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Abstract: A paper was published (Harsha and Subrahamanian Moosath, 2014) in which
the authors claimed to have discovered an extension to Amari’s α-geometry through a
general monotone embedding function. It will be pointed out here that this so-called
(F,G)-geometry (which includes F -geometry as a special case) is identical to Zhang’s
(2004) extension to the α-geometry, where the name of the pair of monotone embedding
functions ρ and τ were used instead of F andH used in Harsha and Subrahamanian Moosath
(2014). Their weighting function G for the Riemannian metric appears cosmetically due
to a rewrite of the score function in log-representation as opposed to (ρ, τ)-representation
in Zhang (2004). It is further shown here that the resulting metric and α-connections
obtained by Zhang (2004) through arbitrary monotone embeddings is a unique extension
of the α-geometric structure. As a special case, Naudts’ (2004) φ-logarithm embedding
(using the so-called logφ function) is recovered with the identification ρ = φ, τ = logφ, with
φ-exponential expφ given by the associated convex function linking the two representations.

Keywords: α-embedding; monotone embedding; conjugate embedding; generalized
Fisher–Rao metric; Amari–Chentsov tensor; deformed logarithm; representation duality;
(ρ, τ)-geometry

In a recent paper that appeared in Entropy (Harsha and Subrahamanian Moosath, 2014) [1], the
authors proposed an extension to Amari’s α-geometry, which they call F - or (F,G)-geometry, where
F is a monotone embedding function and G is the weighting function for taking the expectation of
random variables in calculating the Riemannian metric (G = 1 reduces to F -geometry, with the standard
Fisher–Rao metric). This paper serves the purpose of pointing out that (F,G)-geometry as proposed
is the same as what Zhang (2004) [2] has obtained for extending the α-geometry and captured in his
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subsequent work [4–8]. The metric and affine connections proposed by [1] are identical to [2] apart from
the notations: the embedding functions F and H in [1] were denoted as ρ and τ in [2], and weighting
function G in [1] is a trivial rewriting of the convex function f used by [2].

This paper will start in Section 1 with a review of Amari’s α-geometry and α-embedding, a review
of Zhang’s (2004) [2] extension to ρ-embedding with an arbitrary monotone function and a summary
of Harsha and Subrahamanian Moosath (2014) [1]. Then, the equivalence of [1] to [2] is shown.
In Section 2, after analyzing the group of monotone embedding functions, a stronger statement is
made: the construction of [2] is a unique dualistic extension of Amari’s α-geometry through arbitrary
monotone embedding in place of α-embedding. As an important special case, we illustrate how the
deformed logarithm logφ associated with an arbitrary strictly increasing function φ as investigated by
Naudts (2004) [3] arises naturally from identifying φ with ρ and with a proper choice of the auxiliary
function f as a part of Zhang’s theory.

1. Equivalence of (F,G)-Geometry to Zhang’s (2004) [2] (ρ, τ)-Geometry

1.1. Amari’s α-Geometry and α-Embedding

The now standard differential geometric characterization of the manifoldMΘ = { p(· | θ), θ ∈ Θ ⊆
Rn} of parametric probability functions p (probability density or probability distributions) is through the
Fisher–Rao metric gij as its Riemannian metric:

gij(θ) = Eµ

{
p(ζ|θ) ∂ log p(ζ|θ)

∂θi
∂ log p(ζ|θ)

∂θj

}
(1)

and a family of α-connections (given by Amari [9,10]) with coefficients Γ(α) (α ∈ R):

Γ
(α)
ij,k(θ) = Eµ

{(
1− α

2

∂ log p(ζ|θ)
∂θi

∂ log p(ζ|θ)
∂θj

+
∂2 log p(ζ|θ)
∂θi∂θj

)
∂p(ζ|θ)
∂θk

}
. (2)

Here, Eµ denotes the expectation with respect to a background measure µ of the random variable denoted
by ζ:

Eµ{·} =

∫
(·)dµ(ζ). (3)

The α-connection is constructed as a convex combination of a pair of conjugate connections Γ,Γ∗

Γ
(α)
ij,k(θ) =

1 + α

2
Γij,k(θ) +

1− α
2

Γ∗ij,k(θ), (4)

where Γ ≡ Γ(1) is frequently called e-connection (α = 1) and Γ∗ ≡ Γ(−1) calledm-connection (α = −1).
A Riemannian manifoldMµ with its metric g and the family of α-connections Γ(α) in the form of (1)
and (2) has been called α-geometry. Amari’s α-geometry can be specified in terms of a symmetric
(0, 2)-tensor gij (the Fisher–Rao metric) and a totally symmetric (0, 3)-tensor Tijk (sometimes called the
Amari–Chentsov tensor), which is linked to the α-connections via:

Γ
(α)
ij,k = ΓLCij,k(θ)−

α

2
Tijk(θ) , (5)

where ΓLCij,k is the Levi–Civita connection corresponding to the Riemannian metric g.
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As an extension of the logarithmic embedding l(p) = log p of probability density function p, an
α-embedding function [10] is defined through l(α) : R+ → R:

l(α)(t) =

{
log t α = 1

2
1−α t

(1−α)/2 α 6= 1
. (6)

