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Abstract: We have used the Kolmogorov complexities and the Kolmogorov complexity 

spectrum to quantify the randomness degree in river flow time series of seven rivers with 

different regimes in Bosnia and Herzegovina, representing their different type of courses, 

for the period 1965–1986. In particular, we have examined: (i) the Neretva, Bosnia and the 

Drina (mountain and lowland parts), (ii) the Miljacka and the Una (mountain part) and the 

Vrbas and the Ukrina (lowland part) and then calculated the Kolmogorov complexity (KC) 

based on the Lempel–Ziv Algorithm (LZA) (lower—KCL and upper—KCU), Kolmogorov 

complexity spectrum highest value (KCM) and overall Kolmogorov complexity (KCO) 

values for each time series. The results indicate that the KCL, KCU, KCM and KCO 

values in seven rivers show some similarities regardless of the amplitude differences in 

their monthly flow rates. The KCL, KCU and KCM complexities as information measures 

do not “see” a difference between time series which have different amplitude variations but 

similar random components. However, it seems that the KCO information measures better 

takes into account both the amplitude and the place of the components in a time series.  
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1. Introduction 

Scientists in different fields (physicists, meteorologists, geologists, hydrologists, and engineers, 

among others) study the behavior of rivers, which is significantly influenced by human activities, 

climatic change and many other factors that change the mass and energy balance of the rivers. 

Influenced by the aforementioned factors, the river flow may range from being simple to complex, 

fluctuating in both time and space. In the last decade many authors have been devoted their attention to 

chaotic nature of river flow dynamics [1–6]. Therefore, it is of interest to determine the nature of 

complexity in river flow processes, in particular in different parts of its course that cannot be done by 

traditional mathematical statistics which requires the use of different measures of complexity. For 

example, comprehensive description and application can be found in [7,8]. It seems that the most 

serious problem for environmental sciences (including the hydrology) is that methods developed for 

research into complex information are generally not used. Instead the measurement and analysis of 

complex systems is mostly carried out using traditional analytical methods which are not adequate for 

this purpose. Traditional statistical methods are usually based on assumptions which cannot find a 

niche in complex systems analysis. Thus, the results which they produce can therefore be distorted and 

misleading. Additionally, traditional statistical methods are often supported by various aggregation 

techniques that remove many of the important features of complex behavior [9]. However, according 

to [10] we should be careful in developing and using complex information metrics as with traditional 

statistics, since many of these methods are highly technical and not always useful [11,12]. These 

measures are good tools, which help us to investigate more deeply possible changes in river flow due 

to: human activities, climate change, catchments classification framework, improvement of application 

of the stochastic process concept in hydrology for its modeling, forecasting, and other purposes [13]. 

Kolmogorov complexity (hereafter abbreviated as KC) is used in order to describe the degree of 

randomness of a binary string. This information measure was originally introduced by Kolmogorov [14], 

on the basis of which Lempel and Ziv [15] developed an algorithm for calculating the information 

measure of the randomness. We will refer to the Lempel–Ziv Algorithm as LZA. This algorithm has 

been used for evaluation of the randomness present in time series. However, the KC complexity as an 

information measure cannot make distinction between time series with different amplitude variations 

and similar random components. Therefore, to get better insight into the nature of river flow time 

series analysis we introduce three novel information measures based on the Kolmogorov complexity: 

the Kolmogorov complexity spectrum, the KCM and KCO [16]. The purpose of this paper is to 

quantify the randomness of the river flow dynamics of seven rivers, in Bosnia and Herzegovina for the 

period 1965–1986, using the KCL, KCU, KCM and KCO information measures and the Kolmogorov 

complexity spectrum.  
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2. Information Measures Based on the Kolmogorov Complexity  

2.1. Kolmogorov Complexity  

The Kolmogorov complexity K(x) of an object x is the length, in bits, of the smallest program that 

when run on a Universal Turing Machine (U) prints object x. This complexity is maximized for 

random strings [17]. This information measure was developed by Kolmogorov [18]. A comprehensive 

description of the KC complexity can be found in [14]. The complexity K(x) is not a computable 

function of x. However, there is a suitable approximation considered as the size of the ultimate 

compressed version of x, and a lower bound for what a real compressor can achieve [14]. This allows 

approximating K(x) with C(x) = K(x) + k, i.e., the length of the compressed version of x obtained with 

any off-the-shelf lossless compressor C, plus an unknown constant k: the presence of k is required by 

the fact that it is not possible to estimate how close to the lower bound represented by C(x) this 

approximation is [19]. Therefore, in this paper we enhance that all the information measures used are 

measures derived from the computable approximation of Kolmogorov complexity. Note, that the issue 

of non-computability and a very efficient algorithm is discussed and provided in [20]. The KC 

complexity of a time series {xi}, i = 1, 2, 3, 4, ..., N by the LZA algorithm can be carried out as follows: 

