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Abstract: This paper studies the problem of exponential outer synchronization between
two uncertain nonlinearly coupled complex networks with time delays. In order to
synchronize uncertain complex networks, an adaptive control scheme is designed based
on the Lyapunov stability theorem. Simultaneously, the unknown system parameters of
uncertain complex networks are identified when exponential outer synchronization occurs.
Finally, numerical examples are provided to demonstrate the feasibility and effectiveness of
the theoretical results.
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1. Introduction

Over the last decade, complex networks have received a great deal of interests from various research
communities due to its wide applications in many fields including physics, mathematics, biology,
engineering, social science and so on [1,2]. A complex network can be regarded as a large set of
interconnected nodes and used to describe and characterize diverse complex systems. Typical examples
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include the World Wide Web, electrical power grids, scientific cooperation networks, biological
networks, social networks and deterministic networks [3–5].

As a typical collective behavior on networks, synchronization inside a network has been widely and
extensively studied [6–13]. Especially, synchronization of small-world networks, scale-free networks
and tree-like networks were investigated in [14–16]. In [17], an adaptive feedback scheme was proposed
to stabilize the synchronous solution of uncertain complex dynamical network with delayed coupling.
Furthermore, the synchronization of networks with partial-information coupling were studied in [18,19].
In 2007, “outer synchronization”, as another kind of network synchronization, was firstly put forward
by Li et al. [20]. In that paper, the authors theoretically and numerically demonstrated the possibility
of synchronization between two coupled networks. An important example of outer synchronization is
the spread of infectious diseases across different communities, for instance, avian influenza spreads
among domestic and wild birds, afterward infects human beings unexpectedly [21]. Improved and
expanded work in this respect—i.e., introducing the nonidentical topological structures, time-varying
delays, circumstance noise, etc.—can be found in the literature [22–24], which outer synchronization is
realized through the adaptive control schemes. On the other hand, generalized synchronization [25–27]
and anti-synchronization [28] of complex networks have been investigated.

The above mentioned work focussed on the network problems with known dynamical properties
beforehand. However, in many real-world situations, various kinds of uncertain information exist in
the modern industrial systems. Therefore, data-driven methods have been introduced due to their
simplicities and excellent ability to handle large amounts of data for different industrial issues under
various operating conditions [29–33]. Here, this paper mainly focuses on the outer synchronization
between two dynamical networks with unknown parameters and the system dynamic model can be
involved in the designing of the controller. As an emerging issue, synchronization in uncertain complex
networks has attracted increasing attention. Recently, the identification of network topological structure
and system parameters for general uncertain complex dynamical networks was explored [34]. Xu et
al. proposed an approach to identify the topological structure and unknown parameters for uncertain
general complex networks with non-derivative and derivative couplings [35]. Exponentially adaptive
synchronization, adaptive lag synchronization and generalized synchronization of uncertain general
complex networks were studied in [36–38]. Che et al. studied the anticipatory synchronization of
uncertain nonlinearly coupled complex networks with time delays [39]. However, in the most existing
works on synchronization of uncertain complex networks, the topological structures of networks are
always assumed to be a constant. More recently, Wu and Lu investigated the outer synchronization
between two uncertain time-varying dynamical networks with same topological structures [40]. It should
be pointed out that there exist different situations between drive and response networks with nonidentical
topological structures. Therefore, it is necessary to study the synchronization between two nonidentical
networks with uncertain information.

Inspired by the above discussions, we investigate exponential outer synchronization and parameter
identification between two uncertain time-varying complex dynamical networks with nonlinear coupling,
time delays and different topological structures. Based on the Lyapunov stability theorem, an adaptive
control scheme is proposed to achieve exponential outer synchronization between drive and response
networks. Compared with the existing results, the proposed method is efficient to control the convergence
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rates of outer synchronization. The unknown parameters are automatically identified when exponential
outer synchronization occurs.

The outline of the rest paper is organized as follows. Section 2 gives the problem formulation of
two uncertain drive-response networks and some preliminaries. Section 3 presents the main theory for
identification of unknown system parameters. In Section 4, numerical example is provided to show the
effectiveness of the proposed controller. The paper is concluded by Section 5.