It is an interesting observation (e.g., p. 46 in [11]) that the α-geometry can be recovered under such
α-representation (scaling) of the probability function, that is the Fisher–Rao metric turns out to be
α-independent (i.e., embedding independent) and the ±1-connections precisely the α-connections:

gij(θ) = Eµ

{
∂l(α)(p(ζ|θ))

∂θi
∂l(−α)(p(ζ|θ))

∂θj

}
, (7)

Γ
(α)
ij,k(θ) = Eµ

{
∂2l(α)(p(ζ|θ))

∂θi∂θj
∂l(−α)(p(ζ|θ))

∂θk

}
. (8)

A variance of α-embedding of a probability function plays an important role in Tsallis statistics;
see [12–14]. On the geometric side, [15,16] illuminated that the α-scaling of the probability functions
leads to a conformal transformation.

1.2. Zhang (2004) [2] Extension: ρ-Embedding and (ρ, τ)-Geometry

Zhang [2,4,6] obtained generalizations of the α-geometry for a pair of monotone embeddings, called
ρ- and τ -embeddings generalizing α-embedding. Given any smooth strictly convex function f : R→ R,
with convex conjugate f ∗ given by:

f ∗(t) = t (f ′)−1(t)− f((f ′)−1(t)) , (9)

Zhang (2004) defines a pair of conjugate representations [2] (Section 3.2) using two strictly increasing
functions ρ, τ from R→ R:

(1) we call ρ-representation of a probability function p the mapping p 7→ ρ(p);

(2) we say τ -representation of the probability function p 7→ τ(p) is conjugate to ρ-representation with
respect to a smooth and strictly convex function f , or simply τ is f -conjugate to ρ, if:

τ(p) = f ′(ρ(p)) = ((f ∗)′)−1(ρ(p)) , (10)

which can be equivalently written as:

ρ(p) = (f ′)−1(τ(p)) = (f ∗)′(τ(p)) . (11)

These equalities in (10) and (11) hold, and they are equivalent, because f ′ and (f ∗)′ are both strictly
increasing (due to their strict convexity) and that (f ∗)∗ = f, (f ∗)′ = (f ′)−1. Sometimes, we write
f ′ = σ, (f ∗)−1 = σ−1 for convenience, so σ(ρ) = τ, σ−1(τ) = ρ, for a strictly increasing function τ .

As a first example, we may set ρ(t) = t, τ(t) = log t. Then, we can derive that f ∗(t) = exp(t) and
f(t) = t log t− t+ 1. That ρ(p) and τ(p) are just the p and log p representation reflects the conventional



Entropy 2015, 17 4488

dual embeddings that have later been extended to φ- and logφ-embedding in ([3]). In Section 2.2, it will
be shown that Naudts’ φ-logarithm formulation is recovered as a special case of the (ρ, τ)-embedding.

As another example, we may set ρ(p) = l(β)(p) to be the β-representation given by Equation (6);
this would have been traditionally called “alpha-embedding”, except we use the symbol β, so that the
α-parameter will be reserved for indexing α-connections. In this case, the conjugate representation is
the (−β)-representation τ(p) = l(−β)(p):

ρ(p) = l(β)(p)←→ τ(p) = l(−β)(p) . (12)

In this case, ρ and τ are conjugate with respect to f , where f is given by:

f(t) =
2

1 + β

((
1− β

2

)
t

) 2
1−β

, f ∗(t) =
2

1− β

((
1 + β

2

)
t

) 2
1+β

. (13)

Based on divergence functions constructed under monotone embedding, Zhang ([2]) showed:

Proposition 1. ([2], Proposition 7) Using an arbitrary monotone embedding function ρ and an
arbitrary smooth strictly convex function f , a generalization of α-geometry is obtained, with metric
and α-connections taking the form:

gij(θ) = Eµ

{
f ′′(ρ(p(ζ|θ)) ∂ρ(p(ζ|θ))

∂θi
∂ρ(p(ζ|θ))

∂θj

}
(14)

Γ
(α)
ij,k(θ) = Eµ

{
1− α

2
f ′′′(ρ(p(ζ|θ)))Aijk + f ′′(ρ(p(ζ|θ)))Bijk

}
, (15)

where:

Aijk(ζ, θ) =
∂ρ(p(ζ|θ))

∂θi
∂ρ(p(ζ|θ))

∂θj
∂ρ(p(ζ|θ))

∂θk
, Bijk(ζ, θ) =

∂2ρ(p(ζ|θ))
∂θi∂θj

∂ρ(p(ζ|θ))
∂θk

. (16)

As special cases,

Γij,k(θ) = Eµ

{
f ′′(ρ(p))

∂2ρ(p)

∂θi∂θj
∂ρ(p)

∂θk

}
, (17)

