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Abstract: This paper gives the quantitative relationship between prediction error and given past 

sample size in our research of sea level time series. The present result exhibits that the prediction 

error of sea level time series in terms of given past sample size follows decayed power functions, 

providing a quantitative guideline for the quality control of sea level prediction. 
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1. Introduction 

Time series prediction gains interests of people in various fields of sciences and engineering, see for 

example [1–20], simply mentioning a few. Prediction of sea level time series (sea level for short) is 

desired in geosciences and ocean engineering [21–23], for many purposes such as understanding 

fluctuations of sea level rise, its dynamics and so forth [24–31]. Various methods and technologies have 

been reported for time series prediction, such as linear predictors [32–41], nonlinear predictions [42–46], 

and those based on artificial intelligence, including fuzzy systems [47–51] and artificial neural networks 

(ANN) [52–70]. 

This paper presents our study in the aspect of sea level time series prediction using the real sea-level 

data recorded by the National Data Buoy Center (NDBC) at the time scale of hour. The data are publicly 

accessible via http://www.ndbc.noaa.gov/historical_data.shtml. The predictor we utilized in this 
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research is an ANN predictor of the back propagation (BP) type, which is available in the toolbox of the 

software Matlab. Two highlights of this paper are as follows. 

 We established the quantitative relationship between the past sample size, used for the predicting 40 

points ahead of sea level time series as a case, and the prediction error characterized in the form of 

mean square at measurement stations of sea level time series we investigated. 

 We obtained the analytic expression of that relationship in the form of power function, providing a 

guideline for the quality control in sea level prediction.  

The rest of the paper is organized as follows. The research background, including the problem 

statement, is explained in Section 2. The research method is discussed in Section 3. Results are given in 

Section 4, which is followed by conclusions.  

2. Research Background 

2.1. Data 

NDBC is an abbreviation, standing for a part of the US National Weather Service (NWS). It provides 

data for academic research, including sea level (see http://www.ndbc.noaa.gov/historical_data.shtml). 

We use the data recorded at the stations named LKWF1, SMKF1, LONF1, SAUF1, SPGF1, and VENF1, 

respectively. In terms of the names of the measurement stations, LKWF1 implies the station at Lake 

Worth, FL, USA (http://www.ndbc.noaa.gov/station_page.php?station=LKWF1); SMKF1 is  

the station at Sombrero Key, FL, USA (http://www.ndbc.noaa.gov/station_page.php?station=SMKF1); 

the station LONF1 is the one at Long Key, FL, USA (http://www.ndbc.noaa.gov/ 

station_page.php?station=LONF1); the station SAUF1 is at St. Augustine, FL, USA 

(http://www.ndbc.noaa.gov/station_page.php?station=SAUF1); SPGF1 is at Settlement Point, GBI, 

Bahamas (http://www.ndbc.noaa.gov/station_page.php?station=SPGF1); and VENF1 is at Venice, FL, 

USA (http://www.ndbc.noaa.gov/station_page.php?station=VENF1). They are located in Florida, on the 

east coast of the Gulf of Mexico. The data are under the directory of Water Level, which is publicly 

accessible (http://www.ndbc.noaa.gov/historical_data.shtml#wlevel), referring Gilhousen [71] as an 

instance of research using the data by NDBC. 

Six real traces of sea level time series described in Table 1 are selected in our research, where 

x_lkwf1_1999(t) denoted the sea level time series in 1999 at the station LKWF1, x_ven1_2003(t) the 

sea level time series in 2003 at the station VENF1, and so forth. Our selection of the above data is quite 

arbitrary in this research, simply for the purpose of study of prediction error of sea level without any 

conflict of interests regarding other manuscripts. 

Table 1. Measured data of six traces of sea level time series. 

