max ( , )
C

H Tδ  and min ( , )
C

H Tδ  are two critical values for the maximum load effect components and 

the minimum load effect components respectively, ( , ) ( ) ( )H T H Tδ δ δ= + . 

3.2. Maximum Entropy Method for the Determination of Critical Load Effect Component 

The principle of maximum entropy (PME) is applied to approximate the PDF for the extreme load 

effect component and further to determine the critical load effect component of dam displacement. The 

principle of maximum entropy was first expounded by E. T. Jaynes in 1957 [12–14] where he 

emphasized a natural correspondence between statistical mechanics and information theory. The 

principle of maximum entropy states that, subject to precisely stated prior data, the probability 

distribution which best represents the current state of knowledge is the one with largest entropy. In 

ordinary language, the principle of maximum entropy can be said to express a claim of epistemic 

modesty, or of maximum ignorance. The selected distribution is the one that makes the least claim to 

being informed beyond the stated prior data, that is to say the one that admits the most ignorance 

beyond the stated prior data. 

In 1948 Shannon defined entropy as a measure of uncertainty about a random variable. If the level 

of uncertainties decreases, then the entropy decreases. The maximum of uncertainty corresponds to the 

maximum of entropy. For continuous distributions of a random variable x , the simple definition of 
Shannon entropy ( )H x  is defined as: 

( ) ( ) ln ( )
R

H x f x f x dx= −  (7)

where ( )f x  is the probability density function of the random variable x  and the extreme load effect 

component can be regarded as the random variable x  here. 
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It is obvious that ( )H x  is a functional of ( )f x  and ( )H x  varies with ( )f x . Based on the principle 

of maximum entropy, the method of estimating ( )f x  is stated as follows: 

max ( ) ( ) ln ( )
R

H x f x f x dx= −  (8)

with the constraints:  

( ) 1,
R

f x dx =  (9)

( ) , ( 1,2, , ),i
iR

x f x dx i Nμ= =   (10)

where R  is the domain of integration, ( 1, 2, , )i i Nμ =   represents the i  order origin moment. The 

first four order moments ( 4N = ) have been proved to be sufficient to describe a wide range of 

distribution types in many studies and will be used in the numerical example part. 

Lagrange multiplier method is applied to solve the above problem with constraints and the 

corresponding Lagrange function is constructed as follows: 

0
1

( ) ( 1) ( ) 1 ( )
N

i
i iR R

i

L H x f x dx x f x dxλ λ μ
=

   = + + − + −      (11)

Letting / ( ) 0L f x∂ ∂ =  leads to the analytical form of ( )f x : 

0
1

( ) exp
N

i
i

i

f x xλ λ
=

 = + 
 

  (12)

It can be seen from Equation (12) that, the solution of maximum entropy probability density 
function comes down to the determination of Lagrange multipliers 0 1 2( , , , , )Nλ λ λ λ . 

Substituting Equation (12) into Equation (9), one has: 

0
1

exp 1
N

i
iR

i

x dxλ λ
=

 + = 
 

  (13)

which leads to the following expression: 

0
1

ln exp
N

i
iR

i

x dxλ λ
=

  = −   
  
  (14)

Substituting Equation (12) into Equation (10) results in the following equation: 

0
1

exp
N

i j
j iR

j

x x dxλ λ μ
=

 
+ = 

 
  (15)

into which Equation (14) can be substituted to get the following equation: 

1

1
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jR
j
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λ
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λ
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=
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 (16)

For a more convenient numerical calculation, Equation (16) is transformed as follows: 
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 (17)

where ir  are the residuals that are reduced to be near zero by a numerical technique. A solution of 

Lagrange multipliers 1 2( , , , )Nλ λ λ  can be obtained by using nonlinear programming in which the 

sum of squared residuals r  converges to a minimum: 

2

1

min
N

i
i

r r
=

= →  (18)

Convergence is achieved when r ω<  or ir ω< , where ω  is the specified acceptable error. Then 0λ  

can be obtained by substituting Lagrange multipliers 1 2( , , , )Nλ λ λ  into Equation (14). Finally, the 

maximum entropy probability density function ( )f x  of the random variable x  can be generated by 

Equation (12). 
To determine the two critical values max ( , )

C
H Tδ  and min ( , )