Γ∗ij,k(θ) = Eµ

{
∂ρ(p)

∂θk

(
f ′′′(ρ(p))

∂ρ(p)

∂θi
∂ρ(p)

∂θj
+ f ′′(ρ(p))

∂2ρ(p)

∂θi∂θj

)}
. (18)

Furthermore, taking a pair of monotone representations, the metric tensor and affine connections stated
in Proposition 1 have dualistic expressions:

Corollary 1. ([2], Proposition 8) Using two arbitrary monotone embedding functions ρ and τ , the metric
and α-connections of (14)–(16) are:

gij(θ) = Eµ

{
∂ρ(p(ζ|θ))

∂θi
∂τ(p(ζ|θ))

∂θj

}
, (19)

Γ
(α)
ij,k(θ) = Eµ

{
1− α

2

∂2τ(p(ζ, θ))

∂θi∂θj
∂ρ(p(ζ|θ))

∂θk
+

1 + α

2

∂2ρ(p(ζ|θ))
∂θi∂θj

∂τ(p(ζ|θ))
∂θk

}
. (20)

As a special case, when ρ, τ take the familiar alpha-embeddings (12) (using β as the parameter), the
α-connections becomes (αβ)-connections:

Γ
(α)
ij,k(θ) = Eµ

{(
1− αβ

2

∂ log p(ζ|θ)
∂θi

∂ log p(ζ|θ)
∂θj

+
∂2 log p(ζ|θ)
∂θi∂θj

)
∂p(ζ|θ)
∂θk

}
, (21)

with the product α · β playing the role of the alpha-parameter indexing the family of connections.
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1.3. Harsha and Subrahamanian Moosath’s (2014) Work [1]

Using a monotone embedding function denoted as F and a weighting function denoted as G (G = 1

is a special case to reduce to what they called F -geometry), these authors [1] proposed (F,G)-metric as
(their Equation (33) in [1]):

gF,Gij = Eµ

{
pG(p)

∂ log p

∂θi
∂ log p

∂θj

}
(22)

with affine connection given as (their Equation (34)):

ΓF,Gijk = Eµ

{
pG(p)

∂ log p

∂θk

(
∂2 log p

∂θi∂θj
+

(
1 +

pF ′′(p)

F ′(p)

)
∂ log p

∂θi
∂ log p

∂θj

)}
. (23)

Note Ep{(·)} = Eµ{(·)p}. (23) is the expression for the e-connection (α = 1), ΓF,Gijk . To express the
conjugate connection (m-connection, α = −1), ΓH,Gijk , a dual embedding functionH is introduced, which
is shown ([1], Theorem 3.2) to be related to F and G via (their Equation (36)):

H ′(p) =
G(p)

pF ′(p)
. (24)

In such a case, the conjugate connection ΓH,Gijk (sic, more accurately (ΓF,G)∗ijk) is expressed as (their
Equation (37)):

ΓH,Gijk = Eµ

{
pG(p)

∂ log p

∂θk

(
∂2 log p

∂θi∂θj
+

(
pG′(p)

G(p)
− pF ′′(p)

F ′(p)

)
∂ log p

∂θi
∂ log p

∂θj

)}
. (25)

We now show the equivalence of the three expressions (14), (17), (18) from the work [2] with the
three corresponding expressions (22), (23), (25) from the work [1].

Statement 1. Equations (14) and (22) give the same Riemannian metric; Equations (17) and (23) give
the same affine connection; and Equations (18) and (25) give the same conjugate connection, as long as:

F (p) = ρ(p) , G(p) = (ρ′)2 p f ′′(ρ(p)). (26)

Proof. Re-writing (14), and keeping in mind:

∂ρ(p)

∂θi
= ρ′(p)

∂p

∂θi
= p ρ′(p)

∂ log p

∂θi
, (27)

so:

gij(θ) = Eµ

{
f ′′(ρ(p)(p ρ′(p))2 ∂ log p

∂θi
∂ log p

∂θj

}
. (28)

Comparing the above with (22), obviously, F is just ρ, and G is linked to f and ρ:

G(p) = (ρ′)2 p f ′′(ρ(p)) = p ρ′(p)τ ′(p) (29)

where we have used (10).
Next, differentiate (27); we obtain:

∂2ρ(p)

∂θi∂θj
=

∂p

∂θj
ρ′(p)

∂ log p

∂θi
+ p ρ′′(p)

∂p

∂θj
∂ log p

∂θi
+ p ρ′(p)

∂2 log p

∂θi∂θj
(30)

= p ρ′(p)

(
∂ log p

∂θi
∂ log p

∂θj
+
∂2 log p

∂θi∂θj
+
pρ′′(p)

ρ′(p)

∂ log p

∂θi
∂ log p

∂θj

)
(31)

= p ρ′(p)

(
∂2 log p

∂θi∂θj
+

(
1 +

pρ′′(p)

ρ′(p)

)
∂ log p

∂θi
∂ log p

∂θj

)
. (32)
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Identifying F = ρ and making use of (29), we see that (17) is precisely (23).
Finally, differentiate (29),

G′(p) = (ρ′)2f ′′(ρ(p)) + (ρ′)3 p f ′′′(ρ(p)) + 2ρ′(p)ρ′′(p) p f ′′(ρ(p)). (33)

Therefore,
pG′(p)

G(p)
− pF ′′(p)

F ′(p)
= 1 +

pρ′(p)f ′′′(ρ(p))

f ′′(ρ(p))
+
pρ′′(p)

ρ′(p)
. (34)

After substituting (34) and (29) into (25) and making use of (31), the expression (18) results.