Series Name Record Date and Time Data Size Measurement Station 

x_lkwf1_1999(t) 0:00, 1 Jan.–23:00, 31 Dec. 1999 8760 LKWF1 

x_smkf1_2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 5851 SMKF1 

x_lonf1_2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8697 LONF1 

x_sauf1_2001(t) 0:00, 1 Jan.–21:00, 31 Dec. 2001 8758 SAUF1 

x_spgf1_1996(t) 0:00, 1 Jan.–23:00, 15 Dec. 1996 8616 SPGF1 

x_ven1_2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8760 VENF1 
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2.2. Problem Statement 

Let n > 0 be the past sample size. Denote by m ≥ 0 the step number of prediction. Then, random 

variables x(i)s for i < n are the past records. Rewrite the n past records by x(i − 1), x(i − 2), …, x(i − n). 

Following Kolmogorov [72], with the selection of proper real coefficient as, one may obtain the linear 

combination of the n past records expressed by 

1

( ).
=

= −
n

s
s

L a x i s
 

(1)

The above L may be used to predict a future value expressed by x(i + m). Denote by e2 the mean 

square error (MSE) given by 
2 2 2( , ) E[ ( ) )]= + −e e n m x i m L ， (2)

where E is the mean operator. Kolmogorov stated that the e2(n, m) does not increase as n increase 
(Kolmogorov [72]), which yields a consequence we express as Corollary 1. 

Corollary 1. For a given m, the following holds  

e2(n2, m) ≤ e2(n1, m) if n2 > n1. (3)

Note that the above is a general expression in quality with respect to e2(n, m). For a given time series 

x(i), however, it does not tell us, quantitatively, how large e2(n, m) is with the past sample size n and the 

x(m) to be predicted. For that reason, we consider the solution to the problem described below, aiming 

at establishing a quantitative relationship between the past sample size n and the given error provided 

that the step number of prediction m is predetermined. 

Problem 1. Let x(i) be a sea level time series. For a fixed m and given error e1, what is the past sample 
size, denoted by N1, required such that  

1

2 2 2
1 1( , ) ( , ) ?

=
= =

n N
e n m e N m e  (4)

Note 1. The solution to the above problem is to find the function denoted by e1(N1, m). An alternative 
solution is N1(e1, m), which is in fact the inverse of e1(N1, m) with respect to N1. □ 

2.3. Research Thoughts 

We divide the task mentioned in Note 1 into two subtasks as follows. 

 First, we find the e1(n, m) expressed only by an empirical curve based on processing real data of  
sea level.  

 Then, by fitting the data, we may find the analytic expression of e1(n, m) as well as e1(N1, m). 

2.4. BP-ANN Predictor 

Artificial neural networks (ANNs) are computational non-linear models that mimic the structures and 

functions of animals’ nervous systems. ANNs, composed of interconnected neurons, are used to “learn” 

the complex relationship between input data and output data. Back propagation (BP) neural networks, 

one of the most important models in ANNs [73], are widely used in the fields of economy, ecology, 

meteorology, hydrology, medicine, etc., see, for example, [74–77]. 
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A BP neural network (BPNN), composed of one input layer, one or more middle layers called hidden 

layers and one output layer, can be seen as a non-linear input-output map, in which any two of these 

adjacent layers are interconnected directly while neutrons in each layer are independent.  

As previously mentioned, the current value of a time series is based on the previous observed values. 

In this paper, every 21st sample is obtained by its previously successive 20 samples. Thus, the three-

layer BP neural network is comprised of 20 inputs and 1 output (see Section 4.5). The n samples are 

divided into two sets to train and test the neural network predictor. Specifically, the first (n = 20) groups 

of samples are training data and the last 20 data are used to test the predictor. Every time the sample size 

changes, the number of samples for training is changed, while the numbers of neurons in input and output 

layers are constant. For example, if the sample size is 200, the inputs of the BPNN predictor are  

20-dimensional vectors, containing the samples from the 1st to the 20th, from the 2nd to the 21st, and 

so forth, up to the last vector which contains the testing samples from the 180th to the 199th to train the 

network. Output data are the 21st to the 200th of the one-dimensional original data, corresponding to the 

180 vectors in the input layer. For the testing sample, the 201st value can be obtained from its former 

data, referring to the samples from the 181st to the 200th. The 202nd value is the output of the predictor, 

whose inputs are the data from the 182nd to the 200th and the 201st value, which is a predicted value. 