C
H Tδ , the annual maximum and 

minimum values of dam displacement during operation are selected to extract the maximum and 

minimum load effect component sets by the interpretation model. The annual maximum and minimum 

values of dam displacement are random variables and so are the maximum and minimum load effect 
components. Here for the concise expression, ( , )H T is omitted in the following equations. Therefore, 

the corresponding maximum entropy PDF max ( )f δ  of the maximum effect load component and 

min ( )f δ  of the minimum one are approximated by the maximum entropy method and then the 

maximum entropy cumulative distribution functions (CDF) are given. 
When the load effect component of dam displacement exceeds max

C
δ  or min

C
δ , the dam will be in a 

warning situation and the corresponding exceedance or non-exceedance probability can be determined 

by the following equations: 

max

max
max( ) ( )

C
CP f d

δ
δ δ α δ δ

∞
> = =   (19)

min
min

min( ) ( )
C

CP f d
δ

δ δ α δ δ
−∞

< = =   (20)

Thereby, with the significance level α  according to the engineering practice given, the 
corresponding critical load effect components max

C
δ  and min

C
δ  can be derived. 

3.3. Control Loads Feedback for Dam Displacement 

The proposed warning criterion for concrete dams requires the observations to judge whether the 

dam is in a warning condition, which is essentially an a posteriori method. However, being acquainted 

with those environmental load combinations contributing enormously to maximum or minimum 

displacements in advance is more significant for the operational management of concrete dams. 
The expression ( , ) ( ) ( )H T H Tδ δ δ= +  for the load effect component of dam displacement can be 

obtained by the interpretation model. As previously written, in the present application the trend-line 
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term in Equation (1) has been considered as negligible. When this term significantly contributes to the 

crest displacement, the proposed warning criterion should be carefully revised. The temperature 
component ( )Tδ  is represented with a periodic function in the interpretation model. To feedback the 

control loads for dam displacement, the linear fitting between ( )Tδ  and the air temperature T  is 

carried out with 1 0( ) ( )T b T Tδ = −  where 1b  is the corresponding fitting coefficient. According to 

( )
4

0 1 0
1

( , ) ( )i i
i

i

H T a H H b T Tδ
=

= − + − , the three-dimension surface for the load effect component of 

dam displacement can be given. Then the proposed warning criterion for dam displacement can be 
employed to derive the critical control loads max( , )

C
H T  and min( , )

C
H T  by letting max( , ) CH Tδ δ=  and 

min( , ) CH Tδ δ= , and the two critical control loads lines max

C
Γ  and min

C
Γ  can be plotted, see Figure 6 in 

the next part. Between the two critical lines max

C
Γ  and min

C
Γ  lies the normal loads domain ( , )N H TΩ  

and the rest is the warning loads domain ( , )W H TΩ  for the dam displacement. The control loads 

diagram can be a straightforward and visual tool to the operation and management department of the 

concrete dam. The flowchart for the control loads feedback of dam displacement is presented in Figure 1. 

Construction of the interpretation model for concrete dam 

Extraction of the load effect component ( , )H Tδ  

Selection of the extreme load effect component set 

Determination of the critical load effect components ( , )C H Tδ  

through the maximum entropy CDF

PDF approximation of the extreme load effect by the maximum 

entropy method 

Control loads diagram feedback by the warning criterion 

( , ) ( , )CH T H Tδ δ=
 

Figure 1. Flowchart for the control loads feedback of dam displacement. 

4. Numerical Example 

The radial displacement of a gravity arch dam crest is analyzed by the maximum entropy method. 

This dam is a concrete gravity arch dam having a concentric circle with variable radii located in East 

China. The construction of the dam began in August 1958 and the entire construction took 12 years. 

The Silurian quartz sandstones are interbedded with sandy shales in the dam foundation. Because some 

faults and interlaminar dislocation fissure zones crisscross in the foundation, a part of the rock has 

broken after several tectonic movements. The dam crest elevation is 126.3 m, its maximum height is 

76.3 m, and it consists of 28 sections from left to right. The minimum reservoir water level for 

hydropower operation is 101 m and the maximum reservoir water level is 119 m, with a total capacity 
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of 2.825 × 109 m3. The radial displacement observations were obtained from pendulums buried in the 

dam. The 18# arch crown beam cross-section of the dam with the layout of the pendulums is exhibited 

in Figure 2. The radial displacements of the dam crest in block 18# from January 3, 1972 to December 31, 

2012 were analyzed. The observations of the reservoir water level, air temperature and the radial 

displacement are shown in Figure 3. 

