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Abstract: This work reviews and extends a family of log-determinant (log-det) divergences
for symmetric positive definite (SPD) matrices and discusses their fundamental properties.
We show how to use parameterized Alpha-Beta (AB) and Gamma log-det divergences
to generate many well-known divergences; in particular, we consider the Stein’s loss,
the S-divergence, also called Jensen-Bregman LogDet (JBLD) divergence, Logdet Zero
(Bhattacharyya) divergence, Affine Invariant Riemannian Metric (AIRM), and other
divergences. Moreover, we establish links and correspondences between log-det divergences
and visualise them on an alpha-beta plane for various sets of parameters. We use this
unifying framework to interpret and extend existing similarity measures for semidefinite
covariance matrices in finite-dimensional Reproducing Kernel Hilbert Spaces (RKHS). This
paper also shows how the Alpha-Beta family of log-det divergences relates to the divergences
of multivariate and multilinear normal distributions. Closed form formulas are derived
for Gamma divergences of two multivariate Gaussian densities; the special cases of the
Kullback-Leibler, Bhattacharyya, Rényi, and Cauchy-Schwartz divergences are discussed.
Symmetrized versions of log-det divergences are also considered and briefly reviewed.
Finally, a class of divergences is extended to multiway divergences for separable covariance
(or precision) matrices.
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1. Introduction

Divergences or (dis)similarity measures between symmetric positive definite (SPD) matrices underpin
many applications, including: Diffusion Tensor Imaging (DTI) segmentation, classification, clustering,
pattern recognition, model selection, statistical inference, and data processing problems [1–3].
Furthermore, there is a close connection between divergence and the notions of entropy, information
geometry, and statistical mean [2,4–7], while matrix divergences are closely related to the invariant
geometrical properties of the manifold of probability distributions [4,8–10]. A wide class of
parameterized divergences for positive measures are already well understood and a unification and
generalization of their properties can be found in [11–13].

The class of SPD matrices, especially covariance matrices, play a key role in many areas of statistics,
signal/image processing, DTI, pattern recognition, and biological and social sciences [14–16]. For
example, medical data produced by diffusion tensor magnetic resonance imaging (DTI-MRI) represent
the covariance in a Brownian motion model of water diffusion. The diffusion tensors can be represented
as SPD matrices, which are used to track the diffusion of water molecules in the human brain, with
applications such as the diagnosis of mental disorders [14]. In array processing, covariance matrices
capture both the variance and correlation of multidimensional data; this data is often used to estimate
(dis)similarity measures, i.e., divergences. This all has led to an increasing interest in divergences for
SPD (covariance) matrices [1,5,6,14,17–20].

The main aim of this paper is to review and extend log-determinant (log-det) divergences and to
establish a link between log-det divergences and standard divergences, especially the Alpha, Beta,
and Gamma divergences. Several forms of the log-det divergence exist in the literature, including
the log–determinant α divergence, Riemannian metric, Stein’s loss, S-divergence, also called the
Jensen-Bregman LogDet (JBLD) divergence, and the symmetrized Kullback-Leibler Density Metric
(KLDM) or Jeffrey’s KL divergence [5,6,14,17–20]. Despite their numerous applications, common
theoretical properties and the relationships between these divergences have not been established. To
this end, we propose and parameterize a wide class of log-det divergences that provide robust solutions
and/or even improve the accuracy for a noisy data. We next review fundamental properties and provide
relationships among the members of this class. The advantages of some selected log-det divergences are
also discussed; in particular, we consider the efficiency, simplicity, and resilience to noise or outliers,
in addition to simplicity of calculations [14]. The log-det divergences between two SPD matrices have
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also been shown to be robust to biases in composition, which can cause problems for other similarity
measures.

The divergences discussed in this paper are flexible enough to facilitate the generation of several
established divergences (for specific values of the tuning parameters). In addition, by adjusting the
adaptive tuning parameters, we optimize the cost functions of learning algorithms and estimate desired
model parameters in the presence of noise and outliers. In other words, the divergences discussed in
this paper are robust with respect to outliers and noise if the tuning parameters, α, β, and γ, are chosen
properly.

1.1. Preliminaries

We adopt the following notation: SPD matrices will be denoted by P ∈ Rn×n and Q ∈ Rn×n, and
have positive eigenvalues λi (sorted in descending order); by log(P), det(P) = |P|, tr(P) we denote
the logarithm, determinant, and trace of P, respectively.

For any real parameter α ∈ R and for a positive definite matrix P, the matrix Pα is defined using
symmetric eigenvalue decomposition as follows:

Pα = (VΛVT )α = V(Λα) VT , (1)

where Λ is a diagonal matrix of the eigenvalues of P, and V ∈ Rn×n is the orthogonal matrix of the
corresponding eigenvectors. Similarly, we define

log(Pα) = log((VΛVT )α) = V log(Λα) VT , (2)

where log(Λ) is a diagonal matrix of logarithms of the eigenvalues of P. The basic operations for
positive definite matrices are provided in Appendix A.

The dissimilarity between two SPD matrices is called a metric if the following conditions hold:

1. D(P ‖Q) ≥ 0, where the equality holds if and only if P = Q (nonnegativity and
positive definiteness).

2. D(P ‖Q) = D(Q ‖P) (symmetry).
3. D(P ‖Z) ≤ D(P ‖Q) +D(Q ‖Z) (subaddivity/triangle inequality).

Dissimilarities that only satisfy condition (1) are not metrics and are referred to as (asymmetric)
divergences.

2. Basic Alpha-Beta Log-Determinant Divergence

For SPD matrices P ∈ Rn×n and Q ∈ Rn×n, consider a new dissimilarity measure, namely, the AB
log-det divergence, given by

D
(α,β)
AB (P‖Q) =

1

αβ
log det

α(PQ−1)β + β(PQ−1)−α

α + β
(3)

for α 6= 0, β 6= 0, α + β 6= 0,
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where the values of the parameters α and β can be chosen so as to guarantee the non-negativity of the
divergence and it vanishes to zero if and only if P = Q (this issue is addressed later by Theorems 1
and 2). Observe that this is not a symmetric divergence with respect to P and Q, except when α = β.
Note that using the identity log det(P) = tr log(P), the divergence in (3) can be expressed as

D
(α,β)
AB (P‖Q) =

1

αβ
tr

[
log

(
α(PQ−1)β + β(PQ−1)−α

α + β

)]
(4)

for α 6= 0, β 6= 0, α + β 6= 0.

This divergence is related to the Alpha, Beta, and AB divergences discussed in our previous work,
especially Gamma divergences [11–13,21]. Furthermore, the divergence in (4) is related to the AB
divergence for SPD matrices [1,12], which is defined by

D̄
(α,β)
AB (P‖Q) =

1

αβ
tr

(
α

α + β
Pα+β +

β

α + β
Qα+β −PαQβ

)
(5)

for α 6= 0, β 6= 0. α + β 6= 0.

Note that α and β are chosen so that D(α,β)
AB (P‖Q) is nonnegative and equal to zero if P = Q.

Moreover, such divergence functions can be evaluated without computing the inverses of the SPD
matrices; instead, they can be evaluated easily by computing (positive) eigenvalues of the matrix PQ−1

or its inverse. Since both matrices P and Q (and their inverses) are SPD matrices, their eigenvalues are
positive. In general, it can be shown that even though PQ−1 is nonsymmetric, its eigenvalues are the
same as those of the SPD matrix Q−1/2PQ−1/2; hence, its eigenvalues are always positive.

Next, consider the eigenvalue decomposition:

(PQ−1)β = VΛβ V−1, (6)

where V is a nonsingular matrix, and Λβ = diag{λβ1 , λ
β
2 , . . . , λ

β
n} is the diagonal matrix with the positive

eigenvalues λi > 0, i = 1, 2, . . . , n, of PQ−1. Then, we can write

D
(α,β)
AB (P‖Q) =

1

αβ
log det

α VΛβ V−1 + β VΛ−α V−1

α + β

=
1

αβ
log

[
det V det

αΛβ + βΛ−α

α + β
det V−1

]
=

1

αβ
log det

α Λβ + β Λ−α

α + β
, (7)

which allows us to use simple algebraic manipulations to obtain

D
(α,β)
AB (P‖Q) =

1

αβ
log

n∏
i=1

αλβi + βλ−αi
α + β

=
1

αβ

n∑
i=1

log

(
αλβi + βλ−αi

α + β

)
, α, β, α + β 6= 0. (8)

It is straightforward to verify that D(α,β)
AB (P‖Q) = 0 if P = Q. We will show later that this function

is nonnegative for any SPD matrices if the α and β parameters take both positive or negative values.
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For the singular values α = 0 and/or β = 0 (also α = −β), the AB log-det divergence in (3) is
defined as a limit for α → 0 and/or β → 0. In other words, to avoid indeterminacy or singularity for
specific parameter values, the AB log-det divergence can be reformulated or extended by continuity and
by applying L’Hôpital’s formula to cover the singular values of α and β. Using L’Hôpital’s rule, the AB
log-det divergence can be defined explicitly by

D
(α,β)
AB (P‖Q) =



1

αβ
log det

α(PQ−1)β + β(QP−1)α

α + β
for α, β 6= 0, α + β 6= 0

1

α2

[
tr
(
(QP−1)α − I

)
− α log det(QP−1)

]
for α 6= 0, β = 0

1

β2

[
tr
(
(PQ−1)β − I

)
− β log det(PQ−1)

]
for α = 0, β 6= 0

1

α2
log

det(PQ−1)α

det(I + log(PQ−1)α)
for α = −β 6= 0

1

2
tr log2(PQ−1) =

1

2
|| log(Q−1/2PQ−1/2)||2F for α, β = 0.

(9)

Equivalently, using standard matrix manipulations, the above formula can be expressed in terms of the
eigenvalues of PQ−1, i.e., the generalized eigenvalues computed from λiQvi = Pvi (where vi (i =

1, 2, . . . , n) are corresponding generalized eigenvectors) as follows:

D
(α,β)
AB (P‖Q) =



1

αβ

n∑
i=1

log

(
αλβi + βλ−αi

α + β

)
for α, β 6= 0, α + β 6= 0

1

α2

[
n∑
i=1

(
λ−αi − log(λ−αi )

)
− n

]
for α 6= 0, β = 0

1

β2

[
n∑
i=1

(
λβi − log(λβi )

)
− n

]
for α = 0, β 6= 0

1

α2

[
n∑
i=1

log

(
λαi

1 + log λαi

)]
for α = −β 6= 0

1

2

n∑
i=1

log2(λi) for α, β = 0.

(10)

Theorem 1. The function D(α,β)
AB (P‖Q) ≥ 0 given by (3) is nonnegative for any SPD matrices with

arbitrary positive eigenvalues if α ≥ 0 and β ≥ 0 or if α < 0 and β < 0. It is equal to zero if and only
if P = Q.

Equivalently, if the values of α and β have the same sign, the AB log-det divergence is positive
independent of the distribution of the eigenvalues of PQ−1 and goes to zero if and only if all the
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eigenvalues are equal to one. However, if the eigenvalues are sufficiently close to one, the AB log-det
divergence is also positive for different signs of α and β. The conditions for positive definiteness are
given by the following theorem.

Theorem 2. The function D(α,β)
AB (P‖Q) given by (9) is nonnegative if α > 0 and β < 0 or if α < 0 and

β > 0 and if all the eigenvalues of PQ−1 satisfy the following conditions:

λi >

∣∣∣∣βα
∣∣∣∣ 1
α+β

∀i, for α > 0 and β < 0, (11)

and

λi <

∣∣∣∣βα
∣∣∣∣ 1
α+β

∀i, for α < 0 and β > 0. (12)

If any of the eigenvalues violate these bounds, the value of the divergence, by definition, is infinite.
Moreover, when α→ −β these bounds simplify to

λi > e−1/α ∀i, α = −β > 0, (13)

λi < e−1/α ∀i, α = −β < 0. (14)

In the limit, when α → 0 or β → 0, the bounds disappear. A visual presentation of these bounds for
different values of α and β is shown in Figure 1.
Additionally, D(α,β)

AB (P‖Q) = 0 only if λi = 1 for all i = 1, . . . , n, i.e., when P = Q.
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Figure 1. Shaded-contour plots of the bounds of λi that prevent D(α,β)
AB (P‖Q) from

diverging to ∞. The positive lower-bounds are shown in the lower-right quadrant of (a).
The finite upper-bounds are shown in the upper-left quadrant of (b).

The proofs of these theorems are given in Appendices B, C and D.
Figure 2 illustrates the typical shapes of the AB log-det divergence for different values of the

eigenvalues for various choices of α and β.
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Figure 2. Two-dimensional plots of the AB log-det divergence for different eigenvalues:
(a) λ = 0.4, (b) λ = 2.5, (c) λ1 = 0.4, λ2 = 2.5, (d) 10 eigenvalues uniformly randomly
distributed in the range [0.5, 2].