2. Problem formulation and preliminaries

In this paper, we consider the following uncertain drive-response networks:

ẋi(t) = Fi(t, xi(t), xi(t− τ1), θi) +
N∑
j=1

aij(t)h(xj(t− τ2)), (1)

ẏi(t) = Fi(t, yi(t), yi(t− τ1), θ̃i) +
N∑
j=1

bij(t)h(yj(t− τ2)) + ui, (2)

where xi, yi ∈ Rn, i = 1, 2, . . . , N . Fi(·) ∈ Rn is a continuously differentiable nonlinear vector field,
θi = (θ

(1)
i , θ

(2)
i , . . . , θ

(m)
i )T ∈ Rm are unknown parameters, θ̃i = (θ̃

(1)
i , θ̃

(2)
i , . . . , θ̃

(m)
i )T ∈ Rm are the

estimation of the unknown θi, h(·) ∈ Rn is the nonlinear inner-coupling function, τ1 is node delay and
τ2 is coupling delay. A(t) = (aij(t))N×N , B(t) = (bij(t))N×N are respective time-varying coupling
matrices representing the topological structures of networks X and Y . The entries aij(t) (bij(t)) are
defined as follows: aij(t) (bij(t)) > 0 if there is a connection between node i and node j (i ̸= j);
otherwise aij(t) (bij(t)) = 0 (i ̸= j), and the diagonal entries aii(t) = −

∑N
j=1,j ̸=i aij(t), bii(t) =

−
∑N

j=1,j ̸=i bij(t), i = 1, 2, . . . , N . ui is a controller to be designed.
Suppose that the unknown parameter θi is linearly dependent of the nonlinear functions of the ith

node, and we can rewrite networks Equations (1) and (2) in the following forms:

ẋi(t) = fi1(t, xi(t), xi(t− τ1)) + fi2(t, xi(t), xi(t− τ1))θi +
N∑
j=1

aij(t)h(xj(t− τ2)), (3)

ẏi(t) = fi1(t, yi(t), yi(t− τ1)) + fi2(t, yi(t), yi(t− τ1))θ̃i +
N∑
j=1

bij(t)h(yj(t− τ2)) + ui, (4)

where fi1(·) ∈ Rn is a continuous vector function and fi2(·) ∈ Rn×m is a continuous matrix function,
i = 1, 2, . . . , N .

Denote ei(t) = yi(t) − xi(t), θ̄i = θ̃i − θi. According to the drive network Equation (3) and the
response network Equation (4), the error dynamical network is then described by

ėi(t) = fi1(t, yi(t), yi(t− τ1)) + fi2(t, yi(t), yi(t− τ1))(θ̄i + θi)

−fi1(t, xi(t), xi(t− τ1))− fi2(t, xi(t), xi(t− τ1))θi

+

N∑
j=1

bij(t)h(yj(t− τ2))−
N∑
j=1

aij(t)h(xj(t− τ2)) + ui

= fi(t, yi(t), yi(t− τ1), θi)− fi(t, xi(t), xi(t− τ1), θi)

+fi2(t, yi(t), yi(t− τ1))θ̄i +
N∑
j=1

bij(t)h(yj(t− τ2))−
N∑
j=1

aij(t)h(xj(t− τ2)) + ui, (5)
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where fi(·, θi) = fi1(·) + fi2(·)θi, i = 1, 2, . . . , N .
Throughout the rest of this paper, some useful assumptions, lemmas and definitions are presented.

Assumption 1. For any xi(t), yi(t) ∈ Rn, there exists a positive constant L satisfying

∥fi(t, yi(t), yi(t− τ1), θi)− fi(t, xi(t), xi(t− τ1), θi)∥ ≤ L(∥ei(t)∥+ ∥ei(t− τ1)∥).

Hereafter, the norm ∥x∥ of vector x is defined as ∥x∥ =
√
xTx.

