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Abstract: Assuming sparsity or compressibility of the underlying signals, compressed sensing 

or compressive sampling (CS) exploits the informational efficiency of under-sampled 

measurements for increased efficiency yet acceptable accuracy in information gathering, 

transmission and processing, though it often incurs extra computational cost in signal 

reconstruction. Shannon information quantities and theorems, such as source rate-distortion, 

trans-information and rate distortion theorem concerning lossy data compression, provide a 

coherent framework, which is complementary to classic CS theory, for analyzing 

informational quantities and for determining the necessary number of measurements in CS. 

While there exists some information-theoretic research in the past on CS in general and 

compressive radar imaging in particular, systematic research is needed to handle issues 

related to scene description in cluttered environments and trans-information quantification 

in complex sparsity-clutter-sampling-noise settings. The novelty of this paper lies in 

furnishing a general strategy for information-theoretic analysis of scene compressibility, 

trans-information of radar echo data about the scene and the targets of interest, respectively, 

and limits to undersampling ratios necessary for scene reconstruction subject to distortion 

given sparsity-clutter-noise constraints. A computational experiment was performed to 

demonstrate informational analysis regarding the scene-sampling-reconstruction process and 

to generate phase transition diagrams showing relations between undersampling ratios and 

sparsity-clutter-noise-distortion constraints. The strategy proposed in this paper is valuable 

for information-theoretic analysis and undersampling theorem developments in compressive 
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radar imaging and other computational imaging applications. 

Keywords: compressive sampling; rate distortion; trans-information; undersampling ratios; 

phase diagrams; Gaussian mixtures; clutter 

 

1. Introduction 

Unlike the traditional practice of sampling followed by compression, CS provides a framework for 

directly acquiring data in compressed form, thus promoting sub-Nyqusit sampling that is more efficient 

than what is required by the Shannon-Nyquist sampling theorem [1–3]. It has been applied to various 

fields including optical and radar remote sensing [4–13]. In addition to the assumption made of the 

sparsity of the scene being sensed and imaged, the working of a CS-radar system relies also on  

the informational transferability of the measurement matrices in capturing the amount of mutual 

information in the measurements about the underlying scene and the targets of interest, in particular,  

and algorithms that can reconstruct the sparse signal from undersampled but information-laden  

data [8,14,15]. 

Classic information theory as introduced by Shannon provides the mathematics for the design of 

transmitter and receiver in a communication system to efficiently and reliably transmit the information 

from the source to the destination given the characteristics of the source and the channel, and can be 

applied to address issues, such as data compression, in a wide variety of fields [16–19]. As this paper 

focuses on information-theoretic analyses in CS-radar, a brief description of some of the basic concepts 

in information theory is provided here. The entropy of a source is a lower bound on the average length 

of the shortest description about it, implying that a description about it can be constructed with average 

length within 1 bit of the entropy [17]. Relaxing the constraints of recovering the source perfectly, rate 

distortion function quantifies the amount of information rate required to describe it up to a specific 

distortion measure, providing the trade-offs between information rates and distortion tolerance. In other 

words, a rate distortion function quantifies the minimum rate description required to achieve a particular 

distortion [17]. While entropy and rate distortion are both used to quantify the compressibility of a 

source, the concept of mutual information is useful for quantification of the amount of information 

transmitted through measurements concerning the underlying source. By definition, mutual information 

is the difference between the entropy of a random variable (RV) and its conditional entropy given the 

knowledge of another conditioning RV. It reflects the reduction in the uncertainty of a RV say a radar 

scene due to knowledge provided by another RV say a set of radar echo data acquired of the scene. In 

this paper, mutual information is used interchangeably with trans-information, although there are some 

conventional differences regarding their phrasing. 

There was research carried out on information-theoretic analysis of radar systems before the advent 

of CS and CS-radar [20–22]. Information theory is fundamental to the understanding and analysis of CS 

and CS-radar (e.g., compressive radar imaging) [6,8], as well as conventional radar [20,22–24]. In 

particular, information theory provides theoretic explanations of CS mechanisms because “information” 

rather than “data” is the essence of CS. For example, based on informational analysis, we can examine 

source sparsity or compressibility in terms of entropy (see Orlitsky et al. [18] for discussion about pattern 
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entropy) and rate-distortion, measurement matrices and resultant linear measurements in terms of trans-

information, signal reconstruction in terms of lossless or lossy data compression and other elements in a 

CS context [15,17,25].  

Information-theoretic principles can be applied to demarcating performance limits of a CS-based 

system better than otherwise, as shown by Wu and Verdú [26]. For instance, necessary conditions on 

sampling rates in CS, which are termed undersampling ratios because of their sub-Nyquist nature [9,27], 

can be discussed in the light of information theory. For undersampling theorem developments, Fano 

inequality, rate-distortion and channel coding theorem are often applied [28,29]. Statistical analysis of 

the signal reconstruction process is also important, because it is often necessary to address the issue of 

signal description and error probability bounds in signal reconstruction [30]. Clearly, information theory 

and related statistical methods constitute a theoretical strategy for characterization and sampling rate 

determination in CS-radar. For example, phase transition diagrams [9,27], in which inter-dependences 

between scene reconstruction and scene-sampling-noise configurations are described in graphics, may 

be created based on informational analysis [15]. 

Existing literature and research are lacking in several aspects. Firstly, the assumption of signal sparsity or 

compressibility in CS often leads to the use of simplified and non-realistic signal models (such as Bernoulli 

and spike sequences [31]) for computing and analysis of source entropy and rate-distortion  

trade-offs. This implies that CS is often oriented for sparse support recovery only. When continuous 

signals do get accommodated in the signal models (such as Bernoulli-Gaussian models [31]), zero or 

sufficiently small amplitude levels are often implicitly assumed in subsets of signals not belonging to 

sparse supports [30] again for ease of analysis. However, for radar target detection and estimation, we 

should consider background reflectivities (i.e., clutters) [32–34] in scene modeling and quantify properly 

the combined effects of interference of clutter and measurement noise upon effective  

trans-information. In other words, sparsity-clutter constraints should be clarified for objective evaluation 

of rate-distortion, while effective trans-information should be quantified properly concerning the scene 

and targets of interest, respectively. This will allow for determination of necessary number of 

measurements in CS-radar for scene reconstruction and estimation of targets of interest in a cluttered 

environment, depending on scene characteristics.  

Secondly, the majority of published work on CS sampling and informational analysis is based on 

assuming randomness of measurement matrix ensembles with particular distributions (e.g., independent 

and identically distributed (i.i.d.) and Gaussian) [29,30,35–38]. However, those involved in radar are 

often deterministic because they are prescribed by the specific filters involved, as will be described in 

the next section. This implies limited transferability of the published results about CS sampling rates to 

CS-radar. Aeron et al. [39] describes how necessary CS sampling conditions may be derived in situations 

when deterministic measurement matrices are employed. However, their results are not directly 

applicable for radar imaging due to the generally non-standardized form of radar measurement matrices, 

as discussed by Zhang et al. [15]. Although deterministic and non-standard measurement matrices are 

addressed in [15], the existence of clutter interferences common in radar applications suggests merit in 

extending their results to situations where not only the scene as a whole, but also the targets of interest 

should be explicitly treated with respect to trans-information quantification.  