Statement 2. The conjugate embedding function H is the same as τ . The conjugate connection (25),
when expressed using H , has the same form as (23) for ΓG,Fij,k using F .

Proof. Applying Definition (24) immediately yields H ′ = τ ′. Therefore, (apart from constant) H(p) =

τ(p). Next, we will express (25) explicitly using the conjugate embedding function H (rather than F )
and the weighting functionG. That is to say, we will simplify the terms in the middle parenthesis of (25):

pG′(p)

G(p)
− pF ′′(p)

F ′(p)
= p

(
log

G(p)

F ′(p)

)′
= p (log(pH ′(p))′ = p (log p+ logH ′(p))′ (35)

= p

(
1

p
+
H ′′(p)

H ′

)
= 1 +

pH ′′

H ′(p)
. (36)

Hence, (25) has the same expression as (23) showing the duality between the embedding function H and
the embedding function F .

By Statement 1, starting from F (that is, ρ) and G and imposing conjugacy requirement on the pair
of affine connections, one is guaranteed to derive H (that is, τ ) as the conjugate embedding function.

From Statements 1 and 2, we conclude that, Harsha and Moosath’s F -embedding [1] replicates the
ρ-embedding of Zhang (2004) [2]; the conjugate H-embedding turns out to be identical to τ -embedding
of [2]. Contrary to the authors’ claim (Remark 3.7 of [1], p. 2480), (F,G)-geometry is identical to
Zhang’s (ρ, τ) geometry [2]. In particular, their F -geometry is recovered by simply choosing f to satisfy
f ′′(t) = 1/(ρ−1(t) (ρ′(ρ−1(t)))2), for a given ρ. The subsequent development in their paper [1], e.g., the
definition of the F -affine manifold (their Equation (50)), replicates the definition of ρ-affine manifold
in [2] (Section 3.4).

During the review of their manuscript [1] and in subsequent personal communications, these authors
argued that they used a different approach: (F,G)-geometry is derived by embedding the manifold into
the space of random variables and suitably defining the inner product through using the F -expectation
(their Equation (15)) and (F,G)-expectation (their Equation (32)) as a general weighted expectation
of a random variable, while Zhang (2004) [2] derived the geometry through constructing a divergence
function. This difference, however, is entirely superficial, because the relationship between divergence
functions and geometric structure (metric and affine connection) is well-established by Eguchi’s
work [17,18] and known to information geometers. Therefore, neither the approach nor the results
of Harsha and Moosath’s proposed (F,H,G) extension to Amari’s α-geometry differs from Zhang’s
proposed (ρ, τ, f) extension, with the following correspondence in different symbols by the two papers:

F ⇐⇒ ρ , H ⇐⇒ τ , (37)
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G(t)⇐⇒ tρ′(t)τ ′(t) = tf ′′(ρ(t))(ρ′(t))2 = t(f ∗)′′(τ(t))(τ ′(t))2 ; (38)

the difference in the representation of score function as log-representation in [1] or under ρ or
τ -representation in [2] is cosmetic.

2. Uniqueness of (ρ, τ)-Geometry and Representation Duality

2.1. Monotone Embedding as a Transformation Group

Monotone representations of any given probability function form a transformation group, with
functional composition as group composition operation and the functional inverse as the group inverse
operation. This was pointed out by Zhang [6] (Section 2.2.2). We state it as a lemma here.

Lemma 1. Denote Ω as the set of strictly increasing functions from R→ R. Then, (Ω, ◦) forms a group,
with ◦ denoting functional composition.

Proof. We easily verify that:

(1) closure for ◦: for any ρ1, ρ2 ∈ Ω, ρ2 ◦ ρ1, defined as ρ2(ρ1(·)), is strictly increasing, and hence,
ρ2 ◦ ρ1 ∈ Ω;

(2) existence of unique identity element: the identity function ι, which satisfies ρ ◦ ι = ι ◦ ρ = ρ, is
strictly increasing, and hence, ι ∈ Ω and is unique;

(3) existence of inverse: for any ρ ∈ Ω, its functional inverse ρ−1, which satisfies ρ−1◦ρ = ρ−1◦ρ = ι,
is also strictly increasing, and hence, ρ−1 ∈ Ω;

(4) associativity of ◦: for any three ρ1, ρ2, ρ3 ∈ Ω, then (ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3).