Assumption 2. There exists a positive constant α such that

∥h(x)− h(y)∥ ≤ α∥x− y∥

hold for any x, y ∈ Rn.

Assumption 3. Denote fi2(t, yi(t), yi(t − τ1)) = (f
(1)
i2 (t, yi(t), yi(t − τ1)), f

(2)
i2 (t, yi(t),

yi(t − τ1)), . . . , f
(m)
i2 (t, yi(t), yi(t − τ1))). Assume that f

(k)
i2 (t, yi(t), yi(t − τ1)), h(yj(t − τ2))

(k = 1, 2, . . . ,m, j = 1, 2, . . . , N ) are linearly independent on the synchronized orbit xi(t) = yi(t) of
synchronization manifold for any given i ∈ {1, 2, . . . , N}.

Lemma 1. For any vectors x, y ∈ Rn, the following inequality holds:

2xTy ≤ xTx+ yTy.

Definition 1. We say that networks X and Y achieve exponential outer synchronization if there exist
positive constants M and µ such that

∥ei(t)∥ ≤ M exp(−µt), i = 1, 2, . . . , N.

Moreover, the constant µ is defined as the exponential synchronization rate [41].

3. Theoretical Results

In this section, we consider exponential outer synchronization between the drive network Equation (3)
and the response network Equation (4). The main results are summarized in the following theorem.

Theorem 1. Suppose that Assumptions 1–3 hold. Then exponential outer synchronization between the
drive network Equation (3) and the response network Equation (4) can be achieved and the unknown
parameters θi can be identified by using the estimation θ̃i with the following adaptive controllers and the
corresponding updating laws:

ui(t) = −di(t)ei(t),

ḋi(t) = qie
T
i (t)ei(t) exp(µt),

˙̃θi = −fT
i2(t, yi(t), yi(t− τ1))ei(t) exp(µt),

ḃij(t) = −lie
T
i (t)h(yj(t− τ2)) exp(µt),

ȧij(t) = kie
T
i (t)h(xj(t− τ2)) exp(µt),

(6)

where qi, li and ki are positive constants, i = 1, 2, . . . , N .
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Proof. Construct the following Lyapunov functional:

V (t) =
1

2

N∑
i=1

eTi (t)ei(t) exp(µt) +
1

2

N∑
i=1

θ̄Ti θ̄i +
N∑
i=1

1

2qi
(di(t)− d∗i )

2

+
N∑
i=1

N∑
j=1

1

2ki
(aij(t)−H∗

ij)
2 +

N∑
i=1

N∑
j=1

1

2li
(bij(t)−H∗

ij)
2 (7)

+
L

2

N∑
i=1

∫ t

t−τ1

eTi (s)ei(s) exp[µ(s+ τ1)]ds+
αNH∗

2

N∑
i=1

∫ t

t−τ2

eTi (s)ei(s) exp[µ(s+ τ2)]ds,

where d∗i and H∗
ij (i, j = 1, 2, . . . , N ) are sufficiently large positive constants, H∗ = max

1≤i,j≤N
{H∗

ij}.

According to Equations (5) and (6), we get the time derivative of V (t) as

V̇ (t) =
N∑
i=1

[
eTi (t)ėi(t) exp(µt) +

µ

2
eTi (t)ei(t) exp(µt)

]
+

N∑
i=1

θ̄Ti
˙̄θi +

N∑
i=1

1

qi
(di(t)− d∗i )ḋi(t)

+
N∑
i=1

N∑
j=1

1

ki
(aij(t)−H∗

ij)ȧij(t) +
N∑
i=1

N∑
j=1

1

li
(bij(t)−H∗

ij)ḃij(t)

+
L

2

N∑
i=1

{
eTi (t)ei(t) exp[µ(t+ τ1)]− eTi (t− τ1)ei(t− τ1) exp(µt)

}
+
αNH∗

2

N∑
i=1

{
eTi (t)ei(t) exp[µ(t+ τ2)]− eTi (t− τ2)ei(t− τ2) exp(µt)

}
≤

N∑
i=1

eTi (t) [fi(t, yi(t), yi(t− τ1), θi)− fi(t, xi(t), xi(t− τ1), θi)] exp(µt)