Lastly, as mentioned previously, phase transition diagrams provide visual tools to guide undersampling 

by showing the relations between sampling rates and scene-noise-distortion constraints. By the 
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computational approaches, we can simulate scenes of differing sparsity, generate linear measurements 

of different sensing capacity and signal-to-noise ratios (SNRs), obtain reconstructed scenes under different 

distortion thresholds and analyze the information chain of scene-sampling-reconstruction to create phase 

transition diagrams [27]. Such computationally derived phase transitions in the context of accurate and 

approximate signal reconstruction were discussed by Donoho and Tanner [27] and Zhang et al. [9], 

respectively. The other school is theoretical approaches, as exemplified by Donoho et al. [38] and  

Zhang et al. [15]. Donoho et al. [38] presented a formula that characterizes the allowed undersampling 

of generalized sparse objects and applies to approximate message passing (AMP) algorithms for CS. 

They proved this formula from state evolution and presented numerical results in a wide range of 

settings. However, entries of measurement matrices employed in their analyses need to be i.i.d. standard 

Gaussian, as is also the case with Wu and Verdú [26], precluding the formula’s use in applications 

whereby non-random measurement matrices are involved. Zhang et al. [15] proposed an information-

theoretic strategy to map phase transitions, with scene-sampling-distortion trade-offs described in 

graphics. The phase diagrams derived are rendered for a specific distortion threshold, but they can only 

be interpreted in terms of scene reconstruction as a whole, not necessarily the targets of interest. It would 

be more useful to be able to generate phase diagrams at different distortion thresholds and make them 

useful not only for scene imaging as a whole but also target detection/estimation in a cluttered 

environment. 

This paper seeks to describe, analyze and interpret information dynamics in compressive radar 

imaging from the perspective of information theory, which is complementary to and enriches the classic 

CS theory for CS-radar sampling design and performance evaluation, as informational quantities 

demarcate performance limits in CS better than otherwise. The proposed informational analysis will 

focus on information-theoretic description and analysis of the source (scene), through the channel 

(measurements), to the destination (radar imaging). Specifically, the studies concern: (1) information-

theoretic characterization of compressibility of radar scenes, (2) trans-information quantification of radar 

measurements about the underlying scene and about the targets of interest against a cluttered background, 

respectively, and (3) derivation of necessary sampling ratios for signal reconstruction at a range of 

distortion tolerances. A synthetic experiment implemented aims to illustrate theoretical derivations and 

their use through computer-generated graphics visualizing scene-sampling-distortion inter-relations with 

an informational centrality. To summarize, major contributions and novelty of the paper are as follows: 

(1) Use of Gaussian mixture models is clarified for both strictly and approximately sparse radar 

scenes where the targets to detect and estimate are in small number but possess relatively strong 

reflectivity, with rate-distortion described, which is related to scene sparsity and target-to-

background variance ratios (termed TBRs in this paper);  

(2) A generalized approach is proposed for quantifying trans-information between noisy 

measurements and the underlying scene as a whole and between the measurements and targets 

of interest against clutter interference, in particular, with the latter providing a more contingent 

benchmark for sparse target detection and hence estimation; this is accomplished through 

derivation of undersampled data’s joint differential entropy and trans-information in the context 

of deterministic measurement matrices, which are common in remote sensing applications;  
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(3) General formulas and numerical methods are devised for determining necessary under-sampling 

ratios for strictly sparse scenes, where clutter interference is absent or negligibly weak relative 

to targets of interest, and approximately sparse (or compressible) ones, where clutter needs to be 

taken into account, with the former being a special case of the latter, in line with the way  

trans-information is estimated; 

(4) Phase diagrams showing relations between necessary undersampling ratios and sparsity-clutter-noise 

constraints are produced; they are conditional to a specified measurement matrix, specific to 

given distortion thresholds, able to accommodate a range of TBRs and are well suited for 

undersampling design and performance evaluation. 

After a description of a few radar fundamentals, compressible radar scenes are modeled via Gaussian 

mixture distributions, and their rate distortion functions are discussed. This is followed by a description 

of the methods for determining mutual information measures (upper bounds, to be exact): (1) between 

measurements and the underlying scene, which measures the amounts of information conveyed by 

measurements about the scene as a whole, and (2) between measurements and the targets of interest 

excluding clutter, which measures the amounts of information conveyed by measurements about the 

targets of interest against a background of clutter. Necessary undersampling ratios are determined by 

requiring rate distortion not exceeding the amounts of trans-information of measurements about the 

scene and the targets of interest, respectively. Based on descriptions of models and methods, an 

experiment in a hypothetic scene-sampling environment is then reported, with results, which are 

conditional to the measurement matrix simulated, discussed. Lastly, some concluding remarks are given. 

2. Models and Methods 

2.1. Radar Measurements and Imaging: towards a Compressive Strategy  

Synthetic aperture radar (SAR) systems can generate images of high spatial resolution by synthesizing 

the coherent pulses during integration time. A stripmap mode SAR with a single channel is considered 

here. For a stripmap SAR, with the platform moving in the azimuth direction (i.e., slow time direction), 

the antenna illuminates the scene with a transmitted signal and receives the echoes reflected from therein.  

Suppose a chirp signal is transmitted, as is usually the case [40]. We can formulate the chirp signal as:  

2( ) ( / )exp{ },  ( / 2, / 2]  p r p pTR rect T J K T Tτ τ π τ τ= ∈ −  (1)

where TR represents the transmitted chirp signal, τ is the fast time, pT  represents time duration of the 

chirp pulse, rK is the chirp rate, rect(.) stands for the rectangular function, and 2 1J = − . The echo at 

slow time η and fast time τ, ( , )Y η τ , can be written as: 

0,
( , ) ( , ) ( / ) exp{ 4 ( , , ) / }

                       ( 2 ( , , ) / ) ( , )

aa r
Y X a r w a v J f RG a r c

TR RG a r c dadr N

η τ η π η

τ η η τ

= − −

− +
  (2)

where TR is specified in Equation (1), (a,r) indicates the azimuth and range position of a target, ( , )X a r  

is the backscattering coefficient at (a,r), ( , )N η τ  is the thermal noise at ( , )η τ  at the receiving terminal, 

aw  is the azimuth weighting function, 0f  is the carrier frequency, ( , , )RG a r η  is the slant range, v is the 

platform velocity relative to the ground, and c is the speed of light [9,15,40].  
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To discretize representations in Equation (2), we first simplify it as: 

,
( , ) ( , , , ) ( , ) ( , )

a r
Y A a r X a r dadr Nη τ η τ η τ= +  (3)

where 0( , , , ) ( / )exp{ 4 ( , , ) / } ( 2 ( , , ) / )aA a r w a v J f RG a r c TR RG a r cη τ η π η τ η= − − −  is the convolution 

kernel. The discrete form of Equation (3) is: 