In general, the AB log-det divergence is not a metric distance since the triangle inequality is not
satisfied for all parameter values. Therefore, we can define the metric distance as the square root of the
AB log-det divergence in the special case when α = β as follows:

d
(α,α)
AB (P‖Q) =

√
D

(α,α)
AB (P‖Q). (15)

This follows from the fact that D(α,α)
AB (P‖Q) is symmetric with respect to P and Q.

Later, we will show that measures defined in this manner lead to many important and well-known
divergences and metric distances such as the Logdet Zero divergence, Affine Invariant Riemannian
metric (AIRM), and square root of Stein’s loss [5,6]. Moreover, new divergences can be generated;
specifically, generalized Stein’s loss, the Beta-log-det divergence, and extended Hilbert metrics.

From the divergence D
(α,β)
AB (P‖Q), a Riemannian metric and a pair of dually coupled affine

connections are introduced in the manifold of positive definite matrices. Let dP be a small deviation
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of P, which belongs to the tangent space of the manifold at P. Calculating D(α,β)
AB (P + dP‖P) and

neglecting higher-order terms yields (see Appendix E)

D
(α,β)
AB (P + dP‖P) =

1

2
tr[dP P−1 dP P−1]. (16)

This gives a Riemannian metric that is common for all (α, β). Therefore, the Riemannian metric is
the same for all AB log-det divergences, although the dual affine connections depend on α and β. The
Riemannian metric is also the same as the Fisher information matrix of the manifold of multivariate
Gaussian distributions of mean zero and covariance matrix P.

Interestingly, note that the Riemannian metric or geodesic distance is obtained from (3) for
α = β = 0:

dR(P‖Q) =

√
2D

(0,0)
AB (P‖Q) =

√
tr log2(PQ−1) (17)

= ‖ log(PQ−1)‖F = ‖ log(Q−1/2PQ−1/2)‖F (18)

=

√√√√ n∑
i=1

log2(λi), (19)

where λi are the eigenvalues of PQ−1.
This is also known as the AIRM. AIRM takes advantage of several important and useful theoretical

properties and is probably one of the most widely used (dis)similarity measure for SPD (covariance)
matrices [14,15].

For α = β = 0.5 (and for α = β = −0.5), the recently defined and deeply analyzed S-divergence
(JBLD) [6,14,15,17] is obtained:

DS(P‖Q) = D
(0.5,0.5)
AB (P‖Q) = 4 log det

(
1

2

[
(PQ−1)1/2 + (PQ−1)−1/2

])

= 4 log

det(P)1/2 det

(
(PQ−1)1/2 + (PQ−1)−1/2

2

)
det(Q)1/2

det(P)1/2 det(Q)1/2

= 4 log
det 1

2
(P + Q)√

det(P) det(Q)

= 4

(
log det

(
P + Q

2

)
− 1

2
log det(PQ)

)
= 4

n∑
i=1

log

(
λi + 1

2
√
λi

)
. (20)

The S-divergence is not a metric distance. To make it a metric, we take its square root and obtain the
LogDet Zero divergence, or Bhattacharyya distance [5,7,18]:

dBh(P‖Q) =

√
D

(0.5,0.5)
AB (P‖Q)

= 2

√
log det

(
P + Q

2

)
− 1

2
log det(PQ)

= 2

√
log

det 1
2
(P + Q)√

det(P) det(Q)
. (21)
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Moreover, for α = 0, β 6= 0 and α 6= 0, β = 0, we obtain divergences which are generalizations of
Stein’s loss (called also Burg matrix divergence or simply LogDet divergence):

D
(0,β)
AB (P‖Q) =

1

β2

[
tr
(
(PQ−1)β − I

)
− β log det(PQ−1)

]
, β 6= 0. (22)

D
(α,0)
AB (P‖Q) =

1

α2

[
tr
(
(QP−1)α − I

)
− α log det(QP−1)

]
, α 6= 0 (23)

The divergences in (22) and (23) simplify, respectively, to the standard Stein’s loss if β = 1 and to its
dual loss if α = 1.

3. Special Cases of the AB Log-Det Divergence

We now illustrate how a suitable choice of the (α, β) parameters simplify the AB log-det divergence
into other known divergences such as the Alpha- and Beta-log-det divergences [5,11,18,23] (see Figure 3
and Table 1).
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Figure 3. Links between the fundamental, nonsymmetric, AB log-det divergences. On
the α-β-plane, important divergences are indicated by points and lines, especially the
Stein’s loss and its generalization, the AIRM (Riemannian) distance, S-divergence (JBLD),
Alpha-log-det divergence D(α)

A , and Beta-log-det divergence D(β)
B .
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Table 1. Fundamental Log-det Divergences and Distances

Geodesic Distance (AIRM) (α = β = 0)

1
2
d2
R(P ‖ Q) =

1

2
tr log2(PQ−1) =

1

2

n∑
i=1

log2 λi

S-divergence (Squared Bhattacharyya Distance) (α = β = 0.5)

DS(P ‖ Q) = d2
Bh(P ‖ Q) = 4 log

det P+Q
2

(det PQ)
1
2

= 4
n∑
i=1

log
λi + 1

2
√
λi

Power divergence (α = β 6= 0)

1

α2
log det

(PQ−1)α − (PQ−1)−α

2
=

1

α2

∑
log

λαi + λ−αi
2

Generalized Burg divergence (Stein’s Loss) (α = 0, β 6= 0)

1

β2
tr
[
(PQ−1)β − I

]
− log det(PQ−1)β

]
=

1

β2

( n∑
i=1

(
λβi − logλβi

)
− n

)
Generalized Itakura-Saito log-det divergence (α = −β 6= 0)

1

α2
log

det(PQ−1)α

det I + log(PQ−1)α
=

1

α2

n∑
i=1

log
λαi

1 + log2λαi

Alpha log-det divergence (0 < α < 1, β = 1− α)

D
(α)
A (P‖Q)=

1

α(1− α)
log

det (αP + (1− α)Q)

det (Pα Q1−α)
=

1

α(1− α)

n∑
i=1

log

(
α(λi − 1) + 1

λαi

)

Beta log-det divergence (α = 1, β ≥ 0)

D
(β)
B (P‖Q) =

1

β
log det

(PQ−1)β + β(PQ−1)

1 + β
=

1

β

n∑
i=1

log
λβi + βλ−1

i

1 + β

D
(∞)
B (P‖Q) =

∑
i∈Ω

log λi , Ω = {i : λi > 1}

Symmetric Jeffrey KL divergence (α = 1, β = 0)

DJ(P‖Q) =
1

2
tr(PQ−1 + QP−1 − 2I) =

1

2

n∑
i=1

(√
λi −

1√
λi

)2

Generalized Hilbert metrics

D
(γ2,γ1)
CCA (P‖Q) = log

Mγ2{λi}
Mγ1{λi}

, dH(P‖Q) = log
M∞{λi}
M−∞{λi}

= log
λmax
λmin
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When α + β = 1, the AB log-det divergence reduces to the Alpha-log-det divergence [5]:

D
(α,1−α)
AB (P‖Q) = D

(α)
A (P‖Q) (24)

.
=



1

α(1− α)
log det

[
α(PQ−1)1−α + (1− α)(QP−1)α

]
=

1

α(1− α)
log

det (αP + (1− α)Q)

det (Pα Q1−α)
=

1

α(1− α)

n∑
i=1

log

(
α(λi − 1) + 1

λαi

)
for 0 < α < 1,

tr(QP−1)− log det(QP−1)− n =
n∑
i=1

(
λ−1
i + log(λi)

)
− n for α = 1,

tr(PQ−1)− log det(PQ−1)− n =
n∑
i=1

(λi − log(λi))− n for α = 0.

On the other hand, when α = 1 and β ≥ 0, the AB log-det divergence reduces to the Beta-log-det
divergence:

D
(1,β)
AB (P‖Q) = D

(β)
B (P‖Q) (25)

.
=



1

β
log det

(PQ−1)β + β (QP−1)

1 + β
=

1

β

n∑
i=1

log

(
λβi + βλ−1

i

1 + β

)
for β > 0,

tr(QP−1 − I)− log det(QP−1) =
n∑
i=1

(
λ−1
i + log(λi)

)
− n for β = 0,

log
det(PQ−1)

det(I + log(PQ−1))
=

n∑
i=1

log
λi

1 + log(λi)
for β = −1, λi > e−1∀i.

Note that det(I + log(PQ−1) =
∏n

i=1[1 + log(λi)], and the Beta-log-det divergence is well defined
for β = −1 and if all the eigenvalues are larger than λi > e−1 ≈ 0.367 (e ≈ 2.72).

It is interesting to note that the Beta-log-det divergence for β → ∞ leads to a new divergence that is
robust with respect to noise. This new divergence is given by

lim
β→∞

D
(β)
B (P‖Q) = D

(∞)
B (P‖Q) = log(

k∏
i=1

λi) for all λi ≥ 1. (26)

This can be easily shown by applying the L’Hôpital’s formula. Assuming that the set Ω = {i : λi > 1}
gathers the indices of those eigenvalues greater than one, we can more formally express this divergence
as

D
(∞)
B (P‖Q) =

{ ∑
i∈Ω log λi for Ω 6= φ,

0 for Ω = φ.
(27)

The Alpha-log-det divergence gives the standard Stein’s losses (Burg matrix divergences) for α = 1 and
α = 0, and the Beta-log-det divergence is equivalent to Stein’s loss for β = 0.
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Another important class of divergences is Power log-det divergences for any α = β ∈ R:

D
(α,α)
AB (P‖Q) = D

(α)
P (P‖Q) (28)

.
=



1

α2
log det

(PQ−1)α + (PQ−1)−α

2
=

1

α2

n∑
i=1

log
λαi + λ−αi

2
for α 6= 0,

1

2
tr log2(PQ−1) =

1

2
tr log2(QP−1) =

1

2

n∑
i=1

log2(λi) for α = 0.

4. Properties of the AB Log-Det Divergence

The AB log-det divergence has several important and useful theoretical properties for SPD matrices.

1. Nonnegativity; given by

D
(α,β)
AB (P‖Q) ≥ 0, ∀α, β ∈ R. (29)

2. Identity of indiscernibles (see Theorems 1 and 2); given by

D
(α,β)
AB (P‖Q) = 0 if and only if P = Q. (30)

3. Continuity and smoothness of D(α,β)
AB (P‖Q) as a function of α ∈ R and β ∈ R, including the

singular cases when α = 0 or β = 0, and when α = −β (see Figure 2).

4. The divergence can be expressed in terms of the diagonal matrix Λ = diag{λ1, λ2, . . . , λn} with
the eigenvalues of PQ−1, in the form

D
(α,β)
AB (P‖Q) = D

(α,β)
AB (Λ‖I). (31)

5. Scaling invariance; given by

D
(α,β)
AB (cP‖cQ) = D

(α,β)
AB (P‖Q), (32)

for any c > 0.

6. Relative invariance for scale transformation: For given α and β and nonzero scaling factor ω 6= 0,
we have

D
(ω α, ω β)
AB (P‖Q) =

1

ω2
D

(α,β)
AB ((Q−1/2PQ−1/2)ω‖I) . (33)

7. Dual-invariance under inversion (for ω = −1); given by

D
(−α,−β)
AB (P‖Q) = D

(α,β)
AB (P−1‖Q−1) . (34)

8. Dual symmetry; given by

D
(α,β)
AB (P‖Q) = D

(β,α)
AB (Q‖P) . (35)
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9. Affine invariance (invariance under congruence transformations); given by

D
(α,β)
AB (APAT‖AQAT ) = D

(α,β)
AB (P‖Q), (36)

for any nonsingular matrix A ∈ Rn×n

10. Divergence lower-bound; given by

D
(α,β)
AB (XTPX‖XTQX) ≤ D

(α,β)
AB (P‖Q), (37)

for any full-column rank matrix X ∈ Rn×m with n ≤ m.

11. Scaling invariance under the Kronecker product; given by

D
(α,β)
AB (Z⊗P‖Z⊗Q) = nD

(α,β)
AB (P‖Q) , (38)

for any symmetric and positive definite matrix Z of rank n.

12. Double Sided Orthogonal Procrustes property. Consider an orthogonal matrix Ω ∈ O(n) and two
symmetric positive definite matrices P and Q, with respective eigenvalue matrices ΛP and ΛQ

which elements are sorted in descending order. The AB log-det divergence between ΩTPΩ and
Q is globally minimized when their eigenspaces are aligned, i.e.,

min
Ω∈O(n)

D
(α,β)
AB (ΩTPΩ‖Q) = D

(α,β)
AB (ΛP‖ΛQ). (39)

13. Triangle Inequality-Metric Distance Condition, for α = β ∈ R. The previous property implies the
validity of the triangle inequality for arbitrary positive definite matrices, i.e.,√

D
(α,α)
AB (P‖Q) ≤

√
D

(α,α)
AB (P‖Z) +

√
D

(α,α)
AB (Z‖Q) . (40)

The proof of this property exploits the metric characterization of the square root of the
S-divergence proposed first by S. Sra in [6,17] for arbitrary SPD matrices.