The rest predicted values can be generated by this means. In this paper, annual data from the 5001st to 

the 5040th recorded by each station are predicted. The predicting process is shown in Figure 1. 

 

Figure 1. Process of predicting sea level time series from the 5001st value to the 5040th value. 

Once the sizes of input and output layer are fixed, the optimal number of hidden layer and the number 

of nodes in hidden layer becomes a major challenge, see, for example, [78,79]. Any continuous and 

bounded real-valued function, based on Kolmogorov theorem [72,80], can be expressed as a three-layer 
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back propagation neural network, in which there are (2k + 1) nodes for the middle layer, where k is the 

number of the input nodes. Thus, in this paper, one single hidden layer with 41 nodes is used for the 

BPNN model. 

The transfer function, called activation function, represents the relationship between input and output 

of each node. Activation functions are required to be monotonic increasing and differentiable [81]. 

Sigmoid function, as a continuous and bounded function, is commonly used in input and hidden  

layers [82,83], which is expressed by  

1
( ) ,

1 −=
+ u

f u
e

 (5)

where u stands for the input of a single neuron. For the input layer, u is the input vector, which is the 

normalized sea level time series x(t), while for the hidden layer, u is the weighted sum of outputs of the 

previous layer subtract the threshold value of the layer. Linear transfer function is used for the neurons 

in output layer, so that the outputs of the entire network can take any values. 

BP neural networks are trained by adjusting the weights between two layers and threshold values 

based on the gradient steepest descent method, that is, if the errors between actual outputs and expected 

ones are not satisfied, the errors will propagated backward to adjust weights and threshold values 

repeatedly until the performance of the system such as mean square error (MSE) is minimized. 

The available data are always divided into two sets, namely training and testing datasets. In order to 

obtain precise results and to reduce running time, it is necessary to normalize the available datasets to a 

range between zero and one [84], before training process with the formula below: 

min

max min

,
−=

−
x x

x
x x

 
(6)

where xmax and xmin are, respectively, the maximum and minimum values of the sample data x(t). The 

final forecasting results are obtained by the following inverse normalized formula: 

max min min( ) .x x x x x= − +  (7)

3. Experimental Methods 

In this research, Neural Network (NN) Toolbox of the software MATLAB R2012b is used to realize 

the neural network predicting model. MATLAB is a multi-paradigm environment for numerical 

computing developed by MathWorks, Natick, USA. NN Toolbox, based on neural network theory, 

provides functions to design, train, visualize and simulate all kinds of networks such as linear network, 

BPNN, radial basis function NN, regression NN and so on [85,86]. Three functions: newff, train and sim 

are used in the learning procedure in the MATLAB commands [87]. 

As previously mentioned, the original dataset is divided into training and testing sets. In order to 

reduce prediction error, the data values are normalized between 0 and 1 via the function mapminmax. 

Function newff, which is used to generate and initialize a BP neural network, defines sizes and activation 

function of every layer and type of training algorithm. In this research, we use the function logsig 

between the input and hidden layers. The outputs of logsig are limited over the interval from 0 to 1 while 

its inputs can be taken with any value from negative infinity to positive infinity [88,89]. The transfer 

function purelin is used between the hidden and output layers so that the outputs of the network could 
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be arbitrary values. After creating a BP neural network, functions train and sim are used to train and 

simulate the net. 

Without loss of generality, data used as samples are recorded at the six aforementioned stations, a 

total of approximately 8700 values annually in every experiment. For each station, the first set of samples 

is sea level from the 4901st to the 5000th of the original data, 100 values in total. In this paper, the step 

number of prediction is 40, that is, values from the 5001st to 5040th are predicted. Compared with the 

actual data, we can get the mean squared prediction error from the Equation (2). The second set of sample 

data are from the 4801st to the 5000th, 200 data totally. Then original data from the 4701st to the 5000th 

are chosen as the third set and so on, until the 15th set of sea level data from the 3501th to the 5000th. 