1 1

( , ) ( , , , ) ( , ) ( , )
na nr

ja jr

Y ia ir A ia ir ja jr X ja jr N ia ir
= =

= +  (4)

where ( , )Y ia ir  is the ir-th fast time sample of the ia-th slow time observation of the echo, ( , )X ja jr  is 

the backscattering coefficient at the ja-th position along the azimuth direction and the jr-th position of 

the slant range, ( , )N ia ir  is the additive noise term, na and nr represent the maximum numbers of grid 

nodes along azimuth and range directions, respectively [9].  
For matrix-presentation of the convolution implied in Equation (4), elements ( , , , )A ia ir ja jr  are 

denoted ( , ) ( , )ja jrA ia ir , which is also a discrete representation of ( , , , )A a rη τ  in Equation (3) but shows 

the convolution operation more clearly: 

( , ) 0( , ) ( / )exp{ 4 ( , , ) / } ( 2 ( , , ) / )ja jr a ia ja ja jr ia ir ja jr iaA ia ir w a v J f RG a r c TR RG a r cη π η τ η= − − −  

where irτ  (ir = 1, …, L) and iaη  (ia = 1, …, Q) are the sampling time indicators at range and azimuth 

directions, respectively; L and Q represent the maximum numbers of time samples at range and azimuth 

directions, respectively; ja and jr index grid positions along azimuth and range directions of the scene, 

respectively. { ( , ) ( , )ja jrA ia ir } can then be organized into a convolution matrix A: 

(1,1) ( , )

(1,1) ( , )

(1,1) ( , )

(1,1) ( , )

(1,1) ( , )

(1,1) (1,1)

(1, 2) (1, 2)

(1, ) (1, )

(2,1) (2,1)

( , ) ( , )

na nr

na nr

na nr

na nr

na nr

A A

A A

A L A L

A A

A Q L A Q L

 
 
 
 
 

=  
 
 
 
 
 

A




 



 


 (5)

where L, Q, na, and nr are defined as previously. Clearly, L and Q equal nr and na, respectively. After 

matrix-representation of convolution kernels in A, we can form column vectors 1n×Y , 1n×X , and 1n×N  (n 

= na × nr = Q × L) by row-stacking. For example, the first row of matrix-represented scene {X(ja,jr)} 

(ja = 1, .., na; jr = 1, …, nr) is transposed and becomes the top nr elements of 1n×X , and subsequent 

rows are transposed and placed underneath. Row-stacking for 1n×Y  and 1n×N  is done similarly. Thus, 

Equation (4) can be re-written: 

1 1 1n n n n n× × × ×= +Y A X N  (6)

where n n×A  is a block circulant matrix as shown in (5). Without causing any confusion, we may use X, 

Y, N, and A for 1n×Y , 1n×X , 1n×N , and n n×A , respectively, by omitting the subscripts shown in  

Equation (6).  
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Radar imaging refers to the process by which radar reflectivity X is reconstructed from echo data Y. 

This can be accomplished using tailor-made algorithms, such as the so-called range-Doppler  

algorithm [40]. For a CS-based radar imaging system, the number of samples collected in the receiver 

can be reduced so the lengths of column vectors Y and N and number of rows of matrix A are denoted 

m (m <= n) below, while a full-rank measurement matrix A is employed for a conventional radar imaging 

scenario [15]. Thus, a set of compressive measurements can be written as:  

1 1 1m m n n m× × × ×= +Y A X N  (7)

where, again, the subscripts to indicate dimensions of the vectors and matrix concerned may be omitted 

without causing any ambiguity. This leads to a typical linear CS system:  

= +Y AX N  (8)

As mentioned previously, radar images are complex-valued and contain information not only in amplitude 

but also in phase [32,41]. To implement CS with radar imaging, we can use real representations for the 

complex-valued radar images [42] so that the CS techniques designed for real-valued signals can be 

employed, given the facts that real and imaginary parts of complex-valued radar images are i.i.d. Gaussian 

[32] and that analysis and algorithms for complex signals are not well-developed. Thus, complex-valued 

vectors Y, X, and N  and matrix A need to be decomposed into their real and imagery parts [15]: 

( )

( )

Re

Img

 
=  
 

Y
Y

Y
 , 

( )

( )

Re

Img

 
=  
 

X
X

X
 , 

( )

( )

Re

Img

 
=  
 

N
N

N
 , 

( ) ( )

( ) ( )

Re Img

Img Re

− 
=  
 

A A
A

A A
  (9)

where Re() and Img() represent the real and imagery parts of complex-valued quantities concerned, 

respectively. Note that the dimensions of real-represented vectors and matrix in (9) will be twice those 

implied in (8). Therefore, we can formulate a CS-radar measurement model: 

= +Y AX N    (10)

CS-based radar imaging is formulated as: 

0 2arg min || ||    s.t.   || || ε− ≤
X

X Y AX


    (11)

where 0ε > . To simplify subsequent notations, we can keep using the typical model in Equation (8) in 

lieu of Equation (10), although they should be properly interpreted in terms of meanings and 

dimensionality. For solving (11), lq-minimization algorithms, such as Orthogonal Matching Pursuit (OMP) 

[43] and compressive sampling matching pursuit (CoSaMP) [44], can be implemented [9,15], although 

detailed description of signal reconstruction algorithms is beyond the scope of the paper.  

With linear measurement model established as in Equations (8) and (10), it is convenient to discuss 

CS-radar. As mentioned previously, there are typically three components in CS as implied in 

+Y = AX N : (1) sparse signals X (e.g., a radar scene dominated with a small number of targets with 

very strong reflectivity in contrast to a background of weak reflectivity), (2) an information sampling 

mechanism (i.e., an encoder) through a measurement matrix A to get compressive or undersampled 

measurements Y = +AX N , which should be reasonably efficient in conveying information in X, and 

(3) a signal reconstruction algorithm χ̂  (i.e., a decoder) that can detect sparsity patterns and/or estimate 

significant coefficients X̂  from undersampled data Y ([4,6,8,45], as discussed also in Zhang et al. [15]. In 
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Sections 2.2 through 2.4, we discuss the compressibility of X, trans-information of A and undersampling 

ratios, respectively. 

2.2. Sparse Radar Scenes and Rate-Distortion Characterization  

In this sub-section, we propose representing radar scenes by Gaussian mixture models (GMMs) and 

describe their rate distortion functions. The underlying scene X can be regarded as being discrete or 

continuous for the task of detection or estimation. We focus on the latter, noting that the former can be 

seen as a special case of the latter when sparsity support recovery is all we need. Radar reflectivity is 

usually represented as complex-valued RVs having i.i.d. real and imaginary parts that are modeled as 

Gaussian distribution of zero means and variance indicative of radar image intensity, due to the large 

number of sub-pixel targets and their incoherently interfering reflectivities [22,32]. 
There are two characteristics of radar scenes and their images, which are relevant to the discussion 

here: the noise-likeness and very high dynamic ranges. The former refers to speckle, which can be 

modeled as multiplicative exponential noise, and the white noise-like phase, which is uniformly 

distributed in [ , ]π π− ) [32]. The latter is caused by the presence of a few bright targets in a scene [46]. 