Step 1: Encode the time series by constructing a sequence S of the characters 0 and 1 written 
as{ ( )}, 1,2,3,4,...,s i i N= , according to the rule: 

*

*

0,    
( )

1,    
i

i

x x
s i

x x





<
=

≥
 (1)

Here for *x  we use the mean value of the time series to be the threshold. The mean value of the time 

series has often been used as the threshold [21]. Depending on the application, other encoding schemes 

are also used [22,23]. 

Step 2: Calculate the complexity counter c(N). The c(N) is defined as the minimum number of distinct 

patterns contained in a given character sequence [24]. The complexity counter c(N) is a function of the 

length of the sequence N. The value of c(N) is approaching an ultimate value b(N) as N approaching 

infinite, i.e.,: 

2

( ) ( ( )),     ( )
log

N
c N O b N b N
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= =  (2)

Step 3: Calculate the normalized information measure Ck(N), which is defined as: 

2log( )
( )

( )k

Nc N
C c N

b N N
= =  (3)

The term Ck(N) represents the information quantity of a time series, which is 0 for a periodic time 

series and 1 for a random time series. For a nonlinear time series, Ck(N) varies between 0 and 1, 

although Hu et al. [25] have demonstrated that Ck can be larger than 1.  

Equation (3) is incorporated in codes of different programming languages to estimate the lower 

version of the Kolmogorov complexity (KCL), which is commonly used by researchers. However, 

there exists the upper version of the Kolmogorov complexity (KCU), which is described in [15]. Here 
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we describe both of them. The LZA is an algorithm, which calculates the KC information measure of 

binary sequence complexity. As input it uses a vector S consisting of a binary sequence whose 

complexity we want to analyze. In this algorithm we can evaluate as a string two types of complexities, 

which one is ‘‘exhaustive’’, i.e., when complexity measurement is based on decomposing S into an 

exhaustive production process. On the other hand so called ‘‘primitive’’ complexity measurement is 

based on decomposing S into a primitive production process. Exhaustive complexity can be considered 

a lower limit of the complexity measurement approach (KCL) and primitive complexity an upper limit 

(KCU). Let us note that the ‘‘exhaustive’’ is considered as the KC information measure and frequently 

used in complexity analysis. The KCL calculation is based on finding extensions to a sequence, which 

are not reproducible from that sequence, using a recursive symbol-copying procedure. The KCU 

calculation uses the eigenfunction of a sequence. The sequence decomposition occurs at points where 

the eigenfunction increases in value from the previous one. Note, it is true that KCL < KCU for all time 

series. However, it is not strictly proven that the KC is always within these bounds. In this paper we have 

designed our own code in FORTRAN90, which partly relies on the MATLAB routines by Thai [26]. 

2.2. Information Measures Based on the Kolmogorov Complexity  

The quantification of the complexity of a system is highly important in theoretical as well as applied 

sciences. This is one of the aims of nonlinear time series analysis. In Nature, as usual, the complexity 

of the system is hidden in the dynamics of the system. Thus, if we cannot recognize the structure of the 

system, we will consider that system as the stochastic one. Due to artifacts in various forms (spurious 

experimental results, etc.) it is often not easy to get desirable and reliable information from a series of 

measurements. The time series of some environmental quantity (physical, biological, chemical, 

hydrological, etc.) is the only information about its state, which can be obtained either by measurement 

or modeling. The time series is the only source for establishing the level of complexity of the 

environmental system (i.e., rivers analyzed in this paper, through its flow rate). However, the KC 

complexity as an information measure does not distinguish between time series with different 

amplitude variations and similar random components. An additional drawback of this information 

measure is the fact when we convert a time series into a string then its complexity is hidden in the 

coding rules. For example, in the procedure of establishing a threshold for a criterion for coding, some 

information about the structure of the time series can be lost. To get better insight into the nature of 

complex systems and time series analysis of the river flow we use three novel information measures 

based on the Kolmogorov complexity: (i) the Kolmogorov complexity spectrum, (ii) the Kolmogorov 

complexity spectrum highest value and (iii) the overall Kolmogorov complexity, which are introduced 

in [16]. All of them we will shortly describe in the rest of this subsection. 