Several of these properties have been already proved for the specific cases of α and β that lead to
the S-divergence (α, β = 1/2) [6], the Alpha log-det divergence (0 ≤ α ≤ 1, β = 1 − α) [5] and the
Riemannian metric (α, β = 0) [28, Chapter 6]. We refer the reader to Appendix F for their proofs when
α, β ∈ R.

5. Symmetrized AB Log-Det Divergences

The basic AB log-det divergence is asymmetric; that is, D(α,β)
AB (P ‖Q) 6= D

(α,β)
AB (Q ‖P), except the

spacial case of α = β).
In general, there are several ways to symmetrize a divergence; for example, Type-1,

D
(α,β)
ABS1(P ‖Q) =

1

2

[
D

(α,β)
AB (P ‖Q) +D

(α,β)
AB (Q ‖P)

]
, (41)
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and Type-2, based on the Jensen-Shannon symmetrization (which is too complex for log-det
divergences),

D
(α,β)
ABS2(P ‖Q) =

1

2

[
D

(α,β)
AB

(
P ‖ P + Q

2

)
+D

(α,β)
AB

(
Q ‖ P + Q

2

)]
. (42)

The Type-1 symmetric AB log-det divergence is defined as

D
(α,β)
ABS1(P‖Q) =



1

2αβ
log det

[
I +

αβ

(α + β)2

(
(PQ−1)α+β + (QP−1)α+β − 2I

)]
for αβ > 0,

1

2α2

[
tr
(
(PQ−1)α + (QP−1)α − 2I

)]
for α 6= 0, β = 0,

1

2β2

[
tr
(
(PQ−1)β + (QP−1)β − 2I

)]
for α = 0, β 6= 0,

1

2α2
tr log(I− log2(PQ−1)α)−1 for α = −β 6= 0,

1

2
tr log2(PQ−1) =

1

2
|| log(Q−1/2PQ−1/2)||2F for α, β = 0.

(43)

Equivalently, this can be expressed by the eigenvalues of PQ−1 in the form

D
(α,β)
ABS1(P‖Q) =



1

2αβ

n∑
i=1

log

(
1 +

αβ

(α + β)2
(λ

α+β
2

i − λ−
α+β
2

i )2

)
for αβ > 0,

1

2α2

n∑
i=1

(
λαi + λ−αi − 2

)
=

1

2α2

n∑
i=1

(λ
α
2
i − λ

−α
2

i )2 for α 6= 0, β = 0,

1

2β2

n∑
i=1

(
λβi + λ−βi − 2

)
=

1

2β2

n∑
i=1

(λ
β
2
i − λ

−β
2

i )2 for α = 0, β 6= 0,

1

2α2

n∑
i=1

log
1

1− log2(λαi )
for α = −β 6= 0,

1

2

n∑
i=1

log2(λi) for α, β = 0.

(44)

We consider several well-known symmetric log-det divergences (see Figure 4); in particular, we
consider the following:

(1) For α = β = ±0.5, we obtain the S-divergence or JBLD divergence (20).
(2) For α = β = 0, we obtain the square of the AIRM (Riemannian metric) (19).
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(3) For α = 0 and β = ±1 or for β = 0 and α = ±1, we obtain the KLDM (symmetrized KL Density
Metric), also known as the symmetric Stein’s loss or Jeffreys KL divergence [3]:

DJ(P‖Q) =
1

2
tr
(
PQ−1 + QP−1 − 2 I

)
=

1

2

n∑
i=1

(√
λi −

1√
λi

)2

. (45)
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Figure 4. Links between the fundamental symmetric, AB log-det divergences. On the
(α, β)-plane, the special cases of particular divergences are indicated by points (Jeffreys KL
divergence (KLDM) or symmetric Stein’s loss and its generalization, S-divergence (JBLD),
and the Power log-det divergence.

One important potential application of the AB log-det divergence is to generate conditionally positive
definite kernels, which are widely applied to classification and clustering. For a specific set of
parameters, the AB log-det divergence gives rise to a Hilbert space embedding in the form of a Radial
Basis Function (RBF) kernel [22]; more specifically, the AB log-det kernel is defined by

K
(α,β)
AB (P‖Q) = exp

(
−γD(α,β)

ABS1(P‖Q)
)

=

(
det

[
I +

αβ

(α + β)2

(
(PQ−1)α+β + (QP−1)α+β − 2I

)])− γ
2αβ

(46)
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for some selected values of γ > 0 and α, β > 0 or α, β < 0 that can make the kernel positive definite.

6. Similarity Measures for Semidefinite Covariance Matrices in Reproducing Kernel Hilbert
Spaces

There are many practical applications for which the underlying covariance matrices are symmetric but
only positive semidefinite, i.e., their columns do not span the whole space. For instance, in classification
problems, assume two classes and a set of observation vectors {x1, . . . ,xT} and {y1, . . . ,yT} in Rm

for each class, then we may wish to find a principled way to evaluate the ensemble similarity of the
data from their sample similarity. The problem of the modeling of similarity between two ensembles
was studied by Zhou and Chellappa in [32]. For this purpose, they proposed several probabilistic
divergence measures between positive semidefinite covariance matrices in a Reproducing kernel Hilbert
space (RKHS) of finite dimensionality. Their strategy was later extended for image classification
problems [33] and formalized for the Log-Hilbert-Schmidt metric between infinite-dimensional RKHS
covariance operators [34].

In this section, we propose the unifying framework of the AB log-det divergences to reinterpret
and extend the similarity measures obtained in [32,33] for semidefinite covariance matrices in the
finite-dimensional RKHS.

We shall assume that the nonlinear functions Φx : Rm → Rn and Φy : Rm → Rn (where n > m)
respectively map the data from each of the classes into their higher dimensional feature spaces. We
implicitly define the feature matrices as

Φx = [Φx(x1), . . . ,Φx(xT )], Φy = [Φy(y1), . . . ,Φy(yT )], (47)

and the sample covariance matrices of the observations in the feature space as: Cx = ΦxJΦT
x/T ∈ Rn×n

and Cy = ΦyJΦT
y/T ∈ Rn×n, where J = IT − 1

T
11T denotes the T × T centering matrix.

In practice, it is common to consider low-rank approximations of sample covariance matrices. For
a given basis Vx = (v1, . . . ,vr) ∈ RT×r of the principal subspace of JΦT

xΦxJ, we can define the
projection matrix Πx = VxVT

x and redefine the covariance matrices as

Cx =
1

T
Φx VxVT

x ΦT
x and Cy =

1

T
Φy VyVT

y ΦT
y . (48)

Assuming the Gaussianity of the data in the feature space, the mean vector and covariance matrix are
sufficient statistics and a natural measure of dissimilarity between Φx and Φy should be a function of the
first and second order statistics of the features. Furthermore, in most practical problems the mean value
should be ignored due to robustness considerations, and then the comparison reduces to the evaluation
of a suitable dissimilarity measure between Cx and Cy.

The dimensionality of the feature space n is typically much larger than r, so the rank of the covariance
matrices in (48) will be r � n and, therefore, both matrices are positive semidefinite. The AB log-det
divergence is infinite when the range spaces of the covariance matrices Cx and Cy differ. This property
is useful in applications which require an automatic constraint in the range of the estimates [22], but it
will prohibit the practical use of the comparison when the ranges of the covariance matrices differ. The
next subsections present two different strategies to address this challenging problem.
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6.1. Measuring the Dissimilarity with a Divergence Lower-Bound

One possible strategy is to use dissimilarity measures which ignore the contribution to the divergence
caused by the rank deficiency of the covariance matrices. This is useful when performing one comparison
of the covariances matrices after applying a congruence transformation that aligns their range spaces, and
can be implemented by retaining only the finite and non-zero eigenvalues of the matrix pencil (Cx,Cy).

Let Ir denote the identity matrix of size r and (·)+ the Moore-Penrose pseudoinverse operator.
Consider the eigenvalue decomposition of the symmetric matrix

(C+
y )

1
2 Cx(C+

y )
1
2 = UΛUT (49)

where U is a semi-orthogonal matrix for which the columns are the eigenvectors associated with the
positive eigenvalues of the matrix pencil and

Λ = diag(λ1, . . . , λr) ≡ diagEig+{(C+
y )

1
2 Cx(C+

y )
1
2 )}. (50)

is a diagonal matrix with the eigenvalues sorted in a descending order.
Note that the tall matrix W = (C+

y )
1
2 U ∈ Rn×r diagonalizes the covariance matrices of the two

classes

WTCxW = Λ (51)

WTCyW = Ir (52)

and compress them to a common range space. The compression automatically discards the singular and
infinite eigenvalues of the matrix pencil (Cx,Cy), while it retains the finite and positive eigenvalues. In
this way, the following dissimilarity measures can be obtained:

L
(α,β)
AB (Cx,Cy) ≡ D

(α,β)
AB (WTCxW‖WTCyW) = D

(α,β)
AB (Λ‖Ir), (53)

L
(α,β)
ABS1(Cx,Cy) ≡ D

(α,β)
ABS1(WTCxW‖WTCyW) = D

(α,β)
ABS1(Λ‖Ir). (54)

Note, however, that these measures should not be understood as a strict comparison of the original
covariance matrices, but rather as an indirect comparison through their respective compressed versions
WTCxW and WTCyW.

With the help of the kernel trick, the next lemma shows that the evaluation of the dissimilarity
measures L

(α,β)
AB (Cx,Cy) and L

(α,β)
ABS1(Cx,Cy), does not require the explicit computation of the

covariance matrices or of the feature vectors.

Lemma 1. Given the Gram matrix or kernel matrix of the input vectors(
Kxx Kxy

Kyx Kyy

)
=

(
ΦT

xΦx ΦT
xΦy

ΦT
yΦx ΦT

yΦy

)
(55)

and the matrices Vx and Vy which respectively span the principal subspaces of Kxx and Kyy, the
positive and finite eigenvalues of the matrix pencil can be expressed by

Λ = diagEig+

{
(VT

xKxyK−1
yyVy)(VT

xKxyK−1
yyVy)T

}
. (56)
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Proof. The proof of the lemma relies on the property that for any pair of m× n matrices A and B, the
non-zero eigenvalues of ABT and of BTA are the same (see [30, pag. 11]). Then, there is an equality
between the following matrices of positive eigenvalues

Λ ≡ diagEig+

{
(C+

y )
1
2 Cx(C+

y )
1
2 )
}

= diagEig+

{
CxC+

y

}
. (57)

Taking into account the structure of the covariance matrices in (48), such eigenvalues can be explicitly
obtained in terms of the kernel matrices

Eig+

{
CxC+

y

}
= Eig+

{
(ΦxVxVT

xΦT
x)((Φ+

y )TVyVT
yΦ+

y )
}

(58)

= Eig+

{
(VT

xΦT
x(ΦT

y )+VyVT
yΦ+

y )(ΦxVx)
}

(59)

= Eig+

{
(VT

xKxyK−1
yyVy)(VT

xKxyK−1
yyVy)T

}
. (60)

6.2. Similarity Measures Between Regularized Covariance Descriptors

Several authors consider a completely different strategy, which consists in the regularization of the
original covariance matrices [32–34]. This way the null the eigenvalues of the covariances Cx and Cy

are replaced by a small positive constant ρ > 0, to obtain the “regularized” positive definite matrices C̃x

and C̃y, respectively. The modification can be illustrated by comparing the eigendecompositions

Cx = (Ux|U⊥x )

(
Λx 0

0 0

)
(Ux|U⊥x )T = UxΛxUT

x (61)

↓ (62)

C̃x = (Ux|U⊥x )

(
Λx 0

0 ρ In−r

)
(Ux|U⊥x )T = Cx + ρU⊥x (U⊥x )T . (63)

Then, the dissimilarity measure of the data in the feature space can be obtained just by measuring
a divergence between the SPD matrices C̃x and C̃y. Again, the idea is to compute the value of the
divergence without requiring the evaluation of the feature vectors but by using the available kernels.

Using the properties of the trace and the determinants, a practical formula for the log-det
Alpha-divergence has been obtained in [32,33] for 0 < α < 1. The resulting expression

D
(α,1−α)
AB (C̃x ‖C̃y)=

1

α(1− α)
log det(I2r + ρ−1H)− 1

(1− α)
log det(ρ−1Λx)− 1

α
log det(ρ−1Λy)

is a function of the principal eigenvalues of the kernels

Λx = VT
xKxxVx, Λy = VT

xKyyVy, (64)

and the matrix

H =

(
(α)

1
2 Wx 0

0 (1− α)
1
2 Wy

)(
Kxx Kxy

Kyx Kyy

)(
(α)

1
2 Wx 0

0 (1− α)
1
2 Wy

)T

. (65)
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where

Wx = Vx(Ir − ρΛ−1
x )

1
2 and Wy = Vy(Ir − ρΛ−1

y )
1
2 . (66)

The evaluation of the divergence outside the interval 0 < α < 1, or when β 6= 1 − α, is not covered
by this formula and, in general, requires knowledge of the eigenvalues of the matrix C̃

− 1
2

y C̃xC̃
− 1

2
y .