Because of their noise-like properties and hence high entropy, complex-valued radar images are inherently 

difficult to compress efficiently. This means that they have limited compressibility in any dictionary. 

Despite these, sparsity can be justified for radar scenes where there are only a small number of point-like 

strongly reflecting scatters. Sparsity can also be assumed for radar surveillance applications whereby the 

interest is on a few dominant targets, such as vehicles, ships or airplanes [6,8,15].  

Consider an image under study. We can denote the complex-valued image X ' 1n ×∈  (actually X  as in 

Equation (10)); alternatively, it can be denoted real-valued X 1n×∈   (n=2n’) for consistence with the 

previous vector dimension notations in Equation (8) without causing any ambiguity if we use real 

representations for real and imaginary parts of X as in Equation (10). The image X can be decomposed 

into two components: 1 0= +X X X , where 1X  represents the sparse bright targets (i.e., signal of interest) 

while 0X  indicates the background (i.e., clutter) [15,46].  

When a scene is assumed to consist of homogeneous patches of different classes, each of which is 

assumed a Gaussian distribution with its own mean and variance, Gaussian mixture models can be used 

for modeling such a scene and its images [47,48]. Specifically, when the underlying scene consisting of 

sparse targets and clutter is represented as a vector X of length n, it can be modeled as a sequence of 

RVs {X(1), …, X(n)}, with each representing a grid cell of the imaged scene and drawn i.i.d. from a 

Gaussian two-component mixture distribution. Thus, we can describe the underlying scene via a 

Gaussian signal-clutter mixture distribution:  

2 2
0 0 1 1(1 ) ( , ) ( , )XP κ μ σ κ μ σ− Ν + Ν  (12)

where κ  ≤ 1/2 indicates sparsity (i.e., κ = k/n), 1 0 0μ μ= = , 1 0 0σ σ> ≥  [15,48–50]. In Equation (12), the 

signal refers actually to targets of interest. Clearly, 
1 0

2 2
1 0(1 )X X XV V V κσ κ σ= + = + − , where VX stands 

for the variance of a RV X drawn from the vector X, and 
1XV  and 

0XV  represent variance of signal and 

clutter components, respectively. For strictly sparse signal, also known as spike, we have 0 0σ = , 



Entropy 2015, 17 5179 

 

 

1

2
1X XV V κσ= = . This means that the model in (12) is reduced to the Bernoulli-Gaussian model discussed 

by Weidmann and Vetterli [31]. 

As mentioned in the introductory section, the entropy H(X) for a RV X is its minimum descriptive 

complexity and sets its ultimate data compression if it were to be compressed and then decompressed 

without loss of information (see [51] for examples in hyperspectral image data transmission and 

classification). For lossy data compression as in compressive sampling-based radar imaging, a more 

useful quantity is rate distortion function [17]. The rate-distortion function of a scene comprised of a set 

of pixels generically denoted by X, RX(D), measures the minimal amount of information (in numbers of 

bits per pixel), which should be communicated via echo data to allow for scene reconstruction at an 

average distortion no greater than a threshold D specified. The operational definition of RX(D) is 
equivalent to the information rate distortion function ( ) ( )I

XR D : 

( )

ˆ ˆ( | ): ( ( , ))

ˆ( ) ( ) min ( ; )I
X X p x x E d x x D

R D R D I X X
≤

= =  (13)

where X̂  represents the reconstruction RV defined via the conditional probability mass (or density) 

function ˆ( | )p x x , ˆ( ; )I X X  the mutual information between X and X̂ , ˆ( , )d x x  the distortion measure and 

ˆ( ( , ))E d x x  the expected distortion obtained over the joint distribution of ˆ( , )p x x [17,31], as reviewed by 

Zhang et al. [15]. A mean squared error (MSE) measure is used for a continuous signal represented by 

a RV X, which is a generic element in the sequence X. 

Reznic et al. [52] studied the rate distortion function for a mixture of two Gaussian sources and 

proposed relevant formulas. To reflect the impacts of TBRs on rate-distortion behaviors, we made some 

modifications. For a Gaussian mixture of two components (i.e., targets X1 and the clutter X0), assume 
that the values of target and background variance are 2

1σ  and 2
0σ , respectively. We can write 

2 2
1 0TBRσ σ= . The adapted rate distortion function for this two-component Gaussian mixture can be 

written as: 

2 2 2
0 1 0

2 2 2 2 2
1 0 0 0 0

2 2
0 0

2 2
0 0

1
( ) log[ / ] log[ / ],  if 

2 2( )

( ) log[ / [ (1 ) ]],  if (1 )
2

1
( ) log[ / ] log[ ],  if 

2 2           

( ) log[ / [ (1 ) ]] log[
2 2

X

H D D D
R D

H D D TBR

H D TBR D

H D TBR

κ κκ σ σ σ

κκ κσ κ σ σ κ σ κσ

κκ σ σ

κ κκ κσ κ σ

− + + <= 
 + − − < ≤ − +


+ + <
=

+ − − + 2 2 2
0 0 0],  if (1 )D TBRσ κ σ κσ




 < ≤ − +


 (14)

where ( )H κ  is binary entropy. For a strict sparse scene, we have 2
0 0σ → , which means absence of 

clutter in a radar scene. We can simplify its rate distortion function [39]: 

2 2
1 1

2 2
0 0

( ) ( ) log[ / ],   if 0
2

          ( ) log[ / ] log[ ],   if 0
2 2

XR D H D D

H D TBR D TBR

κκ κσ κσ

κ κκ κσ κσ

= + < ≤

= + + < ≤
 (15)
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meaning that the minimal rate needed for lossy compression of a strictly sparse radar scene is the sum 

needed for encoding sparse support, which is ( )H κ  as in Equation (14), and i.i.d. Gaussian quantity X 

of variance 
1

2
1X XV V κσ= =  with a weight κ . Here, the underlying scene is represented as a sequence 

of i.i.d. generic RVs {X(1), …, X(n)}, with each modeled via GMMs, as mentioned previously. 

2.3. Trans-information of Radar Measurements Concerning the Underlying Scene and the Targets of 

Interest  

We consider mutual information conveyed by radar measurements Y (see Equation (8)) about the 

underlying scene X and the targets of interest X1, respectively. We start with the former. Here, we have 

a deterministic matrix A m n×∈  , whose rows are denoted Ai(i = 1, …, m), and the noise vector N consists 

of a sequence of i.i.d. Gaussian RVs with variance VN. Instead of having each row restricted to a constant 

or unit l2 norm, i.e., T 1i i =A A , as in the literature, row iA  is not necessarily to have either an equal or 

unit l2 norm, but is only subject to having finite l2 norm [15].  

By definition, conditional mutual information between X and Y:  

( ; | ) ( | ) ( )I h h= −X Y A Y A N  (16)

where h(Y|A) and h(N) represent joint differential entropy of the vector of measurements Y and the 

vector of noise N, respectively. The differential entropy, denoted by lower case h rather than upper case 

H, is the entropy of a continuous RV, while the joint differential entropy is defined for a set of continuous 

RVs and determined by their joint probability density. This notation (i.e., h()) will be used in the 

remainder of this paper. 