Fiften mean square errors, which are 15 points generated by 15 sets of samples, constitute a curve 

envelope, which can be fitted by specific functions. In this way, we can get the quantitative relationship 

between sample size and prediction error. 

4. Results 

4.1. Prediction Results 

We selected the data recorded at the station LKWF1 in 1999 for demonstration. The original sea level 

series contains 8641 points of data, some of these are shown in Figure 2. When we used the past sample 

records of 100 data points from the 4901st point to the 5000th to predict the next 40 data points, the 

prediction error, MSE, is 0.38664. The original data of 40 points and their predictions are indicated in 

Figure 3. Figure 4 shows the prediction results when the past sample size is increased to be 200, that is, 

the past sample records contain the data from the 4801st point to the 5000th, to predict the next 40 data 

points. By eye, one may see that the prediction error in Figure 4 is smaller than that in Figure 3. When 

increasing the past sample size to 300, which includes the data from the 4701st point to the 5000th, to 

predict the next 40 data points, we obtained the results shown in Figure 5, which clearly exhibits that the 

prediction error in this case is smaller than that described in Figure 4. In Figures 6–17, the demonstrated 

prediction results based on the past sample records are from 400 to 1500; that is, using the past sample 

records from the 4601st–3401st point up to the 5000th, to predict the next 40 data points. Those figures 

again exhibit that the prediction error is decreased as the past sample size increases, which is consistent 

with the description of Kolmogorov in [72]. 

 

Figure 2. Sea level series at the Station LKWF1 in 1999. 

0 200 400 600 800 1000 1200 1400 1600
-2

0

2

4

6

Time (hour)

S
ea

 W
at

er
 L

ev
el

 (
fe

et
)



Entropy 2015, 17 4815 

 

 

Figure 3. Prediction results with the sample size 100 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 4. Prediction results with the sample size 200 at the Station LKWF1in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 5. Prediction results with the sample size 300 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 
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Figure 6. Prediction results with the sample size 400 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 7. Prediction results with the sample size 500 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 8. Prediction results with the sample size 600 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 
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Figure 9. Prediction results with the sample size 700 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 10. Prediction results with the sample size 800 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 11. Prediction results with the sample size 900 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 
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Figure 12. Prediction results with the sample size 1000 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 13. Prediction results with the sample size 1100 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 14. Prediction results with the sample size 1200 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 
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Figure 15. Prediction results with the sample size 1300 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 16. Prediction results with the sample size 1400 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

 

Figure 17. Prediction results with the sample size 1500 at the Station LKWF1 in 1999.  

Solid line: predicted values, dashed line: original values. 

The values of prediction errors are summarized in Table 2. The relationship between the past sample 

size and prediction error is demonstrated by Figure 18, of which the generation process is shown in 

Figure 19.  
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Table 2. Prediction errors investigated using x_lkwf1_1999(t) in the Station LKWF1. 

Past sample 
size: n 

Number of 
data to be 

predicted: m 
Past samples used Predicted data MSE: e2(n, m) 

100 40 
4901st–5000th/ 

4:00, 26 July–7:00, 30 July 
8:00, 30 Jul.–23:00, 31 Jul. 0.38664 

200 40 
4801st–5000th/ 

23:00, 21 Jul.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.17422 

300 40 
4701st–5000th/ 

19:00, 17 Jul.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.09026 

400 40 
4601st–5000th/ 

15:00, 13 Jul.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.09519 

500 40 
4501st–5000th/ 

10:00, 9 Jul.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.06699 

600 40 
4401st–5000th/ 

5:00, 5 Jul.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.04418 

700 40 
4301st–5000th/ 

1:00, 1 Jul.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.04385 

800 40 
4201st–5000th/ 

21:00, 26 Jun.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.03291 

900 40 
4101st–5000th/ 

17:00, 22 Jun.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.02826 

1000 40 
4001st–5000th/ 

13:00, 18 Jun.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.02601 

1100 40 
3901st–5000th/ 

9:00, 14 Jun.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.02185 

1200 40 
3801st–5000th/ 

5:00, 10 Jun.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.02012 

1300 40 
3701st–5000th/ 

20:00, 5 Jun.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.02028 

1400 40 
3601st–5000th/ 

16:00, 1 Jun.–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.02313 

1500 40 
3501st–5000th/ 

12:00, 28 May–7:00, 30 Jul. 
8:00, 30 Jul.–23:00, 31 Jul. 0.01762 

 