However, different analyses are necessary depending on the dimension of the intersection of the range
space of both covariance matrices Cx and Cy. In the following, we study the two more general scenarios.

Case (A) The range spaces of Cx and Cy are the same.

In this case U⊥y (U⊥y )T = U⊥x (U⊥x )T , and the eigenvalues of the matrix

C̃xC̃−1
y = (Cx + ρ U⊥x (U⊥x )T )(C+

y + ρ−1U⊥x (U⊥x )T ) (67)

= CxC+
y + U⊥x (U⊥x )T (68)

coincide with the nonzero eigenvalues of CxC+
y except for (n − r) additional eigenvalues which are

equal to 1. Then, using the equivalence between (57) and (60), the divergence reduces to the following
form

D
(α,β)
AB (C̃x‖C̃y) = L

(α,β)
AB (Cx,Cy) (69)

= D
(α,β)
AB ((VT

xKxyK−1
yyVy)(VT

xKxyK−1
yyVy)T ‖ Ir). (70)

Case (B) The range spaces of Cx and Cy are disjoint.

In practice, for n � r this is the most probable scenario. In such a case, the r largest eigenvalues of
the matrix C̃xC̃−1

y diverge as ρ tends to zero. Hence, we can not bound above these eigenvalues and, for
this reason, it makes no sense to study the case of sign(α) 6= sign(β), so in this section we assume that
sign(α) = sign(β).

Theorem 3. When range spaces of Cx and Cy are disjoint and for a sufficiently small value of ρ > 0,
the AB log-det divergence is closely approximated by the formula

D
(α,β)
AB (C̃x ‖C̃y) ≈ D

(α,β)
AB (C

(ρ)
x|y ‖ ρIr) +D

(β,α)
AB (C

(ρ)
y|x ‖ ρIr), (71)

where C
(ρ)
x|y (and respectively C

(ρ)
y|x by interchanging x and y) denotes the matrix

C
(ρ)
x|y = Λx − ρIr − ρ2Λ−1

y −WT
xKxyWyΛ−1

y WT
yKyxWx. (72)

The proof of the theorem is presented in the Appendix G. The eigenvalues of the matrices C
(ρ)
x|y and

C
(ρ)
y|x, estimate the r largest eigenvalues of C̃

− 1
2

y C̃xC̃
− 1

2
y and of its inverse C̃

− 1
2

x C̃yC̃
− 1

2
x , respectively.

The relative error in the estimation of these eigenvalues is of order O(ρ), i.e., it gradually improves as ρ
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tend to zero. The approximation is asymptotically exact, and C
(ρ)
x|y and C

(ρ)
x|y converge respectively to the

conditional covariance matrices

Cx|y = lim
ρ→0

C
(ρ)
x|y = VT

xKxxVx − (VT
xKxyVy)(VT

yKyyVy)−1(VT
xKxyVy)T , (73)

Cy|x = lim
ρ→0

C
(ρ)
y|x = VT

yKyyVy − (VT
yKyxVx)(VT

xKxxVx)−1(VT
yKyxVx)T , (74)

while ρ I converges to the zero matrix.
In the limit, the value of the divergence is not very useful because

lim
ρ→0

D
(α,β)
AB (C̃x ‖C̃y) =∞, (75)

though there are some practical ways to circumvent this limitation. For example, when α = 0 or β = 0,
the divergence can be scaled by a suitable power of ρ to make it finite (see Section 3.3.1 in [32]). The
scaled form of the divergence between the regularized covariance matrices is

SD(α,β)
AB (C̃x ‖C̃y) ≡ lim

ρ→0
ρmax{α,β}D

(α,β)
AB (C̃x ‖C̃y). (76)

Examples of scaled divergences are the following versions of Stein’s losses

SD(0,β)
AB (C̃x ‖C̃y) = lim

ρ→0
ρβD

(0,β)
AB (C̃x ‖C̃y) =

1

β2
tr
(
(Cx|y)β

)
≥ 0, β > 0, (77)

SD(α,0)
AB (C̃x ‖C̃y) = lim

ρ→0
ραD

(α,0)
AB (C̃x ‖C̃y) =

1

α2
tr
(
(Cy|x)α

)
≥ 0, α > 0, (78)

as well as the Jeffrey’s KL family of symmetric divergences (cf. Equation (23) in [33])

SD(α,0)
ABS1(C̃x ‖C̃y) = lim

ρ→0
ραD

(α,0)
ABS1(C̃x ‖C̃y) =

1

2α2

(
tr((Cx|y)α) + tr((Cy|x)α)

)
, α > 0. (79)

In other cases, when the scaling is not sufficient to obtain a finite and practical dissimilarity measure,
an affine transformation may be used. The idea is to identify the divergent part of D(α,β)

AB (C̃x ‖C̃y) as
ρ→ 0 and use its value as a reference for the evaluation the dissimilarity. For α, β ≥ 0, the relative AB
log-det dissimilarity measure is the limiting value of the affine transformation

RD(α,β)
AB (C̃x ‖C̃y) ≡ lim

ρ→0
min{α, β}

(
D

(α,β)
AB (C̃x ‖C̃y)− r

αβ
log

αβρ−(α+β)

(α + β)2

)
, α, β > 0. (80)

After its extension by continuity (including as special cases α = 0 or β = 0), the function

RD(α,β)
AB (C̃x ‖C̃y) =



log det(Cx|y) +
α

β
log det(Cy|x) β > α ≥ 0

log det(Cx|y) + log det(Cy|x) α = β ≥ 0

log det(Cy|x) +
β

α
log det(Cx|y) α > β ≥ 0

(81)

provides simple formulas to measure the relative dissimilarity between symmetric positive semidefinite
matrices Cx and Cy. However, it should be taken into account that, as a consequence of its relative
character, this function is not bounded below and can achieve negative values.
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7. Modifications and Generalizations of AB Log-Det Divergences and Gamma Matrix Divergences

The divergence (3) discussed in the previous sections can be extended and modified in several ways.
It is interesting to note that the positive eigenvalues of PQ−1 play a similar role as the ratios (pi/qi)

and (qi/pi) when used in the wide class of standard discrete divergences, see for example, [11,12];
hence, we can apply such divergences to formulate a modified log-det divergence as a function of the
eigenvalues λi.

For example, consider the Itakura-Saito distance defined by

DIS(p ‖ q) =
∑
i

(
pi
qi

+ log
qi
pi
− 1

)
. (82)

It is worth noting that we can generate the large class of divergences or cost functions using Csiszár
f -functions [13,24,25]. By replacing pi/qi with λi and qi/pi with λ−1

i , we obtain the log-det divergence
for SPD matrices:

DIS(P ‖Q) =
n∑
i=1

(λi − log(λi))− n, (83)

which is consistent with (24) and (26).
As another example, consider the discrete Gamma divergence [11,12] defined by

D
(α,β)
AC (p‖q) =

1

β(α + β)
log

(∑
i

pα+β
i

)
+

1

α(α + β)
log

(∑
i

qα+β
i

)
− 1

αβ
ln

(∑
i

pαi q
β
i

)

=
1

αβ(α + β)
log

(∑
i

pα+β
i

)α(∑
i

qα+β
i

)β

(∑
i

pαi q
β
i

)α+β
, (84)

for α 6= 0, β 6= 0, α + β 6= 0,

which when α = 1 and β → −1, simplifies to the following form [11]:

lim
β→−1

D
(1,β)
AC (p ‖ q) =

1

n

n∑
i=1

(
log

qi
pi

)
+ log

(
n∑
i=1

pi
qi

)
− log(n) = log

1

n

n∑
i=1

pi
qi(

n∏
i=1

pi
qi

)1/n
. (85)

Hence, by substituting pi/qi with λi, we derive a new Gamma matrix divergence for SPD matrices:

D
(1,0)
CCA(P ‖Q) = D

(1,−1)
AC (P ‖Q) =

1

n

n∑
i=1

(
log λ−1

i

)
+ log

(
n∑
i=1

λi

)
− log(n)

= log

1

n

n∑
i=1

λi(
n∏
i=1

λi

)1/n
= log

M1{λi}
M0{ λi}

, (86)
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where M1 denotes the arithmetic mean, and M0 denotes the geometric mean.
Interestingly, (86) can be expressed equivalently as

D
(1,0)
CCA(P ‖Q) = log(tr(PQ−1))− 1

n
log det(PQ−1)− log(n). (87)

Similarly, using the symmetric Gamma divergence defined in [11,12],

D
(α,β)
ACS (p‖q) =

1

αβ
log

(∑
i

pα+β
i

)(∑
i

qα+β
i

)
(∑

i

pαi q
β
i

)(∑
i

pβi q
α
i

) , (88)

for α 6= 0, β 6= 0, α + β 6= 0,

for α = 1 and β → −1 and by substituting the ratios pi/qi with λi, we obtain a new Gamma matrix
divergence as follows:

D
(1,−1)
ACS (P ‖Q) = log

(
(
n∑
i=1

λi)(
n∑
i=1

λ−1
i )

)
− log(n)2

= log

(
(
1

n

n∑
i=1

λi)(
1

n

n∑
i=1

λ−1
i )

)
= log

(
M1 {λi} M1

{
λ−1
i

})
(89)

= log
M1 {λi}
M−1 {λi}

, (90)

where M−1 {λi} denotes the harmonic mean.
Note that for n→∞, this formulated divergence can be expressed compactly as

D
(1,−1)
ACS (P ‖Q) = log(E{u} E{u−1}), (91)

where ui = {λi} and u−1
i = {λ−1

i }.
The basic means are defined as follows:

Mγ(λ) =



M−∞ = min{λ1, . . . , λn}, γ → −∞,

M−1 = n

(
n∑
i=1

1

λi

)−1

, γ = −1,

M0 =

(
n∏
i=1

λi

)1/n

, γ = 0,

M1 =
1

n

n∑
i=1

λi, γ = 1,

M2 =

(
1

n

n∑
i=1

λ2
i

)1/2

, γ = 2,

M∞ = max{λ1, . . . , λn}, γ →∞,

(92)

with

M−∞ ≤M−1 ≤M0 ≤M1 ≤M2 ≤M∞, (93)
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where equality holds only if all λi are equal. By increasing the values of γ, more emphasis is put on
large relative errors, i.e., on λi whose values are far from one. Depending on the value of γ, we obtain
the minimum entry of the vector λ (for γ → −∞), its harmonic mean (γ = −1), the geometric mean
(γ = 0), the arithmetic mean (γ = 1), the quadratic mean (γ = 2), and the maximum entry of the vector
(γ →∞).

Exploiting the above inequalities for the means, the divergences in (86) and (90) can be heuristically
generalized (defined) as follows:

D
(γ2,γ1)
CCA (P ‖Q) = log

Mγ2{λi}
Mγ1{λi}

, (94)

for γ2 > γ1.
The new divergence in (94) is quite general and flexible, and in extreme cases, it takes the following

form:

D
(∞,−∞)
CCA (P ‖Q) = dH(P ‖Q) = log

M∞{λi}
M−∞{λi}

= log
λmax
λmin

, (95)

which is, in fact, a well-known Hilbert projective metric [6,26].
The Hilbert projective metric is extremely simple and suitable for big data because it requires only

two (minimum and maximum) eigenvalue computations of the matrix PQ−1.
The Hilbert projective metric satisfies the following important properties [6,27]:

1. Nonnegativity, dH(P ‖Q) ≥ 0, and definiteness, dH(P ‖Q) = 0, if and only if there exists a
c > 0 such that Q = cP.

2. Invariance to scaling:

dH(c1P ‖ c2Q) = dH(P ‖Q), (96)

for any c1, c2 > 0.
3. Symmetry:

dH(P ‖Q) = dH(Q ‖P) . (97)

4. Invariance under inversion:

dH(P ‖Q) = dH(P−1 ‖Q−1) . (98)

5. Invariance under congruence transformations:

dH(APAT ‖AQAT ) = dH(P ‖Q), (99)

for any invertible matrix A.
6. Invariance under geodesic (Riemannian) transformations (by taking A = P−1/2 in (99)):

dH(I ‖P−1/2QP−1/2) = dH(P ‖Q) . (100)

7. Separability of divergence for the Kronecker product of SPD matrices:

dH(P1 ⊗P2 ‖Q1 ⊗Q2) = dH(P1 ‖Q1) + dH(P2 ‖Q2) . (101)
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8. Scaling of power of SPD matrices:

dH(Pω ‖Qω) = |ω| dH(P ‖Q), (102)

for any ω 6= 0.
Hence, for 0 < |ω1| ≤ 1 ≤ |ω2| we have

dH(Pω1 ‖Qω1) ≤ dH(P ‖Q) ≤ dH(Pω2 ‖Qω2) . (103)

9. Scaling under the weighted geometric mean:

dH(P#sQ ‖P#uQ) = |s− u| dH(P ‖Q), (104)

for any u, s 6= 0, where

P#uQ = P1/2(P−1/2QP−1/2) u P1/2 . (105)

10. Triangular inequality: dH(P ‖Q) ≤ dH(P ‖Z) + dH(Z ‖Q) .

These properties can easily be derived and verified. For example, property (9) can easily be derived
as follows [6,27]:

dH(P#sQ ‖P#uQ) = dH(P1/2(P−1/2QP−1/2) s P1/2 ‖ (P1/2(P−1/2QP−1/2) u P1/2)

= dH((P−1/2QP−1/2) s ‖ (P−1/2QP−1/2) u)

= dH((P−1/2QP−1/2) (s−u) ‖ I)

= |s− u| dH(P ‖Q) . (106)

In Table 2, we summarize and compare some fundamental properties of three important metric
distances: the Hilbert projective metric, Riemannian metric, and LogDet Zero (Bhattacharyya) distance.
Since some of these properties are new, we refer to [6,27,28].