Also, we can derive the inequality:  
*( | ) ( ) ( )h h h≤ ≤Y A Y Y  (17)

where * *= +Y AX N  is a column vector of Gaussian RVs, and *X  is a vector of i.i.d. Gaussian RVs 
having the same covariance as X. The inequality *( ) ( )h h≤Y Y  in (17) originates from the fact that 

Gaussian RVs maximize entropies of distributions with the same variance. Further, we can put an upper 

bound on joint entropy (differential entropy, to be exact, for continuous RVs) of *Y : 
1 1

* * * * * * *
1 1 1 1 1

1 1

ˆ( ) ( ) ( | ) ( ) ( )
m m

i i i i
i i

h h Y h Y Y h Y h Y Y
− −

+ + +
= =

≤ + ≤ + − Y  (18)

where * *
1î i iY bY+ =  is the minimum mean squared error (MMSE) estimate for *

1iY + , with 
* * *

1cov( , ) var( )i i i ib Y Y Y+= , where * * T
1 1cov( , )i i i i XY Y V+ += A A  and * Tvar( )i i i X NY V V= +A A , with VN being 

the variance of i.i.d. noise elements in vector N [15,30].  

The right most hand side of (18) can be evaluated as: 

( ) ( ) ( )

1
* * *

1 1 1
1

*

1
* * *

1 1 1
1

ˆ   ( ) ( )

( )

1 1 1 ˆlog 2 log var( ) log var( )
2 2 2

m

i i
i

ub

m
m

i i
i

h Y h Y Y

h

e Y Y Yπ

−

+ +
=

−

+ +
=

+ −

=

= + + −





Y  (19)
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where * *
1 1

ˆvar( )i iY Y+ +− , the variance for the error of *
1îY + , is evaluated as: 

T 2
* * T 1

1 1 1 1 T

( )ˆvar( ) i i X
i i i i X N

i i X N

V
Y Y V V

V V
+

+ + + +− = + −
+

A A
A A

A A
.  

From Equations (16) and (19), we can quantify upper bound of mutual information between X and 

Y, as * *( ; | ) ( | ) ( ) ( ) ( ) ( ) ( )ubI h h h h h h= − ≤ − ≤ −X Y A Y A N Y N Y N . The upper bound of ( ; | )I X Y A  is 

evaluated as: 

*

T 21
T T 1

1 1 1 1 T
1

( ; | ) ( ) ( )

( )1 1
log( 1) log[ 1 ]

2 2 1

ub ub

m
i i

i i
i i i

I h h

snr
snr snr

snr

−
+

+ +
=

= −

= + + + −
+

X Y A Y N

A A
A A A A

A A

 (20)

where ( ; | ) ubI X Y A  represents the upper bound for ( ; | )I X Y A , and snr is the ratio of variance of X 

over that of noise N (i.e., snr = VX/VN). Note we can compute per-sample signal (plus clutter actually) to 

noise ratio: 
2
2

2
2

[|| || ]
( )

[|| || ]

E
S C NR

E
= AX

N
, which can be reduced to the usual signal to noise ratio (SNR) when 

there is no clutter. This measure will be useful for simplified estimation of ( ; | ) ubI X Y A  assuming 

constant T
i iA A  and zero correlation between rows of A, as shown below. In deriving Equation (20), it 

is easy to see the formula for h(N): ( ) ( )1 1
( ) log 2 log

2 2
m m

Nh e Vπ= +N  

As the scene (represented as vector X) is assumed to be consisting of the sum of sparse targets X1 and 

background X0, trans-information ( ; | )I X Y A  does not reflect the amount of effective information 

conveyed by Y about the sparse targets X1, unless X0 is zero-intensity or much weaker than X1, as is 

usually assumed in compressive sampling and sparse recovery. For detection of targets X1, clutter X0 

will interfere with accurate recovery of X1 from target-clutter mixture X [33]. It is thus more objective 

to derive formulas for estimating trans-information of Y about X1, with X0 and N acting as clutter and 

noise, respectively. The remainder of this sub-section will describe how effective trans-information of 

Y about X1 may be estimated from signal-clutter-noise configuration. The model in Equation (8) should 

be decomposed as: 

1 0 1 0 1( ) ( )= + = + + = + + = +Y AX N A X X N AX AX N AX CN  (21)

As shown in Equation (16), conditional mutual information between X1 and Y can be written as:  

1 1( ; | ) ( | ) ( | , ) ( | ) ( | )I h h h h= − = −X Y A Y A Y X A Y A CN A  (22)

As in (18) and (19), we can derive an upper bound for ( | )h Y A : 

( ) ( ) ( )
1

* * * *
1 1 1

1

1 1 1 ˆ( ) log 2 log var( ) log var( )
2 2 2

m
m

ub i i
i

h e Y Y Yπ
−

+ +
=

= + + −Y .  

The joint entropy of clutter and noise ( | )h CN A  can be similarly upper bounded by: 

1
* * * *

1 1
1

1
* * *
1 1 1

1

( | ) ( ) ( ) ( | )

ˆ               ( ) ( ) ( )

m

i i
i

m

i i ub
i

h h h CN h CN CN

h CN h CN CN h

−

+
=

−

+ +
=

≤ ≤ +

≤ + − =





CN A CN

CN

 (23)
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where ( )* * * * *
1 1

ˆ cov( , ) var( )i i i i iCN CN CN CN CN+ +=  is the minimum mean squared error (MMSE) estimate 

for *
1iCN + . So, we can write the right most hand side of inequality in (23) as: 

( ) ( ) ( )
1

* * *
1 1 1

1

1 1 1 ˆ( ) log 2 log var( ) log var( )
2 2 2

m
m

UB i i
i

h e CN CN CNπ
−

+ +
=

= + + −CN  (24)

where 0

0

0

T 2
1* * T

1 1 1 1 T

( )ˆvar( ) i i X
i i i i X N

i i X N

V
CN CN V V

V V
+

+ + + +− = + −
+

A A
A A

A A
, and 

0

2
0(1 )XV κ σ= − . 

As * * * *
1 1( ; | ) ( | ) ( | , ) ( ) ( ) ( ) ( )ub ubI h h h h h h= − ≤ − ≤ −X Y A Y A Y X A Y CN Y CN , from (19) and (24), 

we can quantify upper bound of mutual information between X1 and Y 1( ; | ) ubI X Y A  as: 
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 (25)

where 1( ; | ) ubI X Y A  represents the upper bound for 1( ; | )I X Y A . To make the link between 

1( ; | ) ubI X Y A  and TBRs explicit in Equation (25), XV  is replaced by ( )
0

1 / (1 )XV TBRκ κ+ − . However, 

the upper bound (i.e., 1( ; | ) ubI X Y A ) evaluated in (25) is lower than what would be obtained if 

1( | , )h Y X A , which is actually ( | )h CN A , rather than *( )ubh CN  were applied in derivation of (25). 