Figure 18. Relationship between the prediction error and the past sample size at the Station 

LKWF1 in 1999. 
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Figure 19. Generation process of relationship between prediction errors and past sample sizes. 

Note 2. From Figure 18, as well as Figure 20, we see that MSE decreases rapidly when the past sample 
size increases from 100 to 300. Then, prediction errors appear to decay slowly when the past sample 
size increases. Table 3 summarizes the results. 

 

Figure 20. Relationship between the prediction error and the past sample size at the Station 

SMKF1 in 2003. 
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Table 3. Prediction errors investigated using x_smkf1_2003(t) in the Station SMKF1. 

Past sample 
size: n 

Number of data 
to be predicted: m 

Past samples used Predicted data MSE: e2(n, m) 

100 40 
4901st–5000th/ 

13:00, 24 Jul.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.37867 

200 40 
4801st–5000th/ 

9:00, 20 Jul.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.16937 

300 40 
4701st–5000th/ 

5:00, 16 Jul.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.11727 

400 40 
4601st–5000th/ 

0:00, 12 Jul.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.05214 

500 40 
4501st–5000th/ 

20:00, 7 Jul.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02879 

600 40 
4401st–5000th/ 

16:00, 3 Jul.–7:00, 30 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.03622 

700 40 
4301st–5000th/ 

12:00, 29 Jun.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02651 

800 40 
4201st–5000th/ 

8:00, 25 Jun.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02235 

900 40 
4101st–5000th/ 

4:00, 21 Jun.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02442 

1000 40 
4001st–5000th/ 

0:00, 17 Jun.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02077 

1100 40 
3901st–5000th/ 

20:00, 12 Jun.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02426 

1200 40 
3801st– 5000th/ 

16:00, 8 Jun.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02265 

1300 40 
3701st–5000th/ 

11:00, 4 Jun.–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02037 

1400 40 
3601st–5000th/ 

7:00, 31 May–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.02085 

1500 40 
3501st–5000th/ 

3:00, 27 May–16:00, 28 Jul. 
17:00, 28 Jul.–8:00, 30 Jul. 0.01981 

Prediction results at the stations LONF1, SAUF1, SPGF1 and VENF1 are summarized (see Tables 4–7). 

The corresponding figures are also as follows (see Figures 21–24). Ignoring decay rates of the six 

stations, all the figures indicate that the prediction errors taper off on the whole as sample sizes increase, 

and curves decay fast at first but slowly in the end. When the sample size rises to a certain extent, the 

prediction accuracy cannot be obviously improved. That is to say, if the range of prediction errors has 

been determined, there is no need to take very large sample size. In the next section, we will fit the curve 

to explore the precise relationship between prediction errors and sample sizes. 
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Table 4. Prediction errors investigated using x_lonf1_2003(t) in the Station LONF1. 

Past sample 
size: n 

Number of data to 
be predicted: m 

Past samples used Predicted data MSE: e2(n, m) 

100 40 
4901st–5000th/18:00, 
28 Jul.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.15316 

200 40 
4801st–5000th/14:00, 
24 Jul.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.13100 

300 40 
4701st–5000th/10:00, 
20 Jul.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.12900 

400 40 
4601st–5000th/5:00, 
16 Jul.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.11930 

500 40 
4501st–5000th/1:00, 
12 Jul.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.10686 

600 40 
4401st–5000th/21:00, 
7 Jul.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.10962 

700 40 
4301st–5000th/17:00, 
3 Jul.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.10348 

800 40 
4201st–5000th/13:00, 
29 Jun.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.10434 