Recall that the derivative of smooth strictly convex functions are strictly increasing functions. From
this perspective, f ′ = τ ◦ ρ−1 = τ(ρ−1(·)), (f ∗)′ = ρ ◦ τ−1 = ρ(τ−1(·)), encountered above, are
themselves two mutually inverse strictly increasing functions. This is the rationale behind Zhang’s ([2])
choice of f (and f ∗) as the auxiliary function to capture conjugate embedding, rather than using G as
in [1]. The following identities are useful; they are obtained by differentiating (10) and (11):

f ′′(ρ(t)) ρ′(t) = τ ′(t) , (f ∗)′′(τ(t)) τ ′(t) = ρ′(t) ; (39)

therefore:
f ′′(ρ(t)) (ρ′(t))2 = (f ∗)′′(τ(t)) (τ ′(t))2 , (40)

and:
f ′′(ρ(t)) (f ∗)′′(τ(t)) = 1. (41)

With respect to (41), taking log on both sides yields:

log f ′′(ρ(t)) + log(f ∗)′′(τ(t)) = 0 . (42)
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Move and differentiate:
f ′′′(ρ(t)) ρ′(t)

f ′′(ρ(t))
= −(f ∗)′′′(τ(t)) τ ′(t)

(f ∗)′′(τ(t))
. (43)

Making use of (40) yields:

f ′′′(ρ(t)) (ρ′(t))3 = −(f ∗)′′′(τ(t)) (τ ′(t))3 . (44)

Note the coupling between f and ρ, τ given by (10), (11), (40) and (44). They allow us to cast (14) and
(15) in terms of f ∗ and τ .

Among the triple (f, ρ, τ), given any two, the third is specified. In particular, if we arbitrary choose
two strictly increasing functions ρ and τ as embedding functions and require them to be conjugate
embeddings, then f is specified by f ′(t) = τ(ρ−1(t)). In terms of conjugate function f ∗, the relation is
(f ∗)′(t) = ρ(τ−1(t)). The function f (or f ∗) is important in constructing the general class of divergence
function.

2.2. Naudts’ φ-Logarithm as a Special Case

In his 2004 publication [3], Naudts considered the “deformed” logarithm function as an extension
to the exponential family of densities that is log-linear. Given a strictly increasing and strictly positive
function φ : R+ → R+, the φ-logarithm is defined as:

logφ(t) =

∫ t

1

1

φ(s)
ds , (t > 0). (45)

The deformed exponential denoted expψ, is defined by:

expψ(t) = 1 +

∫ t

0

ψ(s) ds. (46)

(Naudts (2004) used the notation expφ, so our current rendition has a subtle difference shown as (48)
and (49) below.) It can be shown that the deformed functions logφ and expψ are in fact inverse functions
of each other if:

ψ(logφ(t)) = φ(t), ψ(t) = φ(expψ(t)). (47)

Stated alternatively, the deformed logarithmic function h(t) = logφ(t) can be viewed as the solution to
the following integral and its equivalent differential equation:

h(t) =

∫ t

1

1

ψ(h(s))
ds ⇐⇒ dh

dt
=

1

ψ(h(t))
, (48)

whereas the deformed exponential function h(t) = expψ(t) can be viewed as the solution to the following
integral and its equivalent differential equation:

h(t) = 1 +

∫ t

0

φ(h(s))ds ⇐⇒ dh

dt
= φ(h(t)). (49)

We now show that the above formulation can be re-written as (ρ, τ)-embeddings with a particular
choice of f (or equivalently, f ∗) function. Set φ(t) = ρ(t) and f ∗(t) = expψ(t), so that (f ∗)′(t) = ψ(t)

from (46). Therefore, we derive:

logφ(t) = ψ−1(φ(t)) = ((f ∗)′)−1(ρ(t)) = f ′(ρ(t)) = τ(t).
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That is, when φ is chosen as ρ-representation, the deformed logarithm logφ turns out to be the
τ -representation, while the deformed exponential is nothing but f ∗. The relationship (47) is identical
to (10) and (11).

In the φ-logarithm approach, once φ (that is, ρ) is specified, then logφ (that is, τ ) is specified, through
the integral relation (45). Viewing τ(·) = f ′(ρ(·)), the relation (45) essentially specifies a strictly convex
function f , through its derivative f ′, which operates on ρ.

Proposition 2. Denote ρ ≡ φ. The deformed logarithmic transformation φ→ logφ given by (45) can be
viewed as the function composition f ′ : ρ→ f ′(ρ), where f is given by:

f(ρ(t)) = ρ(t)f ′(ρ(t))− t. (50)

Equivalently, using conjugate function f ∗ given by (9),

ρ = (f ∗)′ ◦ (f ∗)−1, (51)

or
ρ =

1

((f ∗)−1)′
. (52)

Proof. From (45), we write:

f ′(ρ(t)) =

∫ t

1

1

ρ(s)
ds, (53)

with unknown f . Multiply both sides by ρ′(t) and then integrate from one to x; the left-hand side of (53)
is: ∫ x

1

f ′(ρ(t)) ρ′(t) dt =

∫ x

1

f ′(ρ(t))d(ρ(t)) = f(ρ(x))− f(ρ(1)).