Thus, use of (25) will not imply too much overestimation of 1( ; | )I X Y A , as overestimation implied in 
*( )ubh Y  is offset to some extent by that in *( )ubh CN . 

Clearly, 1( ; | ) ubI X Y A  will be less than ( ; | ) ubI X Y A , although both will be equal when X0 is absent 

or assumed to be negligible in the mixture X. It is therefore more contingent to use (25) as a conservative 

measure of information content of Y about X1, the targets to detect and reconstruct. Also, it is important 

to note that Equation (25) is a generalized form of Equation (20). 

2.4. Undersampling Ratio Determination  

We may derive an approximate bound on undersampling ratio m/n by requiring mutual information 

be no less than nRX(D). We can do this but have to differentiate between the two scenarios discussed in 

Section 2.3. One is based on:  

( ; | ) ( )ub XI nR D≥X Y A  (26)
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and the other: 

1( ; | ) ( )ub XI nR D≥X Y A  (27)

In comparison, the undersampling ratio indicated in (26) will be an underestimate of that in (27). The 

former specifies the necessary sampling ratio required for approximate recovery of X as a whole 

regardless of whether it is the target of interest or the background, while the latter determines the 

necessary undersampling ratio required for approximate recovery of X1 from noisy and  

clutter-interfering measurements. Thus, the latter is more conservative in determining the sampling 

necessity conditions than the former, and should be applied in the more challenging cases where 

detection and reconstruction of targets of interest have to deal with not only measurement noise but also 

clutter interference. 

As m is generally implicit in (20), (25), (26), and (27), we need to use numerical methods to find 

critical values of m from such non-linear inequalities. To assist in analysis and interpretation, we can 

simplify them so that analytical expressions may be derived. To simplify use of (20) in combination with 

(26), we may derive an underestimated sampling ratio as: 

/ 2 ( ) log[1 ( ) ]Xm n R D S C NR≥ +  (28)

where S(C)NR represents per-sample signal (plus clutter) to noise ratio and distortion D takes achievable 

values as indicated in Equation (14). S(C)NR is evaluated as the product of F and  

snr: S(C )NR = F ×snr, where F is the constant l2 norm for each row of A ( T
i iA A ) and snr = VX/VN, The 

underestimation implied in (28) originates from the assumption made in its derivation: zero correlation 

(implying maximized per-sample mutual information between Y and X) and constant l2 norm for each 

row of A.  

To use (25) and (27) in a way similar to that of (20) and (26), we can make similar assumption as 

above (i.e., zero correlation and constant l2 norm for each row of A), and derive an approximate 

analytical expression for (27): 

( )
0

/ 2 ( ) log 2 ( ) log 1X N
X X

X N

FV V
m n R D R D SCNR

FV V

 +≥ = +  + 
 (29)

where F represents the constant l2 norm for each row of A (i.e., T
i iA A ), and the signal-to-clutter-plus-noise 

ratio (SCNR) is derived as: 01

0 0

/ (1 )XX

X N X N

FV TBRFV
SCNR

FV V FV V

κ κ−
= =

+ +
. 

Mutual information I(X;Y|A) measures the amount of information conveyed by measurements Y 

about the scene X being estimated. Its upper bound quantified in (20) sets an upper limit to the  

trans-information of Y about X and hence the amount of information retained in image X̂  reconstructed 

from Y (i.e., I(X; X̂ |A)). This follows the well-known data processing theorem in information theory, 

which states that I(X; X̂ |A) ≤ I(X;Y|A) as X→Y→ X̂  forms a Markov chain [17]. Therefore, in addition 

to its importance for determining necessary sampling ratios, the trans-information of compressive 

samples Y about X is also a valuable indicator as an informational limit for the resultant reconstructed 

image X̂  whether X̂  is derived from convex optimization-based CS algorithms or not [15]. Similarly, 

1( ; | ) ubI X Y A  quantified in (25) sets an upper limit to the effective trans-information of Y about X1, 
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which is the signal of interest excluding clutter, and hence the amount of effective information about the 

targets of interest retained in image X̂  reconstructed from Y. 

3. A Simulated Experiment  

The simulated experiment began with simulation of hypothetic scenes X’s, noise N’s, and echo data 

Y’s; a convolution matrix A needs to be specified to facilitate simulation of Y, as shown below. We will 

describe the procedures to generate various information-theoretically derived graphics. They aim to 

show: (1) rate-distortion characteristics (i.e., RX(D)) of compressible radar scenes, (2) trans-information 

of compressive radar measurements about the underlying scene X as a whole and the targets of interest 

X1, respectively, and (3) necessary undersampling ratios (m/n) for scene reconstruction given scene 

sparsity, TBRs, SCNRs, and distortion thresholds. As will be shown, the computational experiments and 

related results are parallel to and based on the methods presented in Sections 2.2 through 2.4. These will 

be followed by some discussion. 

3.1. Simulation of Sparse Scenes and Noisy Echo Data  

This sub-section describes generation of hypothetic scenes X’s (each of 100 by 100 grid cells) with 

various sparsity and TBRs. This is followed by specification of radar parameters and generation of the 

corresponding convolution kernel matrix A. All results derived hereafter (except for simulated sparse 

scenes) will be conditional to A. Simulation of noisy radar echo data Y ( = +Y AX N ) is then carried 

out using matrix A and simulated scenes X, after zero-mean Gaussian noise N’s are simulated with 

various noise levels. 

To generate a set of realized scenes X’s, we set up a series of sparsity (equally spaced in the interval 

0.01 ~ 0.50, step = 0.005; we set 100 different sparsity measures in total), and TBRs (their square roots 

are equally spaced in the interval 2 ~ 51, at a step of 0.495, resulting in a total of 100 different TBR 
values. We set 

0

2 1σ = , so 2 2
1 0TBR TBRσ σ= × = . After setting the range of scene parameters, complex-

valued signal X was generated using the GMMs based sparsity model (i.e., Equation (12)). The 

simulation proceeded in two steps: (1) simulating locations of sparse targets according to a given sparsity 

level, while the rest being the background, and (2) simulating jointly the real and imaginary parts of 

complex reflectivities of individual target or background pixels according to their respective variance 
values (e.g., 2

0σ  and 2
1σ , if 2

0σ  and TBRs are pre-set), depending on whether the pixels being simulated 

belong to the targets or background. The first step may be adapted to generating a map of patterned 

sparse targets, whose locations are specified according to template, such as an existing sparse image. We 

have a total of 100 × 100 possible combinations of sparsities and TBRs.  

As examples, Figure 1 shows four simulated radar scenes with two sparsity levels (0.03 and 0.15), 

and two TBRs (25 and 900). The two sparsity levels represent extremely and moderately sparse scenes, 

respectively, while the two TBRs indicate small and large reflectivity differences between targets and 

background, respectively. Each scene is shown by a row of three sub-figures: real, imaginary and 

amplitude, from left to right. The first (Figure 1a–c) the second (Figure 1d–f) rows are for extremely 

sparse scenes of low and high TBRs, respectively, while the third (Figure 1g–i) and fourth (Figure 1j–l) 

rows are for moderately sparse scene of low and high TBRs, respectively. Clearly, targets of interest will 
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be harder to detect from scenes of low TBRs than from those of high TBRs, meaning that we would need 

more sampled data to form images of acceptable detectability for the former than for the latter. 