 

Figure 2. Arch crown beam cross-section of the dam. 
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Figure 3. (a) Reservoir water level observations of the dam. (b) Air temperature 

observations in the dam site. (c) Radial displacement observations of the dam crest 

monitored by the pendulums in dam block 18#. 
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4.1. Interpretation Model of Dam Displacement 

The interpretation model for the dam displacement response has been presented in Equation (5). 

The unknown coefficients were obtained by using the least squares minimum method, see Table 1. R 

and S are the multiple correlation coefficient and the standard deviation, respectively, representing the 

goodness of fit between the measured displacement and the model-fitted one. A larger multiple 

correlation coefficient indicates a better fit effect, and a smaller standard deviation represents a better 

fit effect. Figure 4 shows the comparison between the measured displacement curve and the fitted one 

obtained by the interpretation model. The multiple correlation coefficient R is 0.964 and the standard 

deviation S is 0.54 mm, which both indicate that the interpretation model has a good fit effect. 

Table 1. Coefficients of the interpretation model and the multiple correlation coefficient. 

Coefficient Value Coefficient Value Coefficient Value 

a0 0.00 a4 −0.0000282 b22 −0.365 

a1 19.6 b11 0.109 c1 −0.0109 

a2 −0.534 b12 0.279E c2 0.756 

a3 0.00639 b21 −3.07 R 0.964 
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Figure 4. Comparison between the measured displacement curve and the fitted one. 

4.2. Determination of the Critical Load Effect Component by the Maximum Entropy Method 

To determine the two critical values max

C
δ  and min

C
δ , the annual extreme values of dam 

displacements from 1972 to 2012 were selected to extract the extreme load effect component sets by 

the interpretation model. Table 2 presents the results of the first four moments for the extreme load 

effect component sets of dam displacement. 

Table 2. Moments for the extreme load effect component sets of dam displacement. 

Moments Maximum load effect component Minimum load effect component 

0 1 1 

1st 3.2 −3 

2nd 11.51 10.35 

3rd 44.66 −39.41 

4th 182.93 160.7 
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The first four moments obtained were substituted into Equation (17) and the nonlinear least squares 
method was employed to get a solution of the Lagrange multipliers 1 2 4( , , , )λ λ λ . Then 0λ  was 

obtained by substituting Lagrange multipliers 1 2 4( , , , )λ λ λ  into Equation (14). These Lagrange 

multipliers are presented in Table 3. 

Table 3. Lagrange multipliers of the probability density function (PDF) for the extreme 

load effect components. 

Lagrange multipliers Maximum load effect component Minimum load effect component 

λ0 −4.9896 −4.3163 

λ1 2.4622 −2.1545 

λ2 0.3847 −0.3591 

λ3 0.000996 0.000986 

λ4 2.00E−08 2.00E−08 

Therefore, the corresponding maximum entropy PDF max ( )f δ  of the maximum load component and 

min ( )f δ  of the minimum load component can be approximated as follows:  

( )8 4 4 3 2
max ( ) exp 2 10 9.96 10 0.3847 2.4622 4.9896f δ δ δ δ δ− −= × + × + + −  (21)

( )8 4 4 3 2
min ( ) exp 2 10 9.86 10 0.3591 2.1545 4.3163f δ δ δ δ δ− −= × + × − − −  (22)

When the load effect component of dam displacement exceeds max

C
δ  or min

C
δ , the dam will be in a 

warning situation and the corresponding exceedance or non-exceedance probability can be determined 

by the following equations: 

( )max

max 8 4 4 3 2( ) exp 2 10 9.96 10 0.3847 2.4622 4.9896
C

CP d
δ

δ δ α δ δ δ δ δ
∞ − −> = = × + × + + −  (23)

( )
min

min 8 4 4 3 2( ) exp 2 10 9.86 10 0.3591 2.1545 4.3163
C

CP d
δ

δ δ α δ δ δ δ δ− −

−∞
< = = × + × − − −  (24)

Herein, the significance level α  has been assumed as 0.05 according to an expert judgement about 
the actual situation of the dam. Then the corresponding critical load effect components max

C
δ  and min

C
δ  

can be derived: max min5.90mm, 4.85mm.
C C

δ δ= = −  

Table 4 shows the results obtained from the Kolmogorov–Smirnov method and the proposed 

method. The result obtained by the proposed method is close to that by the Kolmogorov–Smirnov 

method. However, the Kolmogorov–Smirnov method compares the sample with a reference probability 

distribution, so it has a high subjective content. Compared with the Kolmogorov–Smirnov method, the 

maximum entropy method merely considers the moment constraints from the stated prior data. 