The right-hand side of (53), after the same operation, is:∫ x

1

ρ′(t) dt

∫ t

1

1

ρ(s)
ds =

∫ x

1

1

ρ(s)
ds

∫ x

s

ρ′(t) dt =

∫ x

1

ρ(x)− ρ(s)

ρ(s)
ds

=

∫ x

1

(
ρ(x)

ρ(s)
− 1

)
ds = ρ(x)

(∫ x

1

1

ρ(s)
ds

)
−
∫ x

1

ds = ρ(x) f ′(ρ(x))− (x− 1).

Clearly, f ′(ρ(1)) = 0 by (53). We set f(ρ(1)) = −1. Comparing expressions from the left- and
right-hand side, we obtain (50).

Applying (9), we obtain the equivalent expression:

f ∗(f ′(ρ(t))) = t.

That is, f is chosen, such that f ∗ ◦ f ′ is the inverse function of ρ, or:

ρ = (f ∗ ◦ f ′)−1 = (f ′)−1 ◦ (f ∗)−1 = (f ∗)′ ◦ (f ∗)−1.

Hence, (51) holds.
Finally, differentiate the identity:

f ∗((f ∗)−1(t)) = t,

we obtain:
1 = (f ∗)′((f ∗)−1(t)) · (f ∗)−1(t) = ρ(t) · (f ∗)−1(t)

upon substituting (51). Hence, (52) holds.
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The expression (51) in Proposition 2 shows that for any ρ, if one can find a decomposition: ρ = g′◦g−1

in terms of g, then g would be the ρ-exponential, g−1 the ρ-logarithm and g′ the linking function. In the
case of φ 7→ logφ transformation, g = f ∗(t).

Naudts’ ([3]) deformed logarithm/exponential embedding approach and Zhang’s ([2])
(ρ, τ)-embedding approach can be seen as playing complementary roles in information geometry:
the former makes it easy to generalize the exponentiation and logarithm as inverse operations
obeying desired differential/integral equations, while the latter makes it apparent how conjugate
(ρ, τ)-embeddings lead to bidualistic expressions for the underlying geometric structures (metric and
conjugate connections).

2.3. Uniqueness of (ρ, τ)-Geometry

It is known [19,20] that the Fisher–Rao metric and α-connections (equivalently, Amari–Chentsov
tensor T ) are the only invariants of sufficient statistics under the Markov morphism of a random variable.
In [22,23], the Fisher–Rao metric has been extended to allow a weighting function. In [2,6], general
weighting functions for affine connections were made compatible with the generalized (i.e., weighted)
Fisher–Rao metric, since they result from divergence functions that are allowed to have the freedom of
monotone embedding. The recent reinvention [1] constructed weighted connections that turned out to be
identical to the expressions given by [2]. A natural question is, then, whether Zhang’s (ρ, τ) geometry is
the unique construction given the freedom of arbitrary monotone embedding. Below, arguments will be
provided, along with a proof, for a positive answer to this question.

First, when a probability function p(ζ|θ) (as a function of a random variable indexed by ζ and a
background measure of µ) is embedded into the parametric manifoldMΘ, there are several traditional
choices for tangent vectors: ∂ip, ∂i log p, ∂i

√
p, etc. Each of these are linked with a weighting function

(expectation operator), so that the tangent vectors are zero-mean random variables:

0 = Eµ{∂ip} = Eµ{(p) ∂i log p} = Eµ{(
√
p) ∂i(

√
p)} = · · · (54)

where the weighting functions are, respectively, one, p,
√
p:

0 = Eµ{∂ip} = Ep{∂i log p} = E√p{∂i(
√
p)} = · · ·

For these various choices, the direction of the tangent vectors are all the same. We can consider the above
as special cases of ρ-embedding, with ρ(t) = t, log t,

√
t, respectively. Because ∂i(ρ(p)) = ρ′(p)∂ip, so

a tangent vector retains its direction with any choice of monotone embedding function.
To investigate the weighting function for general monotone ρ-embedding, let us consider the

f -normalization (foliation) condition, cf. [21],

Eµ{f(ρ(p)} = 1, (55)

where f is a given convex function. Differentiate the above; we get:

0 = Eµ

{
f ′(ρ(p))

∂ρ′(p)

∂θi

}
= Eµ{τ(p) ∂iρ}. (56)
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Therefore, we can see that τ(p) = f ′(ρ(p)), what we have called the f -conjugate of ρ, is precisely the
weighting function to make ∂iρ a zero-mean random function at any point ofMΘ (i.e., for any value of
θ ∈ Θ).