 

(a) (b) (c) 

 

(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

  
Figure 1. (a–c) real component, imaginary component and amplitude images of a scene of 

sparsity = 0.03 and TBR = 25, respectively; (d–f) real component, imaginary component and 

amplitude images of a scene of sparsity = 0.03 and TBR = 900, respectively; (g–i) real 

component, imaginary component and amplitude images of a scene of sparsity = 0.15 and TBR 

= 25, respectively; (j–l) real component, imaginary component and amplitude images of a 

scene of sparsity = 0.15 and TBR = 900, respectively. 

For simulating noisy echo data, we need also to specify radar parameters, as indicated in Equation (3). 

They are as follows: slant range of scene center 10 km, transmitted pulse duration 1 μs, range FM rate 
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150 MHz/μs, signal bandwidth 150 MHz, range sampling rate 164.829 MHz, effective radar velocity 

7608 m/s, radar center frequency 9.650 GHz, radar wavelength 0.031 m, azimuth FM rate 372372 Hz/s, 

synthetic aperture length 57.383 m, target exposure time 0.007543 s, antenna length 4.8 m, Doppler 

bandwidth 2808.620 Hz, azimuth sampling rate 2920.018 Hz. For convenience, these parameter values 

are listed in Table 1. They were used to generate a convolution kernel matrix Afull with a dimensionality 

of 10,000 by 10,000 at full rank. 
To generate a set of realized noise N and echo data Y, we set up a series of S(C)NR (equally spaced 

in the interval −5 ~ 20 dB, step = 0. 253 dB, indicating a total of 100 noise levels), and undersampling 

ratios (equally spaced in the interval 0.01 ~ 1, step = 0.01, a total of 100 undersampling ratios), to reflect 

the noise levels and compression ratios of Y, respectively. For each set of simulated X and specified 

sampling S(C)NR, we generated the corresponding set of N and Y. Noiseless linear measurements Y0 

were generated by pre-multiplying the signal X with a compressive sampling matrix Asub, which consists 

of a number of randomly drawn rows from the measurement matrix A (Afull to be exact); the number of 

rows m for Asub reflects the undersampling ratio being considered. Although, for any undersampling 

ratios less than 1, the possible combinations of rows for Asub are n
mC  (the number of combinations of n 

distinct objects taken m at a time), we only pick up consecutive rows from Afull, starting from the first 

row, resulting in sets of Asub’s (to reflect the undersampling ratios specified), which will be more 

conservative in terms of informational efficiency. The simulated measurements Y0 were corrupted with 

additive Gaussian noise vectors N (with a length commensurate with those of Y0’s), whose powers are 

restricted to the given S(C)NR level, to simulate noisy and undersampled echo data Y. 

Table 1. Hypothetic radar parameters. 

Parameter Name Symbol Value Units 

Range 

parameters 

Slant range of scene center  10 km 

Transmitted pulse duration Tr 1 μs 

Range FM rate Kr 150 MHz/us 

Signal bandwidth Br 150 MHz 

Range sampling rate Fr 164.829 MHz 

Azimuth 

parameters 

Effective radar velocity Vr 7608 m/s 

Radar center frequency f0 9.650 GHz 

Radar wavelength λ 0.031 m 

Azimuth FM rate Ka 372372 Hz/s 

Synthetic aperture length Ls 57.383 m 

Target exposure time Ta 0.007543 sec 

Antenna length La 4.8 m 

Doppler bandwidth Ba 2808.620 Hz 

Azimuth sampling rate (PRF) Fa 2920.018 Hz 

As mentioned previously, informational analysis was performed based on simulated radar scenes X and 

echo measurements Y. We used the simulated scene and echo data to perform information-theoretic 
graphing of RX(D), using Equation (14), and trans-information ( ; | ) ubI X Y A  using (20) and 

1( ; | ) ubI X Y A  using (25). We applied inequalities in (26) and (27) to determine minimal undersampling 
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ratios for signal reconstruction given certain values of sparsity, TBRs, noise, and distortion D. These are 

explained one by one in the following sub-sections 

3.2. Visualization of Scene Rate-Distortion and Echo Data’s Trans-information 

For visualizing rate-distortion trade-offs, we compute required minimum information rates for a range 

of distortion levels. We specified distortion levels D in the interval from 0.01 to 1300 (times 2
0σ , which 

was set to 1.0 though); the end value of 1300 is the maximum value beyond which the distortion is 

theoretically achievable for any specified combination of sparsity, TBRs, S(C)NRs and undersampling 

ratios. Three values of D (0.01, 4, and 10, all relative to 2
0σ ) were selected to represent high, medium 

high, and moderate accuracy levels, respectively, although many more levels of distortion can be 

specified in principle.  

A simulated compressible scene X corresponds to a specific sparsity and a particular TBR. Given a 

distortion D, the rate distortion (n*R(D)) of X can be calculated using Equation (14). The case of an 

extremely large value of TBR (e.g., TBR = 502) refers to strictly sparse scenes, and their rate distortion 

can be approximated by (15).  

 
(a) 

 
(b) 

 
(c) (d) (e) 

 

Figure 2. (a) Visualization of rate-distortion relations in the three-dimensional space framed 

by sparsity, TBRs (actually shown as 1 0/σ σ  to reduce the range of values), and distortion; 

(b) three slice images representing varying rate distortion characteristics as related to 

different sparsities and TBRs when setting D = 0.01, 4 and 10, respectively (from bottom to 

top); (c–e) two-dimensional graphs showing rate-distortion relations for distortion D = 0.01, 

4 and 10, respectively (all D values are relative to 2
0σ ). 
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Figure 2a–e shows rate distortion characteristics of various simulated scenes X, which have different 

sparsities and TBRs, in relation to distortion D. In particular, Figure 2a indicates that rate distortion in 

relation to a distortion D is meaningful only within a certain region of scene sparsities and TBRs by 

virtue of its achievable regions, although the inner part of the 3-dimensional graphics is not visible. To 

see some of its inner information “landscape” implied in Figure 2a, we display slices of rate-distortion 

relations corresponding to distortion values of 0.01, 4, and 10, respectively, in the order from bottom to 

top, as shown in Figure 2b. For more clarity in graphing, Figure 2c–e highlights the slices where 

distortion D is fixed at 0.01, 4, and 10, respectively. Obviously, information rates required for lossy 

compression (or approximate reconstruction) grow with decreased distortion thresholds, and for a fixed 

distortion D the required information rates increase with increasing sparsity and TBRs, though the 

relationships are not linear.  
The quantities of mutual information ( ; | ) ubI X Y A  and 1( ; | ) ubI X Y A  measure the amounts of trans-

information conveyed by measurements Y about the scene X and the targets of interest X1, respectively. 