7.1. The AB Log-Det Divergence for Noisy and Ill-Conditioned Covariance Matrices

In real-world signal processing and machine learning applications, the SPD sampled matrices can
be strongly corrupted by noise and extremely ill conditioned. In such cases, the eigenvalues of
the generalized eigenvalue (GEVD) problem Pvi = λiQvi can be divided into a signal subspace
and noise subspace. The signal subspace is usually represented by the largest eigenvalues (and
corresponding eigenvectors), and the noise subspace is usually represented by the smallest eigenvalues
(and corresponding eigenvectors), which should be rejected; in other words, in the evaluation of log-det
divergences, only the eigenvalues that represent the signal subspace should be taken into account. The
simplest approach is to find the truncated dominant eigenvalues by applying the suitable threshold τ > 0;
equivalently, find an index r ≤ n for which λr+1 ≤ τ and perform a summation. For example, truncation
reduces the summation in (8) from 1 to r (instead of 1 to n) [22]. The threshold parameter τ can be
selected via cross validation.
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Table 2. Comparison of the fundamental properties of three basic metric distances: the
Riemannian (geodesic) metric (19), LogDet Zero (Bhattacharyya) divergence (21), and the
Hilbert projective metric (95). Matrices P,Q,P1,P2,Q1,Q2,Z ∈ Rn×n are SPD matrices,
A ∈ Rn×n is nonsingular, and the matrix X ∈ Rn×r with r < n is full column rank.
The scalars satisfy the following conditions: c > 0, c1, c2 > 0; 0 < ω ≤ 1, s, u 6= 0,
ψ = |s − u|. The geometric means are defined by P#uQ = P1/2(P−1/2QP−1/2) u P1/2

and P#Q = P#1/2Q = P1/2(P−1/2QP−1/2) 1/2 P1/2. The Hadamard product of P and Q

is denoted by P ◦Q (cf. with [6]).

Riemannian (geodesic) metric LogDet Zero (Bhattacharyya) div. Hilbert projective metric

dR(P‖Q) = ‖ log(Q−1/2PQ−1/2)‖F dBh(P‖Q) = 2

√
log

det 1
2
(P + Q)√

det(P) det(Q)
dH(P ‖Q) = log

λmax{PQ−1}
λmin{PQ−1}

dR(P ‖ Q) = dR(Q ‖ P) dBh(P ‖ Q) = dBh(Q ‖ P) dH(P ‖ Q) = dH(Q ‖ P)

dR(cP ‖ cQ) = dR(P ‖ Q) dBh(cP ‖ cQ) = dBh(P ‖ Q) dH(c1P ‖ c2Q) = dH(P ‖ Q)

dR(APAT ‖ AQAT ) = dR(P ‖ Q) dBh(APAT ‖ AQAT ) = dBh(P ‖ Q) dH(APAT ‖ AQAT ) = dH(P ‖ Q)

dR(P−1 ‖ Q−1) = dR(P ‖ Q) dBh(P
−1 ‖ Q−1) = dBh(P ‖ Q) dH(P−1 ‖ Q−1) = dH(P ‖ Q)

dR(Pω ‖ Qω) ≤ ω dR(P ‖ Q) dBh(P
ω ‖ Qω) ≤

√
ω dBh(P ‖ Q) dH(Pω ‖ Qω) ≤ ω dH(P ‖ Q)

dR(P ‖ P#ωQ) = ω dR(P ‖ Q) dBh(P ‖ P#ωQ) ≤
√
ω dBh(P ‖ Q) dH(P ‖ P#ωQ) = ω dH(P ‖ Q)

dR(Z#ωP ‖ Z#ωQ) ≤ ω dR(P ‖ Q) dBh(Z#ωP ‖ Z#ωQ) ≤
√
ω dBh(P ‖ Q) dH(Z#ωP ‖ Z#ωQ) ≤ ω dH(P ‖ Q)

dR(P#sQ ‖P#uQ) = ψ dR(P ‖Q)) dBh(P#sQ ‖P#uQ) ≤
√
ψ dBh(P ‖Q) dH(P#sQ ‖P#uQ) = ψ dH(P ‖Q)

dR(P ‖ P#Q) = dR(Q ‖ P#Q) dBh(P ‖ P#Q) = dBh(Q ‖ P#Q) dH(P ‖ P#Q) = dH(Q ‖ P#Q)

dR(XTPX ‖ XTQX) ≤ dR(P ‖ Q) dBh(X
TPX ‖ XTQX) ≤ dBh(P ‖ Q) dH(XTPX ‖ XTQX) ≤ dH(P ‖ Q)

dR(Z⊗P ‖ Z⊗Q) =
√
n dR(P ‖ Q) dBh(Z⊗P ‖ Z⊗Q) =

√
n dBh(P ‖ Q) dH(Z⊗P ‖ Z⊗Q) = dH(P ‖ Q)

d2
R(P1 ⊗P2 ‖ Q1 ⊗Q2) = dBh(P1 ⊗P2 ‖ Q1 ⊗Q2) dH(P1 ⊗P2 ‖ Q1 ⊗Q2)

= n d2
R(P1 ‖ Q1) + n d2

R(P2 ‖ Q2)+ ≥ dBh(P1 ◦P2 ‖ Q1 ◦Q2) = dH(P1 ‖ Q1) + dH(P2 ‖ Q2)

2 log det(P1Q
−1
1 ) log det(P2Q

−1
2 )
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Recent studies suggest that the real signal subspace covariance matrices can be better represented by
truncating the eigenvalues. A popular and relatively simple method applies a thresholding and shrinkage
rule to the eigenvalues [35]:

λ̃i = λi max{(1− τ γ

λγ
), 0}, (107)

where any eigenvalue smaller than the specific threshold is set to zero, and the remaining eigenvalues
are shrunk. Note that the smallest eigenvalues are shrunk more than the largest one. For γ = 1, we
obtain a standard soft thresholding, and for γ → ∞ a standard hard thresholding is obtained [36].
The optimal threshold τ > 0 can be estimated along with the parameter γ > 0 using cross validation.
However, a more practical and efficient method is to apply the Generalized Stein Unbiased Risk Estimate
(GSURE) method even if the variance of the noise is unknown (for more details, we refer to [35] and the
references therein).

In this paper, we propose an alternative approach in which the bias generated by noise is reduced
by suitable choices of α and β [12]. Instead of using the eigenvalues λi of PQ−1 or its inverse, we
use regularized or shrinked eigenvalues [35–37]. For example, in light of (8), we can use the following
shrinked eigenvalues:

λ̃i =

(
αλβi + βλ−αi

α + β

) 1
αβ

≥ 1, for α, β 6= 0, α, β > 0 or α, β < 0, (108)

which play a similar role as the ratios (pi/qi) (pi ≥ qi), which are used in the standard discrete
divergences [11,12]. It should be noted that equalities λ̃i = 1, ∀i hold only if all λi of PQ−1 are
equal to one, which occurs only if P = Q. For example, the new Gamma divergence in (94) can be
formulated even more generally as

D
(γ2,γ1)
CCA (P ‖Q) = log

Mγ2{λ̃i}
Mγ1{λ̃i}

, (109)

where γ2 > γ1, and λ̃i are the regularized or optimally shrinked eigenvalues.

8. Divergences of Multivariate Gaussian Densities and Differential Relative Entropies of
Multivariate Normal Distributions

In this section, we show the links or relationships between a family of continuous Gamma divergences
and AB log-det divergences for multivariate Gaussian densities.

Consider the two multivariate Gaussian (normal) distributions:

p(x) =
1√

(2π)n det P
exp

(
−1

2
(x− µ1)TP−1(x− µ1)

)
, (110)

q(x) =
1√

(2π)n det Q
exp

(
−1

2
(x− µ2)TQ−1(x− µ2)

)
, x ∈ Rn, (111)

where µ1 ∈ Rn and µ2 ∈ Rn are mean vectors, and P = Σ1 ∈ Rn×n and Q = Σ2 ∈ Rn×n are the
covariance matrices of p(x) and q(x), respectively.
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Furthermore, consider the Gamma divergence for these distributions:

D
(α,β)
AC (p(x)‖q(x)) =

1

αβ(α + β)
log

(∫
Ω

pα+β(x) dx

)α(∫
Ω

qα+β(x) dx

)β
(∫

Ω

pα(x) qβ(x) dx

)α+β
(112)

for α 6= 0, β 6= 0, α + β 6= 0,

which generalizes a family of Gamma divergences [11,12].

Theorem 4. The Gamma divergence in (112) for multivariate Gaussian densities (110) and (111) can
be expressed in closed form as follows:

D
(α,β)
AC (p(x)‖q(x)) =

1

2
D

(β,α)
AB

(
(Q−1/2PQ−1/2)

1
α+β ‖I

)
+

1

2
(µ1 − µ2)T (αQ + βP)−1 (µ1 − µ2),

=
1

2αβ
log

det

(
α

α + β
Q +

β

α + β
P

)
det(Q)

α
α+β det(P)

β
α+β

(113)

+
1

2(α + β)
(µ1 − µ2)T

(
α

α + β
Q +

β

α + β
P

)−1

(µ1 − µ2),

for α > 0 and β > 0.

The proof is provided in Appendix H. Note that for α+ β = 1, the first term in the right-hand-side of
(113) also simplifies as

1

2
D

(β,α)
AB

(
(Q−1/2PQ−1/2)

1
α+β ‖I

)∣∣∣∣
β=1−α

=
1

2
D

(1−α,α)
AB (P‖Q) =

1

2
D

(1−α)
A (P‖Q). (114)

Observe that Formula (113) consists of two terms: the first term is expressed via the AB log-det
divergence, which measures the similarity between two covariance or precision matrices and is
independent from the mean vectors, while the second term is a quadratic form expressed by the
Mahalanobis distance, which represents the distance between the means (weighted by the covariance
matrices) of multivariate Gaussian distributions. Note that the second term is zero when the mean values
µ1 and µ2 coincide.

Theorem 4 is a generalization of the following well-known results:

1. For α = 1 and β = 0 and as β → 0, the Kullback-Leibler divergence can be expressed as [5,38]

lim
β→0

D
(1,β)
AC (p(x) ‖ q(x)) = DKL(p(x)‖q(x)) =

∫
Ω

p(x) log
p(x)

q(x)
dx (115)

=
1

2

(
tr(PQ−1)− log det(PQ−1)− n

)
+

1

2
(µ1 − µ2)TQ−1(µ1 − µ2),

where the last term represents the Mahalanobis distance, which becomes zero for zero-mean
distributions µ1 = µ2 = 0.
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2. For α = β = 0.5 we have the Bhattacharyya distance [5,39]

D
(0.5,0.5)
AC (p(x)‖q(x)) =

1

2
d2

Bh (p(x)‖q(x)) = −4 log

∫
Ω

√
p(x)q(x)dx (116)

= 2 log
det

P + Q

2√
det P det Q

+
1

2
(µ1 − µ2)T

[
P + Q

2

]−1

(µ1 − µ2),

3. For α + β = 1 and 0 < α < 1, the closed form expression for the Rényi divergence is
obtained [5,32,40]:

DA(p‖q) = − 1

α(1− α)
log

∫
Ω

p α(x) q 1−α(x)dx (117)

=
1

2α(1− α)
log

det(αQ + (1− α)P)

det(Qα P1−α)
+

1

2
(µ1 − µ2)T [αQ + (1− α)P]−1 (µ1 − µ2).

4. For α = β = 1, the Gamma-divergences reduce to the Cauchy-Schwartz divergence:

DCS(p(x) ‖ q(x)) = − log

∫
p(x) q(x) dµ(x)(∫

p2(x)dµ(x)

)1/2(∫
q2(x)dµ(x)

)1/2
(118)

=
1

2
log

det
P + Q

2√
det Q det P

+
1

4
(µ1 − µ2)T

(
P + Q

2

)−1

(µ1 − µ2) .

Similar formulas can be derived for the symmetric Gamma divergence for two multivariate Gaussian
distributions. Furthermore, analogous expressions can be derived for Elliptical Gamma distributions
(EGD) [41], which facilitate more flexible modeling than standard multivariate Gaussian distributions.