2.2.1. The Kolmogorov Complexity Spectrum 

According to Definition 1 in [16], the time series {xi}, i = 1, 2, 3, . . . , N is called normalized one 

(or time series with normalized amplitude) after performing the transformation xi = (Xi− Xmin)/( Xmax− 

Xmin), where {Xi } is a time series obtained either by a measuring procedure or as an output from a 

environmental or other model, while Xmax = max(Xi) and Xmin = min (Xi). From this definition it follows 

that all elements in time series {xi} lay in the interval [0, 1]. The Kolmogorov complexity spectrum of 
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time series {xi} we call the sequence {ci}, i = 1, 2, 3,…, N obtained by the LZA algorithm which is 

applied N times on time series, where thresholds {xt,i} are all elements in {xi}. Namely, the original 

time series samples are converted into a set of 0-1 sequences {S(k) i }, i = 1, 2, 3, . . . , N, k = 1, 2, 3, . . 

. , N, defined by comparison with a threshold {xt,k}: 
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x x
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x x
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After we apply the LZA algorithm on each element of the series ( ){ }k
iS  we get the KC complexity 

spectrum {ci}, i = 1, 2, 3, . . . , N. This spectrum allows us to explore the range of amplitudes in a time 

series representing a process, for which it has highly enhanced stochastic components, i.e., highest 

complexity. The highest value max
CK  in this series, i.e., max max{ }C

iK c= , we call the Kolmogorov 

complexity spectrum highest value (KCM). 

2.2.2. The Overall Kolmogorov Complexity Information Measure 

The KC complexity as an information measure cannot distinguish between time series with 

different amplitude variations and similar random components. This is also true of the suggested KCM 

measure, although it gives more information about randomness, in a broader context, than the KC one 

does. When we convert a time series into a string then its complexity is hidden in the coding rules. 

Thus, neither the KC nor the KCM complexity is able to discern between time series with different 

Kolmogorov spectra of complexity. From this reason, in the analysis of the river flow time series we 

use an overall Kolmogorov complexity information measure C
OK (KCO in further text) which is 

according to [16] defined as: 

1= C C
sO

m X

K K dx
x  

(5)

where C
sK  is the spectrum of the Kolmogorov complexity, xm is a highest value of the physical 

quantity in a time series, while dx and X are differential and domain of that quantity, over which this 

integral takes values, respectively. Since C
sK is given as the sequence{ }, 1,2,3,...,=C

iK i N , it is calculated 

numerically as: 
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The C
OK takes value on the interval (0, Ku), where Ku can also takes value larger than 1. This 

information measure can make distinction between different time series having close values of the KC 

and KCM. 

3. Datasets and Computations 

3.1. Short Description of River Locations and Time Series 

River flow records in the Bosnia and Herzegovina are, in general, of relatively short duration. 

Except for several rivers [4], many measurements only began in the late 1950s. For this study we have 
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selected seven rivers located in the territory of Bosnia and Herzegovina, which is in the western 

Balkans, surrounded by Croatia to the north and south-west, Serbia to the east, and Montenegro to the 

southeast. It lies between latitudes 42° and 46° N, and longitudes 15° and 20° E. The country is mostly 

mountainous, encompassing the central Dinaric Alps. The northeastern parts reach into the Pannonian 

basin, while in the south it borders the Adriatic Sea. Dinaric Alps generally run in east-west direction, 

and get higher towards the south. The highest point of the country is peak Maglić at 2386 m, at the 

Montenegrin border, while the major mountains include Kozara, Grmeč, Vlašić, Čvrsnica, Prenj, 

Romanija, Jahorina, Bjelašnica and Treskavica (Figure 1). 

 

Figure 1. Relief of Bosnia and Herzegovina with the location of the ten hydrological 

stations on seven rivers used in the study (the abbreviations for rivers and letters indicating 

the river regime are given in Table 1).  