+

(
µ

2
+

L

2
exp(µτ1) +

αNH∗

2
exp(µτ2)− d∗

) N∑
i=1

eTi (t)ei(t) exp(µt)

+
N∑
i=1

N∑
j=1

H∗
ije

T
i (t) [h(yj(t− τ2))− h(xj(t− τ2))] exp(µt)

−L

2

N∑
i=1

eTi (t− τ1)ei(t− τ1) exp(µt)−
αNH∗

2

N∑
i=1

eTi (t− τ2)ei(t− τ2) exp(µt),

where d∗ = min
1≤i≤N

{d∗i } > 0.

From Lemma 1, Assumptions 1 and 2, one gets

eTi (t) [fi(t, yi(t), yi(t− τ1), θi)− fi(t, xi(t), xi(t− τ1), θi)] exp(µt)

≤ 3L

2
eTi (t)ei(t) exp(µt) +

L

2
eTi (t− τ1)ei(t− τ1) exp(µt),

eTi (t) [h(yj(t− τ2)− h(xj(t− τ2))]

≤ ∥ei(t)∥∥h(yj(t− τ2)− h(xj(t− τ2))∥ ≤ α∥ei(t)∥∥ej(t− τ2)∥
≤ α

2

(
eTi (t)ei(t) + eTj (t− τ2)ej(t− τ2)

)
.
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Then, one has

V̇ (t) ≤
(
µ+ 3L

2
+

L

2
exp(µτ1) +

αNH∗

2
exp(µτ2)− d∗

) N∑
i=1

eTi (t)ei(t) exp(µt)

+
αH∗

2

N∑
i=1

N∑
j=1

[
eTi (t)ei(t) + eTj (t− τ2)ej(t− τ2)

]
exp(µt)

−αNH∗

2

N∑
i=1

eTi (t− τ2)ei(t− τ2) exp(µt)

=

(
µ+ 3L

2
+

L

2
exp(µτ1) +

αNH∗

2
(1 + exp(µτ2))− d∗

) N∑
i=1

eTi (t)ei(t) exp(µt)

If H∗ is fixed, then we can choose d∗ ≥ µ+3L
2

+ L
2
exp(µτ1)+

αNH∗

2
(1+exp(µτ2))+1. Thus, one has

V̇ (t) ≤ −
∑N

i=1 e
T
i (t)ei(t) exp(µt) ≤ 0. It follows that V (t) ≤ V (0) for any t ≥ 0. From the Lyapunov

function Equation (7), one gets

1

2
∥ei(t)∥2 exp(µt) =

1

2
eTi (t)ei(t) exp(µt) ≤ V (t) ≤ V (0).

Therefore, one obtains ∥ei(t)∥ ≤ M exp(−µ
2
t), where M =

√
2V (0) > 0. Hence, every trajectory

yi(t) of network Equation (4) must synchronize exponentially toward the xi(t) with a convergence rate
of µ

2
. It implies that exponential outer synchronization between the drive network Equation (3) and the

response network Equation (4) has been achieved. Thus, lim
t→∞

∥ei(t)∥ = 0 (i = 1, 2, . . . , N ).

Suppose that lim
t→∞

ėi(t) exists. Since ei(t) converges to a constant as t → ∞, one has lim
t→∞

ėi(t) = 0.
According to the error system Equation (5), we have

fi2(t, yi(t), yi(t− τ1))(θ̃i − θi) +
N∑
j=1

(bij(t)− aij(t))h(yj(t− τ2))

=
m∑
k=1

(θ̃
(k)
i − θ

(k)
i )f

(k)
i2 (t, yi(t), yi(t− τ1)) +

N∑
j=1

(bij(t)− aij(t))h(yj(t− τ2)) = 0,

as t → ∞. From Assumptions 3, one has θ̃(k)i − θ
(k)
i → 0 and bij(t)− aij(t) → 0 as t → ∞ [42]. That

is to say, the unknown parameters θi can be identified by using the control scheme Equation (6). All this
completes the proof.