8.1. Multiway Divergences for Multivariate Normal Distributions with Separable Covariance Matrices

Recently, there has been growing interest in the analysis of tensors or multiway arrays [42–45]. One
of the most important applications of multiway tensor analysis and multilinear distributions, is magnetic
resonance imaging (MRI) (we refer to [46] and the references therein). For multiway arrays, we often use
multilinear (array or tensor) normal distributions that correspond to the multivariate normal (Gaussian)
distributions in (110) and (111) with common means µ1 = µ2 and separable (Kronecker structured)
covariance matrices:

P̄ = σ2
P (P1 ⊗P2 ⊗ · · · ⊗PK) ∈ RN×N (119)

Q̄ = σ2
Q (Q1 ⊗Q2 ⊗ · · · ⊗QK) ∈ RN×N , (120)

where Pk ∈ Rnk×nk and Qk ∈ Rnk×nk for k = 1, 2, . . . , K are SPD matrices, usually normalized so that
det Pk = det Qk = 1 for each k and N =

∏K
k=1 nk [45].

One of the main advantages of the separable Kronecker model is the significant reduction in the
number of variance-covariance parameters [42]. Usually, such separable covariance matrices are sparse
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and very large-scale. The challenge is to design an efficient and relatively simple dissimilarity measure
for big data between two zero-mean multivariate (or multilinear) normal distributions ((110) and (111)).
Because of its unique properties, the Hilbert projective metric is a good candidate; in particular, for
separable Kronecker structured covariances, it can be expressed very simply as

DH(P̄ ‖ Q̄) =
K∑
k=1

DH(Pk ‖Qk) =
K∑
k=1

log
λ̃

(k)
max

λ̃
(k)
min

= log
K∏
k=1

(
λ̃

(k)
max

λ̃
(k)
min

)
, (121)

where λ̃(k)
max and λ̃(k)

min are the (shrinked) maximum and minimum eigenvalues of the (relatively small)
matrices PkQ

−1
k for k = 1, 2, . . . , K, respectively. We refer to this divergence as the multiway

Hilbert metric. This metric has many attractive properties, especially invariance under multilinear
transformations.

Using the fundamental properties of divergence and SPD matrices, we derive other multiway log-det
divergences. For example, the multiway Stein’s loss can be obtained:

DMSL(P̄, Q̄) = 2DKL(p(x) ‖ q(x)) = D
(0,1)
AB (P̄ ‖ Q̄) (122)

= tr
(
P̄Q̄−1

)
− log det(P̄Q̄−1)−N

=
σ2
P

σ2
Q

(
K∏
k=1

tr(PkQ
−1
k )

)
−

K∑
k=1

N

nk
log det(PkQ

−1
k )−N log

(
σ2
P

σ2
Q

)
−N. (123)

Note that under the constraint that det Pk = det Qk = 1, this simplifies to

DMSL(P̄ ‖ Q̄) = tr
(
P̄Q̄−1

)
− log det(P̄Q̄−1)−N (124)

=
σ2
P

σ2
Q

(
K∏
k=1

tr(PkQ
−1
k )

)
−N log

(
σ2
P

σ2
Q

)
−N ,

which is different from the multiway Stein’s loss recently proposed by Gerard and Hoff [45].
Similarly, if det Pk = det Qk = 1 for each k = 1, 2, . . . , K, we can derive the multiway Riemannian

metric as follows:

d2
R(P̄ ‖ Q̄) = N log2 σ

2
P

σ2
Q

+
K∑
k=1

N

nk
d2
R(Pk ‖Qk) . (125)

The above multiway divergences are derived using the following properties:

P̄Q̄−1 = (P1 ⊗P2 ⊗ · · · ⊗PK)(Q−1
1 ⊗Q−1

2 ⊗ · · · ⊗Q−1
K )

= P1Q
−1
1 ⊗P2Q

−1
2 ⊗ · · · ⊗PKQ−1

K , (126)

tr(P̄Q̄−1) = tr(P1Q
−1
1 ⊗P2Q

−1
2 ⊗ · · · ⊗PKQ−1

K ) =
K∏
k=1

tr(PkQ
−1
k ), (127)

det(P̄Q̄−1) = det(P1Q
−1
1 ⊗P2Q

−1
2 ⊗ · · · ⊗PKQ−1

K ) =
K∏
k=1

(det(PkQ
−1
k ))N/nk . (128)

and the basic property: If the eigenvalues {λi} and {θj} are eigenvalues with corresponding eigenvectors
{vi} and {uj} for SPD matrices A and B, respectively, then A ⊗ B has eigenvalues {λiθj} with
corresponding eigenvectors {vi ⊗ uj}.



Entropy 2015, 17 3017

Other possible extensions of the AB and Gamma matrix divergences to separable multiway
divergences for multilinear normal distributions under additional constraints and normalization
conditions will be discussed in future works.

9. Conclusions

In this paper, we presented novel (dis)similarity measures; in particular, we considered the Alpha-Beta
and Gamma log-det divergences (and/or their square-roots) that smoothly connect or unify a wide class of
existing divergences for SPD matrices. We derived numerous results that uncovered or unified theoretic
properties and qualitative similarities between well-known divergences and new divergences. The scope
of the results presented in this paper is vast, especially since the parameterized Alpha-Beta and Gamma
log-det divergence functions include several efficient and useful divergences, including those based on
relative entropies, the Riemannian metric (AIRM), S-divergence, generalized Jeffreys KL (KLDM),
Stein’s loss, and Hilbert projective metric. Various links and relationships between divergences were
also established. Furthermore, we proposed several multiway log-det divergences for tensor (array)
normal distributions.
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Appendices

A. Basic operations for positive definite matrices

Functions of positive definite matrices frequently appear in many research areas, for an introduction
we refer the reader to Chapter 11 in [31]. Consider a positive definite matrix P of rank n with
eigendecomposition VΛVT . The matrix function f(P) is defined as

f(P) = Vf(Λ)VT , (129)

where f(Λ) ≡ diag (f(λ1), . . . , f(λn)). With the help of this definition, the following list of well-known
properties can be easily obtained:
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log(det P) = tr log(P), (130)

(det P)α = det(Pα), (131)

det(Pα) = det(VΛVT )α = det(V) det(Λα) det(VT ) =
n∏
i=1

λαi , (132)

tr(Pα) = tr(VΛVT )α = tr(VVTΛα) =
n∑
i=1

λαi , (133)

Pα+β = Pα Pβ, (134)

(P α) β = P α β, (135)

P 0 = I, (136)

(det P)α+β = det(Pα) det(Pβ), (137)

det((PQ−1)α) = [det(P) det(Q−1)]α = det(Pα) det(Q−α), (138)
∂

∂α
(Pα) = Pα log(P), (139)

∂

∂α
log [det(P(α))] = tr

(
P−1∂P

∂α

)
, (140)

log(det(P⊗Q)) = n log(det P) + n log(det Q), (141)

tr(P)− log det(P) ≥ n. (142)

B. Extension of D(α,β)
AB (P‖Q) for (α, β) ∈ R2

Remark 1. Equation (3) is only well defined in the first and third quadrants of the (α, β)-plane. Outside
these regions, where α and β have opposite signs (i.e., α > 0 and β < 0 or α < 0 and β > 0), the
divergence can be complex valued.

This undesirable behavior can be avoided with the help of the truncation operator

[x]+ =


x x ≥ 0,

0, x < 0,

(143)

which prevents the arguments of the logarithms from being negative.
The new definition of the AB log-det divergence is

D
(α,β)
AB (P‖Q) =

1

αβ
log

[
det

α(PQ−1)β + β(PQ−1)−α

α + β

]
+

(144)

for α 6= 0, β 6= 0, α + β 6= 0,

which is compatible with the previous definition in the first and third quadrants of the (α, β)-plane. It is
also well defined in the second and fourth quadrants except for the special cases when α = 0, β = 0,
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and α + β = 0, which is where the formula is undefined. By enforcing continuity, we can explicitly
define the AB log-det divergence on the entire (α, β)-plane as follows:

D
(α,β)
AB (P‖Q) =



1

αβ
log det

[
α(PQ−1)β + β(QP−1)α

α + β

]
+

for α, β 6= 0, α + β 6= 0,

1

α2

[
tr
(
(QP−1)α − I

)
− α log det(QP−1)

]
for α 6= 0, β = 0,

1

β2

[
tr
(
(PQ−1)β − I

)
− β log det(PQ−1)

]
for α = 0, β 6= 0,

1

α2
log det[(PQ−1)−α(I + log(PQ−1)α)]−1

+ for α = −β,

1

2
tr log2(PQ−1) =

1

2
|| log(Q−1/2PQ−1/2)||2F for α, β = 0.

(145)

C. Eigenvalues Domain for Finite D(α,β)
AB (P‖Q)

In this section, we assume that λi, an eigenvalue of PQ−1, satisfies 0 ≤ λi ≤ ∞ for all i = 1, . . . , n.
We will determine the bounds of the eigenvalues of PQ−1 that prevent the AB log-det divergence from
being infinite. First, recall that

D
(α,β)
AB (P‖Q) =

1

αβ

n∑
i=1

log

[
αλβi + βλ−αi

α + β

]
+

, α, β, α + β 6= 0. (146)

We assume that 0 ≤ λi ≤ ∞ for all i. For the divergence to be finite, the arguments of the logarithms in
the previous expression must be positive. This happens when

αλβi + βλ−αi
α + β

> 0 ∀i, (147)

which is always true when α, β > 0 or when α, β < 0. On the contrary, when sign(αβ) = −1, we have
the following two cases. In the first case when α > 0, we initially solve for λα+β

i and later for λi to
obtain

λα+β
i

α + β
>

−β
α(α + β)

=

∣∣∣∣βα
∣∣∣∣ 1

α + β
−→ λi >

∣∣∣∣βα
∣∣∣∣ 1
α+β

∀i, for α > 0 and β < 0. (148)

In the second case when α < 0, we obtain

λα+β
i

α + β
<

−β
α(α + β)

=

∣∣∣∣βα
∣∣∣∣ 1

α + β
−→ λi <

∣∣∣∣βα
∣∣∣∣ 1
α+β

∀i, for α < 0 and β > 0. (149)
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Using sign(αβ) = −1, we can solve for λα+β
i , which yields

λα+β
i

α + β
>

∣∣∣∣βα
∣∣∣∣ 1

α + β
∀i. (150)

Solving again for λi, we see that

λi >

∣∣∣∣βα
∣∣∣∣ 1
α+β

∀i, for α > 0 and β < 0, (151)

and

λi <

∣∣∣∣βα
∣∣∣∣ 1
α+β

∀i, for α < 0 and β > 0. (152)

In the limit, when α→ −β 6= 0, these bounds simplify to

lim
α→−β

∣∣∣∣βα
∣∣∣∣ 1
α+β

= e−1/α ∀i, for β 6= 0. (153)

On the other hand, when α → 0 or when β → 0, the bounds disappear. The lower-bounds converge to
0, while the upper-bounds converge to∞, leading to the trivial inequalities 0 < λi <∞.

This concludes the determination of the domain of the eigenvalues that result in a finite divergence.
Outside this domain, we expect D(α,β)

AB (P‖Q) = ∞. A complete picture of bounds for different values
of α and β is shown in Figure 1.

D. Proof of the Nonnegativity of D(α,β)
AB (P‖Q)

The AB log-det divergence is separable; it is the sum of the individual divergences of the eigenvalues
from unity, i.e.,

D
(α,β)
AB (P‖Q) =

n∑
i=1

D
(α,β)
AB (λi‖1), (154)

where

D
(α,β)
AB (λi‖1) =

1

αβ
log

[
αλβi + βλ−αi

α + β

]
+

, α, β, α + β 6= 0. (155)

We prove the nonnegativity ofD(α,β)
AB (P‖Q) by showing that the divergence of each of the eigenvalues

D
(α,β)
AB (λi‖1) is nonnegative and minimal at λi = 1.
First, note that the only critical point of the criterion is obtained when λi = 1. This can be shown by

setting the derivative of the criterion equal to zero, i.e.,

∂D
(α,β)
AB (λi‖1)

∂λi
=

λα+β
i − 1

αλα+β+1
i + βλi

= 0, (156)

and solving for λi.
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Next, we show that the sign of the derivative only changes at the critical point λi = 1. If we rewrite

∂D
(α,β)
AB (λi‖1)

∂λi
=

(
λα+β
i − 1

α + β

)(
λi
αλα+β

i + β

α + β

)−1

, (157)

and observe that the condition for the divergence to be finite enforces αλα+βi +β

α+β
> 0, then it follows that

sign

{
∂D

(α,β)
AB (λi‖1)

∂λi

}
≡ sign

{
λα+β
i − 1

α + β

}
=



−1 for λi < 1,

0, for λi = 1,

+1 for λi > 1.

(158)

Since the derivative is strictly negative for λi < 1 and strictly positive for λi > 1, the critical point at
λi = 1 is the global minimum of D(α,β)

AB (λi‖1). From this result, the nonnegativity of the divergence
D

(α,β)
AB (P‖Q) ≥ 0 easily follows. Moreover, D(α,β)

AB (P‖Q) = 0 only when λi = 1 for i = 1, . . . , n,
which concludes the proof of the Theorems 1 and 2.