Since the purpose of this paper is to quantify the degree of randomness in the river flow time series 

of rivers in Bosnia and Herzegovina, in different parts of their courses, we have made a selection of 

hydrological stations on the basis of classification of typology for mountains and other relief classes 

according to [27]. This classification can be summarized on the following way: (i) lowlands (0–200 m 

mean altitude—in further text L type), (ii) platforms and hills (200–500 m—H type) and (iii) 

mountains with mean elevations between 500 and 6000 m (M type). Thus, we have analyzed: the 

lower and upper course (the rivers Neretva, Drina and Bosnia), the upper course (the rivers Una and 

Miljacka) and the lower course (the river Vrbas and Ukrina). These catchments are listed in Table 1.  
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Table 1. Rivers in Bosnia and Herzegovina used in the study with the corresponding flow 

rates (FR—mean; FRmax—maximal; FRmin—minimal for the period 1965–1985) and their 

classification following a classification of typology for mountains and other relief classes by 

[27]: lowland (altitude < 200 m)—(L regime), platforms and hills (200 < altitude < 500 m)—

(H regime) and mountains (500 < altitude < 6000 m)—(M regime). 

They are spread across the country and are representative for catchments in these regions. Datasets 

of monthly river flow rates for the period 1965–1986 were taken from the Annual Report of the 

Hydrometeorological Institute of Bosnia and Herzegovina, consisting of 252 data points in each  

time series. 

3.2. Computation of Information Measures for Seven River Flow Time Series 

Using the calculation procedure outlined in Sections 2.1 and 2.2, we have computed the KCL, 

KCU, the Kolmogorov complexity spectrum and the KCO values for the ten river flow time series of 

seven rivers (Figure 2) in Bosnia and Herzegovina. The calculations are carried out for the entire time 

interval 1965–1986.  
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Figure 2. Cont. 

Catchment Number Abbreviation 
Longitude 

(◦ E) 

Latitude 

(◦ N) 

Altitude 

(m) 

FR 

(m3/s) 

FRmax(

m3/s) 

FRmin 

(m3/s) 
Regime 

River Neretva to Zitomislić 1 NER_Z 17°47’ 43°12’ 16 252.0 734.0 53.0 L 

River Neretva to Ulog 2 NER_U 18°14’ 43°25’ 641 8.0 35.3 0.5 M 

River Bosna to Doboj 3 BOS_D 18°16’ 43°49’ 137 172.0 650.0 30.0 L 

River Bosna to Reljevo 4 BOS_R 18°06’ 44°44’ 500 29.0 99.5 4.8 M 

River Drina to Kozluk 5 DRI_K 19°07’ 44°30’ 121 380.0 1160.0 66.0 L 

River Drina to Bastasi 6 DRI_B 18°46’ 43°27’ 425 155.0 497.0 32.7 H 

River Miljacka to Sarajevo 7 MIL_S 18°21’ 43°12’ 530 5.0 21.9 0.6 M 

River Una to Martin Brod 8 UNA_B 16°07’ 43°30’ 310 54.0 188.0 9.2 H 

River Ukrina to Derventa 9 UKR_D 17°55’ 44°50’ 105 17.0 92.3 1.1 L 

River Vrbas to Delibašino Selo 10 VRB_S 18°16’ 43°49’ 141 111.0 358.0 38.2 L 
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Figure 2. Ten river flow time series of seven rivers in Bosnia and Herzegovina for the 

period 1965–1986. 

4. Results and Discussion 

4.1. The Lower (KCL), Upper (KCU) Kolomogorov Complexity and Kolmogorov Complexity Spectrum 

Highest Value (KCM). 

Results for Kolmogorov complexities (lower—KCL, upper—KCU, Kolmogorov complexity 

spectrum highest value—KCM) and overall Kolmogorov complexity information measure (KCO) are 

given in the corresponding rows of Table 2. From this table it is seen that the KCL values for seven 

rivers can be classified into two intervals, i.e., (0.948, 1.076) and (0.791, 0.918), which corresponds to 

the upper (H and M regimes) and the lower river course (L regime), respectively. 