Therefore, the result from the proposed method is more rational and is recommended to be used. 

Table 4. Comparison between the critical values obtained by different methods. 

Method 
max

C
δ  (mm) min

C
δ  (mm) 

Proposed method 5.90 −4.85 

Kolmogorov–Smirnov method 5.76 −4.87 
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4.3. Control Loads Feedback for Dam Displacement 

The expression ( , ) ( ) ( )H T H Tδ δ δ= +  for the load effect component of dam displacement has 

been obtained by the interpretation model. The temperature component ( )Tδ  is represented with a 

periodic function in the interpretation model. To feedback the control loads for dam displacement, the 
linear fitting between ( )Tδ  and the air temperature T  was carried out with 1 0( ) ( )T b T Tδ = −  and 

1 0.155b = −  was obtained. According to ( )
4

0 1 0
1

( , ) ( )i i
i

i

H T a H H b T Tδ
=

= − + − , the three-dimension 

surface for the load effect component of dam displacement was given and is shown in Figure 5. Here 

in Figure 5 and Figure 6, the water height H  is replaced by the reservoir water level W  with 

50 mH W= −  where 50 m is the dam foundation elevation.  
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Figure 5. Three-dimension surf for the load effect component of dam displacement. 

The critical control loads max( , )
C

H T  and min( , )
C

H T  were derived by letting max( , ) CH Tδ δ=  and 
min( , ) CH Tδ δ=  in the proposed warning criterion: 

( ) ( ) ( ) ( ) ( )2 2 3 3 4 4

1 0 2 0 3 0 4 0 1 0 5.90a H H a H H a H H a H H b T T− + − + − + − + − =  (25)

( ) ( ) ( ) ( ) ( )2 2 3 3 4 4

1 0 2 0 3 0 4 0 1 0 4.85a H H a H H a H H a H H b T T− + − + − + − + − = −  (26)

Two critical control loads lines max

C
Γ  and min

C
Γ were plotted according to Equations (25) and (26), 

see Figure 6. Between the two critical lines max

C
Γ  and min

C
Γ  is the normal loads domain ( , )N H TΩ  and 

the rest is the warning loads domain ( , )W H TΩ  for the dam displacement. It can be seen from the 

control load diagram (Figure 6) that: (i) when the air temperature is high in summer, it is not 

recommended that the reservoir water level be maintained in a low level; (ii) when air temperature is 

low in winter, it is not recommended that the reservoir water level be maintained in a high level. The 

control loads diagram can be a straightforward and visual tool for the operation and management 

department of the concrete dam. 
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Figure 6. Control loads diagram for dam displacement. 

5. Conclusions  

This paper presents a maximum entropy method to feed back the operational control loads of 

concrete dam displacement. The practical interpretation model of the displacement establishes the 

relationship between the environmental loads and the displacement response. The load effect 

component of the displacement is extracted from the model. The PDF for the extreme load effect 

component of dam displacement is selected using the principle of maximum entropy, which is 

effective to construct the least subjective probability density distribution given a finite number of 

moments. The critical load effect components in the warning criterion are determined through taking a 

certain exceedance or non-exceedance probability in the cumulative distribution functions obtained by 

the maximum entropy method. The control loads feedback of concrete dam displacement is realized by 

the proposed warning criterion. The usefulness of this method is demonstrated by using a numerical 

example. Numerical results show that maximum entropy method can feed back rational control loads 

for the dam displacement. A comparison of the results from the proposed method and the 

Kolmogorov–Smirnov method confirms the accuracy of the proposed method. The result from the 

proposed method is recommended to be used due to its least subjectivity. The actual control loads 

diagram obtained from the observations of the concrete dam can be a straightforward and visual tool 

for the operation and management departments of concrete dams. However, a sound structural 

mechanics analysis about the dam behavior is not considered in this paper. Further research will be 

directed towards the structural considerations to make the actual safety control more rational. 
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