E. Derivation of the Riemannian Metric

We calculate D(α,β)
AB (P + dP ‖P) using the Taylor expansion when dP is small, i.e.,

(P + dP)P−1 = I + dZ, (159)

where

dZ = dPP−1,

α[(P + dP)P−1]β = αI + αβ dZ +
αβ(β − 1)

2
dZ dZ +O(|dZ|3).

Similar calculations hold for β[(P + dP)P−1]−α, and

α[(P + dP)P−1]β + β[(P + dP)P−1]−α = (α + β)

(
I +

αβ

2
dZ dZ

)
,

where the first-order term of dZ disappears and the higher-order terms are neglected.
Since

det

(
I +

αβ

2
dZ dZ

)
= 1 +

αβ

2
tr(dZ dZ), (160)

by taking its logarithm, we have

D
(α,β)
AB (P + dP ‖P) =

1

2
tr(dP P−1 dP P−1), (161)

for any α and β.
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F. Proof of the Properties of the AB Log-Det Divergence

Next we provide a proof of the properties of the AB log-det divergence. The proof will only be
omitted for those properties which can be readily verified from the definition of the divergence.

1. Nonnegativity; given by

D
(α,β)
AB (P‖Q) ≥ 0, ∀α, β ∈ R. (162)

The proof of this property is presented in Appendix D.

2. Identity of indiscernibles; given by

D
(α,β)
AB (P‖Q) = 0 if and only if P = Q. (163)

See Appendix D for its proof.

3. Continuity and smoothness of D(α,β)
AB (P‖Q) as a function of α ∈ R and β ∈ R, including the singular

cases when α = 0 or β = 0, and when α = −β (see Figure 2).

4. The divergence can be explicitly expressed in terms of Λ = diag{λ1, λ2, . . . , λn}, the diagonal matrix
with the eigenvalues of Q−1P; in the form

D
(α,β)
AB (P‖Q) = D

(α,β)
AB (Λ‖I). (164)

Proof. From the definition of divergence and taking into account the eigenvalue decomposition
PQ−1 = VΛ V−1, we can write

D
(α,β)
AB (P‖Q) =

1

αβ
log det

α VΛβ V−1 + β VΛ−α V−1

α + β

=
1

αβ
log

[
det V det

αΛβ + βΛ−α

α + β
det V−1

]
=

1

αβ
log det

α Λβ + β Λ−α

α + β
(165)

= D
(α,β)
AB (Λ‖I). (166)

5. Scaling invariance; given by

D
(α,β)
AB (cP‖cQ) = D

(α,β)
AB (P‖Q), (167)

for any c > 0.

6. For a given α and β and nonzero scaling factor ω 6= 0, we have

D
(ω α, ω β)
AB (P‖Q) =

1

ω2
D

(α,β)
AB ((Q−1/2PQ−1/2)ω‖I) . (168)
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Proof. From the definition of divergence, we write

D
(ω α, ω β)
AB (P‖Q) =

1

(ωα)(ωβ)
log det

ωα Λωβ + ωβ Λ−ωα

(ωα + ωβ)
(169)

=
1

ω2

1

αβ
log det

α (Λω)β + β (Λω)−α

(α + β)
(170)

=
1

ω2
D

(α,β)
AB ((Q−1/2PQ−1/2)ω‖I) (171)

Hence, the additional inequality

D
(α,β)
AB ((Q−1/2PQ−1/2)ω‖I) ≤ D

(ω α, ω β)
AB (P‖Q) (172)

is obtained for |ω| ≤ 1.

7. Dual-invariance under inversion (for ω = −1); given by

D
(−α,−β)
AB (P‖Q) = D

(α,β)
AB (P−1‖Q−1) . (173)

8. Dual symmetry; given by

D
(α,β)
AB (P‖Q) = D

(β,α)
AB (Q‖P) . (174)

9. Affine invariance (invariance under congruence transformations); given by

D
(α,β)
AB (APAT‖AQAT ) = D

(α,β)
AB (P‖Q), (175)

for any nonsingular matrix A ∈ Rn×n.

Proof.

D
(α,β)
AB (APAT‖AQAT ) =

1

αβ
log det

α ((APAT )(AQAT )−1)β + β ((APAT )(AQAT )−1)−α

α + β

=
1

αβ
log det

α (A(PQ−1)A−1)β + β (A(PQ−1)A−1)−α

α + β

=
1

αβ
log

[
det(AV) det

αΛβ + βΛ−α

α + β
det(AV)−1

]
=

1

αβ
log det

α Λβ + β Λ−α

α + β

= D
(α,β)
AB (P‖Q) (176)

10. Divergence lower-bound; given by

D
(α,β)
AB (XTPX‖XTQX) ≤ D

(α,β)
AB (P‖Q), (177)

for any full-column rank matrix X ∈ Rn×m with n ≤ m.

This result has been already proved for some special cases of α and β, especially these that lead to
the S-divergence and the Riemannian metric [6]. Next, we present a different argument to prove it
for any α, β ∈ R.
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Proof. As already discussed, the divergenceD(α,β)
AB (P‖Q) depends on the generalized eigenvalues

of the matrix pencil (P,Q), which have been denoted by λi, i = 1, . . . , n. Similarly, the presumed
lower-bound D

(α,β)
AB (XTPX‖XTQX) is determined by µi, i = 1, . . . ,m, the eigenvalues of

the matrix pencil (XTPX,XTQX). Assuming that both sets of eigenvalues are arranged
in decreasing order, the Cauchy interlacing inequalities [29] provide the following upper and
lower-bounds for µj in terms of the eigenvalues of the first matrix pencil,

λj ≤ µj ≤ λn−m+j. (178)

We classify the eigenvalues µj on three sets S−µ , S0
µ and S+

µ , according to the sign of (µj − 1). By
the affine invariance we can write

D
(α,β)
AB (XTPX‖XTQX) = D

(α,β)
AB ((XTQX)−1/2XTPX(XTQX)−1/2‖I) (179)

=
∑
µj∈S−µ

D
(α,β)
AB (µj‖1) +

∑
µj∈S+

µ

D
(α,β)
AB (µj‖1), (180)

where the eigenvalues µj ∈ S0
µ have been excluded since for them D

(α,β)
AB (µj‖1) = 0.

With the help of (178), the first group of eigenvalues µj ∈ S−µ (which are smaller than one)
are one-to-one mapped with their lower-bounds λj , which we include in the set S−λ . Also those
µj ∈ S+

µ (which are greater than one) are mapped with their upper-bounds λn−m+j , which we
group in S+

λ . It is shown in Appendix D that the scalar divergenceD(α,α)
AB (λ‖1) is strictly monotone

descending for λ < 1, zero for λ = 1 and strictly monotone ascending for λ > 1. This allows one
to upperbound (180) as follows∑

µj∈S−µ

D
(α,β)
AB (µj‖1) +

∑
µj∈S+

µ

D
(α,β)
AB (µj‖1) ≤

∑
λj∈S−λ

D
(α,β)
AB (λj‖1) +

∑
λj∈S+

λ

D
(α,β)
AB (λj‖1)

≤
n∑
j=1

D
(α,β)
AB (λj‖1) (181)

= D
(α,β)
AB (P‖Q), (182)

obtaining the desired property.

11. Scaling invariance under the Kronecker product; given by

D
(α,β)
AB (Z⊗P‖Z⊗Q) = nD

(α,β)
AB (P‖Q) , (183)

for any symmetric and positive definite matrix Z of rank n.
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Proof. This property was obtained in [6] for the S-divergence and the Riemannian metric. With
the help of the properties of the Kronecker product of matrices, the desired equality is obtained:

D
(α,β)
AB (Z⊗P‖Z⊗Q) =

1

αβ
log det

[
α ((Z⊗P)(Z⊗Q)−1)β + β ((Z⊗Q)(Z⊗P)−1)α

α + β

]
=

1

αβ
log det

[
α (I⊗PQ−1)β + β (I⊗QP−1)α

α + β

]
(184)

=
1

αβ
log det

[
I⊗ α (PQ−1)β + β (QP−1)α

α + β

]
(185)

=
1

αβ
log det

[
α (PQ−1)β + β (QP−1)α

α + β

]n
(186)

= n D
(α,β)
AB (P‖Q) . (187)

12. Double Sided Orthogonal Procrustes property. Consider an orthogonal matrix Ω ∈ O(n) and two
symmetric positive definite matrices P and Q, with respective eigenvalue matrices ΛP and ΛQ,
which elements are sorted in descending order. The AB log-det divergence between ΩTPΩ and
Q is globally minimized when their eigenspaces are aligned, i.e.,

min
Ω∈O(n)

D
(α,β)
AB (ΩTPΩ‖Q) = D

(α,β)
AB (ΛP‖ΛQ). (188)

Proof. Let Λ denote the matrix of eigenvalues of ΩTPΩQ−1 with its elements sorted in
descending order. We start showing that for ∆ = log Λ, the function D(α,β)

AB (exp ∆‖I) is convex.
Its Hessian matrix is diagonal and positive definite, i.e., with non-negative diagonal elements

∂2D
(α,β)
AB (e∆ii‖1)

∂∆2
ii

> 0, (189)

where

∂2D
(α,β)
AB (e∆ii‖1)

∂∆2
ii

=



(
β

α+β
e−

α+β
2

∆ii + α
α+β

e
α+β
2

∆ii

)−2

for α, β, α + β 6= 0

eβ∆ii for α = 0

(1 + α∆ii)
−2 for α + β = 0

eα∆ii for β = 0.

(190)

Since f(e∆ii) = D
(α,β)
AB (e∆ii‖1) is strictly convex and non-negative, we are in the conditions of the

Corollary 6.15 in [47]. This result states that for two symmetric positive definite matrices A and
B, which vectors of eigenvalues are respectively denoted by ~λ

↓
A (when sorted in descending order)

and ~λ
↑
B (when sorted in ascending order), the function f(~λ

↓
A
~λ
↑
B) is submajorized by f(~λ

↓
AB). By

choosing A = ΩTPΩ, B = Q−1, and applying the corollary, we obtain

D
(α,β)
AB (ΛP‖ΛQ) = D

(α,β)
AB (ΛPΛ−1

Q ‖I) ≤ D
(α,β)
AB (Λ‖I) = D

(α,β)
AB (ΩTPΩ‖Q), (191)
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where the equality is only reached when the eigendecompositions of the matrices ΩTPΩ =

VΛPVT and Q = VΛQVT , share the same matrix of eigenvectors V.

13. Triangle Inequality-Metric Distance Condition, for α = β ∈ R; given by√
D

(α,α)
AB (P‖Q) ≤

√
D

(α,α)
AB (P‖Z) +

√
D

(α,α)
AB (Z‖Q) . (192)

Proof. The proof of this property exploits the recent result that the square root of the S-divergence

dBh(P‖Q) =
√
DS(P‖Q) = 2

√
log

det 1
2
(P + Q)√

det(P) det(Q)
. (193)

is a metric [17]. Given three arbitrary symmetric positive definite matrices P,Q,Z, with common
dimensions, consider the following eigenvalue decompositions

Q−
1
2 PQ−

1
2 = V1Λ1V

T
1 (194)

Q−
1
2 ZQ−

1
2 = V2Λ2V

T
2 , (195)

and assume that the diagonal matrices Λ1 and Λ2 have the eigenvalues sorted in a
descending order.

For a given value of α in the divergence, we define ω = 2α 6= 0 and use properties 6 and 9 (see
Equations (168) and (175)) to obtain the equivalence√

D
(α, α)
AB (P‖Q) =

√
D

(ω 0.5, ω 0.5)
AB (P‖Q)

=

√
1

ω2
D

(0.5,0.5)
AB ((Q−1/2PQ−1/2) ω‖I)

=
1

2|α|

√
D

(0.5,0.5)
AB (Λ2α

1 ‖I)

=
1

2|α|
dBh(Λ

2α
1 ‖I) , (196)

Since the S-divergence satisfies the triangle inequality for diagonal matrices [5,6,17]

dBh(Λ
2α
1 ‖I) ≤ dBh(Λ

2α
1 ‖Λ2α

2 ) + dBh(Λ
2α
2 ‖I), (197)

from (196), this implies that√
D

(α,α)
AB (P‖Q) ≤

√
D

(α,α)
AB (Λ1‖Λ2) +

√
D

(α,α)
AB (Λ2‖I) (198)

In similarity with the proof of the metric condition for S-divergence [6], we can use property 12 to
bound above the first term in the right-hand-side of the equation by√

D
(α,α)
AB (Λ1‖Λ2) ≤

√
D

(α,α)
AB (V1Λ1VT

1 ‖V2Λ2VT
2 )

=

√
D

(α,α)
AB (Q−

1
2 PQ−

1
2‖Q− 1

2 ZQ−
1
2 )

=

√
D

(α,α)
AB (P‖Z), (199)
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whereas the second term satisfies√
D

(α,α)
AB (Λ2‖I) =

√
D

(α,α)
AB (V2Λ2VT

2 ‖I)

=

√
D

(α,α)
AB (Q−

1
2 PQ−

1
2‖I)

=

√
D

(α,α)
AB (Z‖Q). (200)

After bounding the right-hand-side of (198) with the help of (199) and (200), the divergence
satisfies the desired triangle inequality (192) for α 6= 0.