900 40 
4101st–5000th/4:00, 

21 Jun.–21:00, 1 Aug. 
22:00, 1 Aug.–13:00, 3 Aug. 0.10594 

1000 40 
4001st–5000th/9:00, 

25 Jun.–21:00, 1 Aug. 
22:00, 1 Aug.–13:00, 3 Aug. 0.10692 

1100 40 
3901st–5000th/23:00, 
16 Jun.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.10334 

1200 40 
3801st–5000th/19:00, 
12 Jun.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.09628 

1300 40 
3701st–5000th/15:00, 
8 Jun.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.09980 

1400 40 
3601st–5000th/11:00, 
4 Jun.–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.10160 

1500 40 
3501st–5000th/16:00, 
28 May–21:00, 1 Aug. 

22:00, 1 Aug.–13:00, 3 Aug. 0.09752 

 

Figure 21. Relationship between the prediction error and the past sample size at the Station 

LONF1 in 2003. 
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Table 5. Prediction errors investigated using x_sauf1_2001(t) in the Station SAUF1. 

Past sample 
size: n 

Number of data to 
be predicted: m 

Past samples used Predicted data MSE: e2(n, m) 

100 40 
4901st–5000th/21:00, 
28 Jul.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 3.80104 

200 40 
4801st–5000th/16:00, 
24 Jul.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 2.56308 

300 40 
4701st–5000th/12:00, 
20 Jul.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 1.45882 

400 40 
4601st–5000th/3:00, 
16 Jul.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 1.28306 

500 40 
4501st–5000th/21:00, 
11 Jul.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.96792 

600 40 
4401st–5000th/17:00, 

7 Jul.–8:00, 2 Aug. 
9:00, 2 Aug.–0:00, 4 Aug. 0.95034 

700 40 
4301st–5000th/11:00, 

3 Jul.–8:00, 2 Aug. 
9:00, 2 Aug.–0:00, 4 Aug. 0.89086 

800 40 
4201st–5000th/7:00, 
29 Jun.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.63288 

900 40 
4101st–5000th/3:00, 
25 Jun.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.61248 

1000 40 
4001st–5000th/21:00, 
20 Jun.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.48420 

1100 40 
3901st–5000th/16:00, 
16 Jun.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.41888 

1200 40 
3801st–5000th/12:00, 
12 Jun.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.33480 

1300 40 
3701st–5000th/7:00, 
8 Jun.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.33480 

1400 40 
3601st–5000th/3:00, 
4 Jun.–8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.33488 

1500 40 
3501st – 5000th/23:00, 
30 May – 8:00, 2 Aug. 

9:00, 2 Aug.–0:00, 4 Aug. 0.32614 

 

Figure 22. Relationship between the prediction error and the past sample size at the Station 

SAUF1 in 2001. 
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Table 6. Prediction errors investigated using x_spgf1_1996(t) in the Station SPGF1. 

Past sample 
size: n 

Number of data to 
be predicted: m 

Past samples used Predicted data MSE: e2(n, m) 

100 40 
4901st–5000th/3:00, 
21 Jul.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.38766 

200 40 
4801st–5000th/23:00, 
16 Jul.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.18390 

300 40 
4701st–5000th/14:00, 
12 Jul.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.15660 

400 40 
4601st–5000th/8:00, 
8 Jul.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.14834 

500 40 
4501st–5000th/2:00, 
4 Jul.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.13988 

600 40 
4401st–5000th/21:00, 

4 Jul.–7:00, 25 Jul. 
8:00, 25 Jul.–23:00, 26 Jul. 0.11374 

700 40 
4301st–5000th/14:00, 
29 Jun.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.10464 

800 40 
4201st–5000th/10:00, 
25 Jun.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.08100 

900 40 
4101st–5000th/6:00, 
21 Jun.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.07846 

1000 40 
4001st–5000th/1:00, 
17 Jun.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.07160 

1100 40 
3901st–5000th/20:00, 
12 Jun.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.06674 

1200 40 
3801st–5000th/16:00, 
8 Jun.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.06592 

1300 40 
3701st–5000th/11:00, 
4 Jun.–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.06926 

1400 40 
3601st–5000th/7:00, 
31 May–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.06532 

1500 40 
3501st–5000th/2:00, 
27 May–7:00, 25 Jul. 