4. Numerical Example

To show the effectiveness of the above adaptive control scheme, numerical example is presented in this
section. Here, the dynamics at every node of both the networks X and Y follows the Hindmarsh-Rose
(HR) neuronal system [43] with time delayed nonlinearity.

ẋi1 = xi2(t− τ1)− αi1x
3
i1(t− τ1) + αi2x

2
i1(t− τ1)− xi3(t− τ1) + I,

ẋi2 = αi3 − αi4x
2
i1(t− τ1)− xi2(t− τ1),

ẋi3 = p[s(xi1(t− τ1)− χ)− xi3(t− τ1)],

(8)
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where xi1 is the membrane action potential, xi2 is a recovery variable and xi3 is a slow adaptation
current, I is the external direct current, αi1, αi2, αi3, αi4, s, p and χ are constants, i = 1, 2, . . . , N . In the
following simulations, let αi1 = 1.0, αi2 = 3.0, αi3 = 1.0, αi4 = 5.0, s = 4.0, p = 0.006, χ = −1.60

and I = 3.0, HR system shows the chaotic firing pattern [44]. For simplicity, we only assume that αi4

are not known in advance, then system Equation (8) can be rewritten as ẋi1

ẋi2

ẋi3

 =

 xi2(t− τ1)− αi1x
3
i1(t− τ1) + αi2x

2
i1(t− τ1)− xi3(t− τ1) + I

αi3 − xi2(t− τ1)

p[s(xi1(t− τ1)− χ)− xi3(t− τ1)]


+

 0

−x2
i1(t− τ1)

0

 θi,

= fi1(t, xi(t), xi(t− τ1)) + fi2(t, xi(t), xi(t− τ1))θi, (9)

where θi = αi4, i = 1, 2, . . . , N . For convenience, set the node delay τ1 = 0.1 and the coupling
delay τ2 = 0.2. Let the nonlinear inner-coupling function h(xi) = (0, 1 + sin(xi2), 0)

T , so it satisfies
Assumptions 2 and 3.

Here, we investigate exponential outer synchronization of uncertain networks by using the adaptive
control scheme Equation (6). We choose qi = ki = li = 20 and µ = 0.1. The network size is taken as
N = 5, the initial values aij(0) and bij(0) (i, j = 1, . . . , 5) are randomly chosen in the interval (0, 0.5)
and the interval (0.5, 1) respectively. The other initial values are randomly chosen in the interval (–1, 1).
The time evolution of outer synchronization error E(t) = max{∥yi(t) − xi(t)∥ : i = 1, 2, . . . , 5} is
shown in Figure 1. It is clear that outer synchronization error is rapidly converging to zero. Figure 2
shows the identification of unknown parameters θi (i = 1, . . . , 5). Figure 3 displays the evolution of
adaptive feedback gains di (i = 1, . . . , 5). From Figures 4 and 5, we can find that aij(t) and bij(t) are
converged to the same constants when outer synchronization appears.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

t

E
(t

)

Figure 1. Evolution of outer synchronization error E(t) of networks Equations (3) and (4).
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5

6

t

θ̃
i

Figure 2. Identification of unknown parameters θi (i = 1, . . . , 5) of networks
Equations (3) and (4).
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t

d
i
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Figure 3. Evolution of adaptive feedback gains di (i = 1, . . . , 5) of networks
Equations (3) and (4).
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Figure 4. Evolution of aij(t) and bij(t) (i, j = 1, . . . , 5) of networks Equations (3) and (4).
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ij
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)
−
a
ij
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Figure 5. Evolution of bij(t)− aij(t) (i, j = 1, . . . , 5) of networks Equations (3) and (4).

5. Conclusions

In this paper, exponential outer synchronization between two uncertain time-varying complex
dynamical networks with nonlinear coupling and time delays has been studied both theoretically and
numerically. According to the Lyapunov stability theorem, an adaptive control scheme is proposed to
synchronize uncertain delayed complex networks. Meanwhile, unknown parameters are identified in the
process of outer synchronization.
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