Note that a least complex process has a KCL value near to zero, whereas a process with the highest 

randomness will have the KCL close to one. The KCL information measure can be also considered as 

a measure of randomness. Thus, a value of the KCL near zero is associated with a simple deterministic 

process like a periodic motion, whereas a value close to one is associated with a stochastic process  

[3,4]. Accordingly, the KCL values, which are large for rivers from the first interval, i.e., (0.948, 

1.076), indicate the presence of stochastic influence in their upper courses, where these rivers show 

behavior that is typical for mountain rivers. Inversely, the KCL complexities are smaller for the lower 

river courses (0.791, 0.918). The only exception is the Ukrina River (UKR_D) having greater 

randomness which is closer to the KCL of mountain rivers (0.981), which could be attributed to the 

fact that the KCL information measure neglects variability in time series amplitudes. Similar results 
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are observed in analysis of the KCU information measure. However, now except to the river Ukrina 

River (UKR_D) and the Vrbas River (VRB_S) has the KCU closer to the H and M regimes (4.324).  

Table 2. Kolmogorov complexities (lower—KCL, upper—KCU, Kolmogorov complexity 

spectrum highest value—KCM) and overall Kolmogorov complexity information measure 

(KCO) values of the flow rate for ten time series of seven rivers in Bosnia and 

Herzegovina for the period 1965–1986.  

Figure 3 depicts the changes in the KCL and KCM complexities of river flow rate for ten time 

series of seven rivers in Bosnia and Herzegovina for the period 1965–1986, in dependence on the 

altitude of hydrological station. There is a positive trend in changes of the KCL and KCM with 

coefficients of correlation r, which are close to each other 0.649 and 0.602, respectively. 
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Figure 3. The dependence of KCL and KCM complexities of river flow rate on altitude, 

for ten time series of the seven rivers in Bosnia and Herzegovina for the period 1965–1986. 

Closed contours indicate the river regime: L (blue), H (green) and M (red). 

4.2. The Kolmogorov Complexity Spectrum  

Over the last decade many results have been obtained about the chaotic nature of river flow using 

different techniques like complexity measures [7,8], detrended cross-correlation analysis, formalism of 

Catchment Number Regime Abb. KCL KCU KCM KCO 

River Neretva to Zitomislić 1 L NER_Z 0.918 3.799 0.948 0.506 

River Neretva to Ulog 2 M NER_U 1.013 3.309 1.013 0.529 

River Bosna to Doboj 3 L BOS_D 0.791 3.277 0.886 0.470 

River Bosna to Reljevo 4 M BOS_R 0.948 4.092 0.981 0.538 

River Drina to Kozluk 5 L DRI_K 0.823 3.213 0.981 0.502 

River Drina to Bastasi 6 H DRI_B 0.948 3.605 1.045 0.529 

River Miljacka to Sarajevo 7 M MIL_S 1.076 4.194 1.077 0.558 

River Una to Martin Brod 8 H UNA_B 0.948 4.227 1.045 0.540 

River Ukrina to Derventa 9 L UKR_D 0.981 4.294 1.013 0.479 

River Vrbas to Delibašino Selo 10 L VRB_S 0.918 4.324 0.918 0.486 
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fractal analysis etc., to provide deeper insight regarding this issue [3,28,29]. We have analyzed the 

monthly river flow time series of the seven rivers in Bosnia and Herzegovina for the period 1965–1986, 

with N = 252 data points. The curves describing the Kolmogorov complexity spectra for the time series 

of flow rate of seven rivers and ten stations are depicted in Figure 4. From this figure it is seen that 

flow dynamics of rivers are different in sense of the position and value of the maximum of the 

Kolmogorov complexity spectrum highest value (KCM). A simple inspection of this figure indicates 

the following facts for the same river: (i) when the river is in the M regime, i.e., with a pronounced 

presence of stochastic components in the river flow, then the KCM is greater in comparison with its 

KCM in the L regime; (ii) the position of the maximum in the M regime is shifted towards the smaller 

normalized amplitudes (Figures 4a,b); (iii) when the river is in the H regime, i.e., when presence of 

stochastic components in the river flow is less pronounced than in M regime, then the KCM is slightly 

greater in comparison with its KCM in the L regime, while the position of the maximum in the H 

regime is still shifted towards the smaller values in the spectrum (Figure 4c). Note, that these 

conclusions could not be obtained if we compare the regimes of different rivers. From other  

Figures 4d–g it is seen that the maximum of the Kolmogorov complexity spectrum of the river flow 

time series is more shifted to the smaller values for the regimes where river flow has the higher 

randomness. 
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Figure 4. The Kolmogorov complexity spectra for the normalized amplitude of the 

monthly flow rate time series of the seven rivers in Bosnia and Herzegovina for the period 

1965–1986. The circles indicate the regime of river course: L (blue), H (green) and M (red).  