On the other hand,
√
D

(α,α)
AB (P‖Q) as α→ 0 converges to the Riemannian metric√

D
(0,0)
AB (P‖Q) = lim

α→0

√
D

(α,α)
AB (P‖Q) (201)

= ‖ log(Q−1/2PQ−1/2)‖F (202)

= dR(P‖Q) , (203)

which concludes the proof of the metric condition of
√
D

(α,α)
AB (P‖Q) for any α ∈ R.

G. Proof of Theorem 3

This theorem assumes that the range spaces of the symmetric positive semidefinite matrices Cx and
Cy are disjoint, in the sense that they only intersect at the origin, which is the most probable situation
for n� r (where n is the size of the matrices while r is their common rank). For ρ > 0 the regularized
versions C̃x and C̃y of these matrices are full rank.

Let Λ̃ = diag(λ̃1, . . . , λ̃n) denote the diagonal matrix representing the n eigenvalues of the matrix
pencil (C̃x, C̃y). The AB log-det divergence between the regularized matrices is equal to the divergence
between Λ̃ and the identity matrix of size n, i.e.,

D
(α,β)
AB (C̃x ‖C̃y) = D

(α,β)
AB

(
C̃
− 1

2
y C̃xC̃

− 1
2

y ‖ In

)
= D

(α,β)
AB

(
Λ̃‖ In

)
. (204)

The positive eigenvalues of the matrix pencil satisfy

Λ̃ ≡ diagEig+

{
(C̃y)−

1
2 C̃x(C̃y)−

1
2 )
}

= diagEig+

{
C̃xC̃−1

y

}
, (205)

therefore, the divergence can be directly estimated from the eigenvalues of C̃xC̃−1
y . In order to simplify

this matrix product, we first express C̃x and C̃−1
y in term of the auxiliary matrices

Tx = Ux(Λx − ρIr)
1
2 and Ty = Uy(Λy − ρIr)

1
2 . (206)

In this way, they are written as a scaled version of the identity matrix plus a symmetric term:

C̃x = Cx + ρ U⊥x (U⊥x )T

= UxΛxUT
x + ρ(In −UxUT

x)

= ρIn + Ux(Λx − ρIr)UT
x

= ρIn + TxTT
x , (207)
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and

C̃−1
y = C+

y + ρ−1U⊥y (U⊥y )T

= UyΛ−1
y UT

y + ρ−1(In −UyUT
y )

= ρ−1In − ρ−1Uy(Λy + ρIr)Λ
−1
y UT

y

= ρ−1In − ρ−1TyΛ−1
y TT

y . (208)

Next, using (207) and (208), we expand the product

C̃xC̃−1
y = In + ρ−1TxTT

x(In −TyΛ−1
y TT

y ) + R (209)

and approximate the eigenvectors Uy → Ux of the residual matrix R to obtain the estimate

R ≡ −Uy(Ir + ρΛ−1
y )UT

y ≈ −Ux(Ir + ρΛ−1
y )UT

x ≡ R̂. (210)

Hence, it is not difficult to see that the estimated residual is equal to

R̂ = −Tx(Ir + ρΛ−1
y )T+

x . (211)

After substituting (211) in (209) and collecting common terms, we obtain the expansion

C̃xC̃−1
y = In + Tx

(
ρ−1TT

x − ρ−1TT
xTyΛ−1

y TT
y − (Ir + ρΛ−1

y )T+
x

)︸ ︷︷ ︸
̂C̃xC̃−1

y

+O(ρ0). (212)

Let Eig ≶1{·} denote the arrangement of the ordered eigenvalues of the matrix argument after
excluding those that are equal to 1. For convenience, we reformulate the property proved in [30] that for
any pair of matrices A,B ∈ Rm×n, the non-zero eigenvalues of ABT and of BTA are the same, into the
following proposition.

Proposition 1. For any pair of m × n matrices A and B, the eigenvalues of the matrices Im + ABT

and In + BTA, which are not equal to 1, coincide.

Eig ≶1

{
Im + ABT

}
= Eig ≶1

{
In + BTA

}
(213)

Since range spaces of Cx and of Cy only intersect at the origin, the approximation matrix ˜̂CxC̃−1
y

has r dominant eigenvalues of order O(ρ−1) and (n − r) remaining eigenvalues equal to 1. Using
Proposition 1, these r dominant eigenvalues are given by

Eig≶1

{
˜̂CxC̃−1

y

}
= Eig≶1

{
Ir +

(
ρ−1TT

x − ρ−1TT
xTyΛ−1

y TT
y − (Ir + ρΛ−1

y )T+
x

)
Tx

}
= Eig≶1

{
ρ−1TT

xTx − ρ−1TT
xTyΛ−1

y TT
yTx − ρΛ−1

y

}
. (214)

Let Λ̃max and Λ̃min, respectively denote the diagonal submatrices of Λ̃ with the r largest and with the r
smallest eigenvalues. From the definitions in (66) and (206), one can recognize that TT

xTx = Λx − ρIr,
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while TT
xTy = WT

xKxyWy, and substituting them in (214) we obtain the estimate of the r largest
eigenvalues

Λ̂max = diagEig≶1

{
˜̂CxC̃−1

y

}
(215)

= diagEig≶1{ρ−1Λx − I− ρΛ−1
y − ρ−1WT

xKxyWyΛ−1
y WT

yKyxWx︸ ︷︷ ︸
ρ−1C

(ρ)
x|y

}. (216)

The relative error between these eigenvalues and the r largest eigenvalues of C̃xC̃−1
y is of order O(ρ).

This is a consequence of the fact that these eigenvalues are O(ρ−1), while the Frobenius norm of the
error matrix is O(ρ0). Then, the relative error between the dominant eigenvalues of the two matrices can
be bounded above by(∑r

i=1(λ̃i − λ̂i)2∑r
i=1 λ̃

2
i

) 1
2

≤
‖C̃xC̃−1

y − ˜̂CxC̃−1
y ‖F(∑r

i=1 λ̂
2
i

) 1
2

+ O(ρ0)

≡ O(ρ0)

O(ρ−1)
≡ O(ρ). (217)

On the other hand, the r smallest eigenvalues of Λ̃ are the reciprocal of the r dominant eigenvalues
of the inverse matrix (C̃

− 1
2

y C̃xC̃
− 1

2
y )−1, so we can estimate them using essentially the same procedure

Λ̂
−1

min = diagEig≶1

{
˜̂CyC̃−1

x

}
(218)

= diagEig≶1{ρ−1C
(ρ)
y|x}. (219)

For a sufficient small value of ρ > 0, the dominant contribution to the AB log-det divergence comes
from the r largest and r smallest eigenvalues of the matrix pencil (C̃x, C̃y), so we obtain the desired
approximation

D
(α,β)
AB

(
Λ̃‖ In

)
≈ D

(α,β)
AB (Λ̃max ‖ Ir) +D

(α,β)
AB (Λ̃min ‖ Ir) (220)

= D
(α,β)
AB (ρΛ̃max ‖ ρIr) +D

(β,α)
AB (ρΛ̃

−1

min ‖ ρIr) (221)

≈ D
(α,β)
AB (ρΛ̂max ‖ ρIr) +D

(β,α)
AB (ρΛ̂

−1

min ‖ ρIr) (222)

= D
(α,β)
AB (C

(ρ)
x|y ‖ ρIr) +D

(β,α)
AB (C

(ρ)
y|x ‖ ρIr). (223)

Moreover, as ρ→ 0, the relative error of this approximation also tends to zero.

H. Gamma Divergence for Multivariate Gaussian Densities

Recall that for a given quadratic function f(x) = −c + bTx − 1
2
xTAx, where A is an SPD matrix,

the integral of exp{f(x)} with respect to x is given by∫
Ω

e−
1
2
xTAx+bTx−cdx = (2π)

N
2 det(A)−

1
2 e

1
2
bTA−1b−c. (224)

This formula is obtained by evaluating the integral as follows:∫
Ω

e−
1
2
xTAx+bTx−cdx = e

1
2
bTA−1b−c

∫
Ω

e−
1
2
xTAx+bTx− 1

2
bTA−1bdx (225)

= e
1
2
bTA−1b−c

∫
Ω

e(x−A−1b)TA(x−A−1b)dx (226)

= e
1
2
bTA−1b−c (2π)

N
2 det(A)−

1
2 , (227)
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assuming that A is an SPD matrix, which assures the convergence of the integral and the validity of (224).
The Gamma divergence involves the a product of densities. In the multivariate Gaussian case, this

simplifies as

pα(x)qβ(x) = (2π)−
N
2

(α+β) det(P)−
α
2 det(Q)−

β
2 ×

exp

{
−α

2
(x− µ1)TP−1(x− µ1)− β

2
(x− µ2)TQ−1(x− µ2)

}
(228)

= d exp

{
−c+ bTx− 1

2
xTAx

}
, (229)

where

A = αP−1 + βQ−1, (230)

b =
(
µT1 αP−1 + µT2 βQ−1

)T
, (231)

c =
1

2
µ1(αP−1)µ1 +

1

2
µ2(βQ−1)µ2, (232)

d = (2π)−
N
2

(α+β) det(P)−
α
2 det(Q)−

β
2 . (233)

Integrating this product with the help of (224), we obtain∫
Ω

pα(x)qβ(x)dx = d (2π)
N
2 det(A)−

1
2 e

1
2
bTA−1b−c (234)

= (2π)
N
2

(1−(α+β)) det(P)−
α
2 det(Q)−

β
2 det(αP−1 + βQ−1)−

1
2 ×

e
1
2(µT

1 αP−1+µT
2 βQ−1)(αP−1+βQ−1)−1(µT

1 αP−1+µT
2 βQ−1)

T

×
e−

1
2
µ1(αP−1)µ1−

1
2
µ2(βQ−1)µ2 , (235)

provided that αP−1 + βQ−1 is positive definite.
Rearranging the expression in terms of µ1 and µ2 yields∫

Ω

pα(x)qβ(x)dx = (2π)
N
2

(1−(α+β)) det(P)−
α
2 det(Q)−

β
2 det(αP−1 + βQ−1)−

1
2 ×

e
1
2
µT

1 [αP−1(αP−1+βQ−1)−1αP−1−αP−1]µ1 ×
e

1
2
µT

2 [βQ−1(αP−1+βQ−1)−1βQ−1−αQ−1]µ2 ×
eµ

T
1 αP−1(αP−1+βQ−1)−1βQ−1µ2. (236)

With the help of the Woodbury matrix identity, we simplify

e
1
2
µT

1 [αP−1(αP−1+βQ−1)−1αP−1−αP−1]µ1 = e−
1
2
µT

1 (α−1P+β−1Q)−1µ1 , (237)

e
1
2
µT

2 [βQ−1(αP−1+βQ−1)−1βQ−1−βQ−1]µ2 = e−
1
2
µT

2 (α−1P+β−1Q)−1µ2 , (238)

eµ
T
1 αP−1(αP−1+βQ−1)−1βQ−1µ2 = eµ

T
1 (α−1P+β−1Q)−1µ2 , (239)

and hence, arriving at the desired result:
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∫
Ω

pα(x)qβ(x)dx = (2π)
N
2

(1−(α+β)) det(P)−
α
2 det(Q)−

β
2 (α + β)−

N
2 ×

det

(
α

α + β
P−1 +

β

α + β
Q−1

)− 1
2

×

e−
αβ

2(α+β)
(µ1−µ2)T ( β

α+β
P+ α

α+β
Q)
−1

(µ1−µ2). (240)

This formula can be can easily particularized to evaluate the integrals∫
Ω

pα+β(x)dx =

∫
Ω

pα(x)pβ(x)dx

= (2π)
N
2

(1−(α+β)) det(P)−
α
2 det(P)−

β
2 det(αP−1 + βP−1)−

1
2 ×

e−
αβ

2(α+β)
(µ1−µ1)T ( β

α+β
P+ α

α+β
P)
−1

(µ1−µ1)

= (2π)
N
2

(1−(α+β))(α + β)−
N
2 det(P)

1−(α+β)
2 (241)

and ∫
Ω

qα+β(x)dx = (2π)
N
2

(1−(α+β))(α + β)−
N
2 det(Q)

1−(α+β)
2 . (242)

By substituting these integrals into the definition of the Gamma divergence and simplifying, we obtain
a generalized closed form formula:

D
(α,β)
AC (p(x)‖q(x)) =

1

αβ
log

(∫
Ω

pα+β(x) dx

) α
α+β
(∫

Ω

qα+β(x) dx

) β
α+β

∫
Ω

pα(x) qβ(x) dx

=
1

2αβ
log

det

(
α

α + β
Q +

β

α + β
P

)
det(Q)

α
α+β det(P)

β
α+β

(243)

+
1

2(α + β)
(µ1 − µ2)T

(
α

α + β
Q +

β

α + β
P

)−1

(µ1 − µ2),

which concludes the proof of Theorem 4.
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