8:00, 25 Jul.–23:00, 26 Jul. 0.06512 

 

Figure 23. Relationship between the prediction error and the past sample size at the Station 

SPGF1 in 1996. 
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Table 7. Prediction errors investigated using x_venf1_2003(t) in the Station VENF1. 

Past sample 
size: n 

Number of data 
to be predicted: m 

Past samples used Predicted data MSE: e2(n, m) 

100 40 
4901st–5000th/20:00, 
24 Jul.–23:00 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.44356 

200 40 
4801st–5000th/16:00, 
20 Jul.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.12978 

300 40 
4701st–5000th/12:00, 
16 Jul.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.08738 

400 40 
4601st–5000th/8:00, 
12 Jul.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.04698 

500 40 
4501st–5000th/23:00, 
7 Jul.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.03906 

600 40 
4401st–5000th/19:00, 
3 Jul.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.03502 

700 40 
4301st–5000th/15:00, 
29 Jun.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.02538 

800 40 
4201st–5000th/10:00, 
25 Jun.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.02060 

900 40 
4101st–5000th/6:00, 

21 Jun.–23:00, 28 Jul. 
0:00, 29 Jul.–15:00, 30 Jul. 0.01870 

1000 40 
4001st–5000th/2:00, 

17 Jun.–23:00, 28 Jul. 
0:00, 29 Jul.–15:00, 30 Jul. 0.01878 

1100 40 
3901st–5000th/22:00, 
12 Jun.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.01894 

1200 40 
3801st–5000th/18:00, 
8 Jun.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.01672 

1300 40 
3701st–5000th/14:00, 
4 Jun.–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.01594 

1400 40 
3601st–5000th/10:00, 
31 May–23:00, 28 Jul. 

0:00, 29 Jul.–15:00, 30 Jul. 0.01716 

1500 40 
3501st–5000th/5:00, 

27 May–23:00, 28 Jul. 
0:00, 29 Jul.–15:00, 30 Jul. 0.01888 

 

Figure 24. Relationship between the prediction error and the past sample size at the Station 

VENF1 in 2003. 
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4.2. Prediction Error Curve Fitting 

Data fitting is used to select the proper type of curve to fit the observed data, and analyze the 

relationship between these two variables based on the curve fitting equation. In this paper, power 

function satisfactorily fits the prediction error curve according to the shape characteristic of the curve. 

Figures 25–30 show the prediction errors’ fitting results of the six aforementioned stations. The 

corresponding power functions are also listed in Table 8. 

 

Figure 25. Curve fitting of the Station LKWF1 in 1999. Solid line: original curve, dashed 

line: fitting curve. 

 

Figure 26. Curve fitting of the Station SMKF1 in 2003. Solid line: original curve, dashed 

line: fitting curve. 

 

Figure 27. Curve fitting of the Station LONF1 in 2003. Solid line: original curve, dashed 

line: fitting curve. 
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Figure 28. Curve fitting of the Station SAUF1 in 2001. Solid line: original curve, dashed 

line: fitting curve. 

 

Figure 29. Curve fitting of the Station SPGF1 in 1996. Solid line: original curve, dashed 

line: fitting curve. 

 

Figure 30. Curve fitting of the Station VENF1 in 2003. Solid line: original curve, dashed 

line: fitting curve. 
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Table 8. Curve fitting results of the six stations. f(n) = e2(n, m)|m = 40, n is the past sample size. 