Next, consider the Fisher–Rao metric (1), which can be written as Eµ{∂ip ∂j log p} =

Eµ{∂i log p ∂jp}, the pairing of a random function with a random functional under two embeddings p
and log p. A natural generalization (see [6]) is to use two (independently chosen) monotone embeddings
ρ, τ :

gij(θ) = Eµ{∂iρ ∂jτ} = Eµ{∂jρ ∂iτ} = Eµ{ρ′(p) τ ′(p) ∂ip ∂jp} . (57)

This is precisely (14), with the weighting function for the Riemannian metric as f ′′(ρ(p))(ρ′(p))2 =

τ ′(p)ρ′(p), when tangent vectors are expressed as ∂ip (identity representation). When ρ-representation
or τ -representation is adopted, the weighting function is simply f ′′(ρ(p)) or (f ∗)′′(τ(p)), respectively.

Third, given ρ, τ embedding, we can construct two affine connections on the manifold as follows.
Differentiate (57),

∂gij(θ)

∂θk
= Eµ

{
∂2ρ(p)

∂θk∂θi
∂τ

∂θj
+
∂2τ(p)

∂θk∂θj
∂ρ(p)

∂θi

}
, (58)

and compare with the relation that defines conjugate connections:

∂gij(θ)

∂θk
= Γki,j(θ) + Γ∗kj,i(θ) ; (59)

we can identify:

Eµ

{
∂2ρ(p)

∂θk∂θi
∂τ(p)

∂θj

}
(60)

with Γki,j and:

Eµ

{
∂2τ(p)

∂θk∂θi
∂ρ(p)

∂θj

}
(61)

with Γ∗kj,i, respectively. Their difference is, by definition, the Amari–Chentsov (0,3)-tensor T :

Tijk(θ) ≡ Eµ

{
∂2τ(p)

∂θi∂θj
∂ρ(p)

∂θk
− ∂2ρ(p)

∂θi∂θj
∂τ(p)

∂θk

}
. (62)

Proposition 3. T as given by (62) is a totally symmetric (0,3)-tensor.

Proof. First, we prove that T (θ) is totally symmetric:

Tijk = Tjik = Tikj = Tjki = Tkij = Tkji. (63)

Since (62) clearly implies Tijk = Tjik, we only need to establish Tijk = Tikj . Applying the chain-rule of
differentiation,

∂

∂θi

(
∂τ(p)

∂θj
∂ρ(p)

∂θk

)
=

∂2τ(p)

∂θi∂θj
∂ρ(p)

∂θk
+
∂2ρ(p)

∂θi∂θk
∂τ(p)

∂θj
, (64)

∂

∂θi

(
∂ρ(p)

∂θj
∂τ(p)

∂θk

)
=

∂2ρ(p)

∂θi∂θj
∂τ(p)

∂θk
+
∂2τ(p)

∂θi∂θk
∂ρ(p)

∂θj
, (65)

and taking into account:

∂τ(p)

∂θj
∂ρ(p)

∂θk
=
∂τ(p)

∂θk
∂ρ(p)

∂θj
= τ ′(p)ρ′(p)

∂p

∂θj
∂p

∂θk
, (66)
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(62) becomes:

Tijk(θ) = Eµ

{
−
(
∂2ρ(p)

∂θi∂θk
∂τ(p)

∂θj
− ∂2τ(p)

∂θi∂θk
∂ρ(p)

∂θj

)}
= Tikj(θ) . (67)

Next, we prove that Tijk is indeed a (0,3)-tensor. This is done through examining the behavior of T
under a coordinate transform θ 7→ θ̄, with the (inverse) Jacobian matrix ∂θk

∂θ̄l
, which affects:

∂ρ(p)

∂θ̄i
=
∑
l

∂ρ(p)

∂θl
∂θl

∂θ̄i
,

∂τ(p)

∂θ̄i
=
∑
l

∂τ(p)

∂θl
∂θl

∂θ̄i
, (68)

and:

∂2ρ(p)

∂θ̄i∂θ̄j
=

∑
l,m

∂2ρ(p)

∂θl∂θm
∂θl

∂θ̄i
∂θm

∂θ̄j
+
∑
l

∂ρ(p)

∂θ̄l
∂2θl

∂θ̄i∂θ̄j
, (69)

∂2τ(p)

∂θ̄i∂θ̄j
=

∑
l,m

∂2τ(p)

∂θl∂θm
∂θl

∂θ̄i
∂θm

∂θ̄j
+
∑
l

∂τ(p)

∂θ̄l
∂2θl

∂θ̄i∂θ̄j
. (70)

Therefore:

T̄ijk(θ̄) ≡ Eµ

{
∂2τ(p)

∂θ̄i∂θ̄j
∂ρ(p)

∂θ̄k
− ∂2ρ(p)

∂θ̄i∂θ̄j
∂τ(p)

∂θ̄k

}
=
∑
lmn

∂θi

∂θ̄l
∂θj

∂θ̄m
∂θk

∂θ̄n
Tlmn(θ) . (71)

after substituting (69), (70) and (62). T indeed transforms to T̄ in a manner that defines a (0, 3)-tensor.
Therefore, the proposition is proven.