Analysis of Table 2 indicates that the KCM values in seven rivers are classified into two intervals, 

i.e., (1.013, 1.077) and (0.886, 0.948) corresponding to H and M river regimes and L river regime, 

respectively, while the UKR_D river is an exception with the KCM value of 1.013. 

4.3. The Overall Kolmogorov Complexity Information Measure  

The KCL as a measure does not “see” a difference between time series which have different 

amplitude variations but similar random components. This could also be said for the KCM information 

measure, although it gives more information about complexity, in a broader context, than the KCL one 

does. It is seen from the analysis of KCL and KCM rows in Sections 3.2 and 3.3. However, it seems 

that the KCO information measure better takes into account both, i.e., the amplitude and the place of 

the components in a time series. A detailed inspection of column KCO in Table 2 and Figure 5a that 

there exist two intervals of this information measure, which are clearly separated: (1) (0.470, 0.506) 

and (2) (0.529, 0.558). 

The first interval includes KCO of the flow rate of rivers in the L regime while another one refers to 

the H and M regimes. Now, the complexities of the UKR_D and VRB_S rivers, described by the KCO 

information measure, correspond to the less stochastic time series. It seems that this is more realistic 

measure than when their time series are described by the KCL, KCU and KCM information measures.  

Figure 5b depicts a spatial distribution of the KCO information measure of flow rate for ten stations 

of seven rivers for the period 1965–1986. This map enhances two regions: (i) with the higher KCO, 

which is strongly influenced by the high mountain relief in the northwestern and eastern part of Bosnia 
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and Herzegovina including the H and M river regimes (red color) and (ii) with the lower KCO, which 

corresponds to the lowland regions (the northern, northeastern, western and southeastern parts with L 

river regimes (blue color). In the central part of Bosnia and Herzegovina there exists a transition belt 

with the KCO values indicating to the mixed influences of the relief.  
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Figure 5. The KCO information measure: Dependence on altitude (a) and spatial 

distribution (b) of the monthly flow rate for ten time series of seven rivers in Bosnia and 

Herzegovina for the period 1965–1986. 

4. Conclusions 

In the present study we have analyzed monthly river flow to assess the Kolmogorov complexity 

based information measures in river flow dynamics using ten time series of seven rivers in Bosnia and 

Herzegovina for the period 1965–1986. We have examined the monthly river flow time series for 

seven rivers: (i) the Neretva, the Bosnia and the Drina (in the mountain and lowland parts), (ii) the 

Miljacka and the Una (in the mountain part) and the Vrbas and the Ukrina (in lowland part) and 

calculated the KCL, KCU, the Kolmogorov complexity spectrum, KCM and KCO values for each time 

series. The KCL as an information measure does not “see” a difference between time series, which 

have different amplitude variations but similar random components. This could also be said for the 

KCM information measure, although it gives more information about randomness, in a broader 

context, than the KCL one does. However, it seems that the KCO information measure better takes into 

account both, i.e., the amplitude and the place of the components in a time series.  

Finally, we provide an outlook of potential use of Kolmogorov complexity based information 

measures in study of the river flow dynamics. The KC information measure calculated by the LZA 

algorithm has an attractive feature that it is model-independent. It means that it can be applied to both 

deterministic as well as stochastic processes and does not require the process to be stationary. 
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Therefore, it is often used in the complexity analysis of the river flow dynamics. However, the KC as a 

measure does not distinguish between time series with different amplitude variations and similar 

random components. In addition, to calculate this measure we have to convert a time series into a 

string. When we do that its complexity is hidden in the coding rules. Thus, in the procedure of 

establishing a threshold for a criterion for coding, some information about the structure of the time 

series can be lost. With the suggested information measures we: (i) increase the number of 

information, which we get about the randomness of the river flow and (ii) include the amplitude and 

the place of the components in the river flow time series. Applications of these information measures 

may be useful in developing appropriate models of river flow activity and analysis of river flow time 

series of different regimes. 
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