Station name Power functions 

LKWF1 
1.1550( ) 78.680f n n−=  

SMKF1 
1.252( ) 121.600f n n−=  

LONF1 
0.1645( ) 0.3194f n n−=  

SAUF1 
0.8476( ) 195.50f n n−=  

SPGF1 
0.6948( ) 9.0370f n n−=  

VENF1 
1.5400( ) 562.50f n n−=  

Both figures and table indicate that prediction errors at different stations have the same function form 

in power law. Power functions fit prediction error curves satisfactorily. The quantitative functions may 

help us determine the range of sample size in the case that prediction accuracy is ensured, which 

improves utilization of data. 

The above experimental results with respect to prediction errors are expressed as 

( ) ,     0, 0.af n An A a−= > >  (8) 

According to the physical meaning of past sample size, we have n > 0. Thus, by denoting H(n) the 
Heaviside unit step function, we rewrite Equation (8) as 

( ) ( ),     0, 0.−= > >af n An H n A a  (9)

The above expression may serve as a solution to the problem we raised in Section 2. 

Note 2. The prediction error f(n) provides us with a guideline to control the prediction error in terms of 
a given value of past sample size. 

Note 3. Our present result about f(n) may serve as a specific case for the quantitative description of 
prediction error for that f(n) → 0 for n → ∞, which was qualitatively described by Kolmogorov, see 
Corollary 1. 

4.3. Discussions 

Sea level time series has the property of long-range dependence (LRD), as can be seen from  

Ercan et al. [90], Barbosa et al. [91], Beretta et al. [92], and Li et al. [93]. Denote by y(t) a time series 

in general. Its autocorrelation function (ACF) is denote by ryy(τ) = E[y(t)y(t + τ)]. By LRD  

(Beran [94]), we mean  

0

( ) .
∞

= ∞ yyr dτ τ  (10)

A typical case of ryy(τ), which satisfies the above, is a decayed power function expressed as 

( ) ~ (0 1),− < <b
yyr c bτ τ  (11)

where b = 2 − 2H, H ∈ (0.5, 1) is the Hurst parameter. Time series with LRD, in addition to sea level 
time series, have wide applications in various fields, ranging from physics to computer science,  
see e.g., [95–124], just mentioning a few with the preference by Mandelbrot [125] and references therein, 
where H plays a key role. At the moment, however, we have not got enough knowledge to establish the 
relationship between H and the past sample size with respect to prediction errors of sea level time series. 
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Our future work will work at it so as to understand deeply the issue of prediction errors of sea level time 
series. Another future work of ours is to investigate whether power-type functions of prediction error 
might appear as a law in the aspect of prediction of time series with LRD in general besides sea level 
time series. 

As previously mentioned in the Introduction, there are two categories of predictors, namely, linear 
predictors and nonlinear ones [2–23,32–70,73–89], which may be considered for a specific type of time 
series, such as sea level. Since sea level is of LRD [90–93], which is nonlinear, and since, ANN is a 
nonlinear predictor, it was consequently used in this research. 

In the future, we shall use other types of predictors, for instance, autoregressive (AR) type, to study 
the relationship between prediction error and past sample size of sea level time series, and compare it 
with the one presented in this research. 

Note that the present relationship between prediction error and past sample size may be a law 
specifically for sea level time series. In general, we never imply that it may fit with other types of time 
series, such as ocean surface waves or network traffic. Nevertheless, it might yet be a reference for them 
in this regard. 

Finally, we note that this research is in the domain of statistics. Therefore, though the data used in this 
research (see Table 1) are from 1999 to 2003, we statistically infer that the present law is available for 
hourly recorded sea level in the past and future.  

6. Conclusions 

We have established the relationship between prediction error and past sample size for the prediction 

of sea level time series based on real data measured at six stations on the east coast of the Gulf of Mexico 

in Florida. The closed form of that relationship, in decayed power functions, has been obtained. It may 

yet be useful, on the one hand, for one to control prediction error according to a given past sample size or, 

on the other hand, for us to require the size of past sample according to a predetermined prediction error.  

Sea water levels at six stations on the east coast of the Gulf of Mexico, Florida are predicted. A type 

of artificial neural network, back propagation (BP), is used with the Neural Network Toolbox in 

MATLAB. Prediction errors with different values are generated according to changes in sample sizes. 
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