We now cast the Amari–Chentsov tensor T in an alternative form that gives an explicit form of
weighting function. Given ρ, τ , because of Lemma 1, there exists another monotone embedding σ,
such that σ(ρ) = τ . Differentiating,

∂σ(ρ(p))

∂θi
= σ′(ρ(p))

∂ρ(p)

∂θi
. (72)

Differentiate again, we obtain:

∂2σ(ρ(p))

∂θi∂θj
= σ′′(ρ(p))

∂ρ(p)

∂θj
∂ρ(p)

∂θi
+ σ′(ρ(p))

∂2ρ(p)

∂θi∂θj
. (73)

Substituting the above into (62), we obtain an expression of T in terms of ρ (which plays the role of
embedding function) and σ (which plays the role of weighting function):

Tijk(θ) = Eµ

{
σ′′(ρ(p))

∂ρ(p)

∂θi
∂ρ(p)

∂θj
∂ρ(p)

∂θk

}
. (74)

Similarly, we can obtain:

Tijk(θ) = −Eµ

{
(σ−1)′′(τ(p))

∂τ(p)

∂θi
∂τ(p)

∂θj
∂τ(p)

∂θk

}
. (75)

Therefore, under τ -representation, σ−1 (the inverse function of σ) serves as the weighting function. Note
that σ = f ′, σ−1 = (f ∗)′ when ρ and τ are said to be conjugate. Furthermore, note the negative sign in
(75) compared with (74); this precisely reflects “representation duality” with a ρ←→ τ exchange.
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To summarize, because α-geometry {M, g, T} is uniquely specified given a Riemannian metric g
and the Amari–Chentsov tensor T , the above derivations show that they both enjoy the freedom of two
monotone/convex functions, with the freedom in specifying g coupled to the freedom in specifying T in
the same way that the metric and connections are coupled via Codazzi relation for statistical manifolds.
That the weighting functions used to construct linear, symmetric bilinear and totally symmetric trilinear
functionals (on random functions) turns out to be f ′(ρ(·)), f ′′(ρ(·)), f ′′′(ρ(·)), respectively, is noteworthy.
See [6] for more discussions.

2.4. Representation Duality versus Reference Duality

Going beyond extending α-embedding to dual monotonic embeddings, Reference [2] illuminated two
different senses of duality in the α-geometry. Prior to [2], there have been several different usages of
α-parameter in Amari’s theory of information geometry [10,11]:

(1) parameterizing the divergence functions (α-divergences);

(2) parameterizing monotone embedding of probability functions (α-embedding);

(3) parameterizing the convex mixture of connections (α-connections).

Zhang (2004) [2] showed that (1) and (2) reflect two different types of duality in information geometry,
with (1) concerning the reference/comparison status of a pair of points (functions) expressed in
the divergence function (“reference duality”) and (2) concerning their representation under arbitrary
monotone scaling (“representation duality”). Both can lead to (3), the family of α-connections.
Therefore, care has to be taken in carefully delineating these two kinds of duality; for instance, the
αβ-connection we derived in (21) reflects how reference duality and representation duality interacts in
the alpha-connections.

The present analysis elaborated representation duality in information geometry by working out
the freedom in allowing two (independently chosen) embedding functions ρ, τ or, equivalently, one
embedding function ρ along with a weighting function f , while the (ρ, f) pair can be dually chosen to be
the (τ, f ∗) pair. Naudts’ (2004) [3] φ-logarithm is but a special case of the (ρ, τ) duality, in which f ′ plays
the role of the “integral-of-the-reciprocal” operation, that is taking the log of a function. This linkage then
leads to f ∗ and τ as inverse functions. The phenomena of biduality emerges when exchanging ρ←→ τ

or (ρ, f)←→ (τ, f ∗) leads to invariance of the Riemannian metric, but switches the two connections (the
latter half of the statement is equivalent to changing signs of the Amari–Chentsov tensor). Therefore,
the present paper, while elaborating the theory developed in [2], re-asserts the distinction between two
distinct kinds of duality that was originally confounded in Amari’s theory of α-geometry, one through
the freedom of selecting monotone embedding functions (“representation duality”) and the other through
the freedom of assigning referential status to points for pair comparison (“reference duality”).

Finally, it is noted that the (bi)dualistic structure of the (ρ, τ)-geometry (generalizing α-geometry)
is preserved in the non-parametric (infinite-dimensional) setting, as well [4,6], with the α-connection
structure cast in a more general way. Theorem 1 of [4] gives non-parametric expressions of the metric
and connections under monotone embedding, mirroring the forms (14) and (15) in the parametric case.
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3. Conclusion

The Riemannian metric with the pair of conjugate connections derived by Harsha and Moosath [1] are
identical to the (ρ, τ)-geometry obtained by Zhang in [2]. The (ρ, τ)-embedding also recovers Naudts’
deformed logarithm/exponential formulation. It is further shown in this paper that such (ρ, τ)-geometry
obtained is, when α-embedding is relaxed to arbitrary monotone embeddings, the unique extension of
Amari’s α-geometry in terms of its representational freedom.
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