The former can be evaluated using Equation (20), while latter can be assessed using Equation (25), given 

differing sampling specifications (i.e., number of measurements and noise levels) and scene 

characteristics (i.e., sparsities and TBRs). Figures 3 and 4 show the upper bounds of mutual information 

of echo data about X and X1, respectively, in relation to undersampling ratios, sparsity and TBRs (for 

1( ; | ) ubI X Y A ), and S(C)NR. 

 

 

(a) (b) 

 
(c) 

 
(d) 

 

Figure 3. (a) slice images showing mutual information conveyed by echo data about the 

underlying scene with three undersampling ratios; (b–d) slice images for undersampling ratios 

of 0.3, 0.5, and 1.0, respectively. 
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(a) (d) 

 

(b) (e) 

(c) (f) 

 

Figure 4. Slice images representing varying mutual information conveyed by echo data 

about the targets of interest under different undersampling ratios, sparsity, TBR (actually 

1 0/σ σ ), and S(C)NR: (a–c) undersampling ratios = 30% , 50% and 100%, respectively, and 

all with TBRs (in vertical axes) of 25, 400 and 2500 (i.e., 5, 20 and 50 in terms of ratios of 

square root TBRs as shown in the Figures) from bottom up; (d–f) 30% , 50% and 100% 

undersampling ratios, respectively, and all with S(C)NR (in vertical axes) of −5, 5 and 20 dB. 

As shown in Figure 3a, three images are created from slicing the informational cube, which can not 

be completely depicted here, in the three-dimensional space framed by sparsity, S(C)NR, and 

undersampling ratios, at three undersampling ratios: 0.3, 0.5, and 1.0 (in bottom-up sequence). For 

enhanced visualization, the three slices of images depicted in Figure 3a are shown in Figure 3b–d, 
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respectively, in the two-dimensional space of sparsity and S(C)NR. Unsurprisingly, trans-information 

increases with increasing undersampling ratios. For a fixed undersampling ratio, trans-information 

increases with increasing S(C)NR, though the increase in trans-information is not related to sparsity at a 

fixed S(C)NR, as is apparent in Equation (20) for computing ( ; | ) ubI X Y A .  

Figure 4a–c shows slice images representing varying mutual information conveyed by echo data 

about the targets of interest under different sparsities, TBRs, and S(C)NR with undersampling ratios of 

30% , 50%, and 100%, respectively. In Figure 4a–c, TBRs are actually shown as 1 0/σ σ  and measure 5, 

20 and 50 from bottom up in the vertical axes. To visualize the other aspects of trans-information 

1( ; | ) ubI X Y A  landscapes, Figure 4d–f shows slice images of 1( ; | ) ubI X Y A  under different sparsities, 

S(C)NR, and TBRs ( 1 0/σ σ ), again with undersampling ratios of 30% , 50%, and 100%, respectively. In 

Figure 4d–f, S(C)NR are shown in vertical axes and measure −5, 5, and 20 dB from the bottom up. 

In comparison, trans-information quantities shown in Figure 4a–c tend to be more conservative than 

that in Figure 3a–c, assuming the same undersampling ratios, sparsities, and S(C)NRs, especially with 

lower TBRs. The graphics shown in Figure 3a–c and Figure 4d–f are not directly comparable. Thus, we 

will not elaborate on this here. 

3.3. Undersampling Ratios in Graphics  

The minimal undersampling ratios can be determined through evaluating the information-theoretic 

inequality in (26). This can be done by numerically solving an equation between the mutual information 

( ; | ) ubI X Y A  and rate distortion implied in (26). These ratios are conditional to the simulated 

measurement matrix A, and evaluated for a given scene with a certain sparsity and noise level as 

indicated by S(C)NR. 

 
(a) (b) (c) 

 

Figure 5. Minimal under-sampling ratios in relation to signal sparsity and per-sample 

S(C)NR, given distortion level of 0.01 (a), 4 (b), and 10 (c), respectively. 

Figure 5a–c shows the images indicating minimal (i.e., necessary) undersampling ratios in relation to 

scene sparsity and per-sample S(C)NR, given MSE distortion levels D of 0.01, 4, and 10, respectively. 

As previously, distortion levels D are relative to 2
0σ . Clearly, with more relaxed or greater distortion 

thresholds, the undersampling ratios required will be reduced, given the same values of scene sparsity 

and per-sample S(C)NR. 
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Similarly, the minimal undersampling ratios for target detection in a given scene and with noise level 

can be determined through evaluating the information-theoretic inequality in (27). Again, this can be 

done by numerically solving an equation between the mutual information 1( ; | ) ubI X Y A  and rate 

distortion implied in (27). These ratios are also conditional to the simulated measurement matrix A. 

As rate distortion is, by definition, distortion-dependent, we show selectively (according to D 

thresholds) some of the phase diagrams, which map the regions where sampling conditions are satisfied, 

as in Figure 5. The phase diagrams in Figure 6 show required minimal undersampling ratios in relation 

to scene sparsity, TBRs, and per-sample S(C)NR.  

 
(a) (d) (g) 

 
(b) (e) (h) 

 
(c) (f) (i) 

 

Figure 6. Minimal undersampling ratios in relation to signal sparsity and per-sample 

S(C)NR, given distortion level of 0.01 (a–c), 4 (d–f), and 10 (g–i), and TBRs of 25 (a,d,g), 
400 (b,e,h), and 2500 (c,f,i); all MSE distortion levels are relative to pre-set 2

0σ . 

To assist interpretation of the results, these diagrams are organized in row and column groups. The 

row grouping is based on TBRs (actually 1 0/σ σ ): 5 (Figure 6a,d,g), 20 (Figure 6b,e,h), and 50 (Figure 
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6c,f,i). The column grouping is based on MSE distortion levels: 4 (Figure 6a–c), 100 (Figure 6d–f), and 

400 (Figure 6g–i), where all MSE distortion levels are relative to 2
0σ . Similar to the phase diagrams in 

Figure 5, greater distortion thresholds lead to smaller necessary undersampling ratios, given the same 

values of scene sparsities, TBRs and per-sample S(C)NRs. With increasing TBRs, necessary  

under-sampling ratios will be decreased, while all other settings are kept the same. An important link 

can be made of the similarity between phase diagrams shown in Figure 5a–c and those in Figure 6c,f,i, 

as the former represent the limiting cases of those in Figure 6, when TBRs become sufficiently large 

(e.g., 1 0/σ σ = 50). 

Note that the blue blocks in Figure 6d,g,h indicate that we would not need to acquire any samples for 

approximate reconstruction of the underlying scenes due to relaxed distortion thresholds, small sparsity, 

and low TBRs. This means that there is little information in such kind of scenes in the first place so that 

no sampling is required for reconstruction of X and X1 with distortion thresholds indicated by D. Here, 

approximate reconstruction means that the underlying scene is reconstructed, with targets of interest 

properly detected and estimated, up to given distortion thresholds. 

The derived undersampling ratios are necessary conditions, meaning that scene reconstruction would 

not be possible without incurring distortion larger than the prescribed thresholds if the numbers of 

measurements are less than what is indicated by the undersampling ratios. Even if the sampling necessary 

conditions are satisfied, there is no guarantee that such properly undersampled data will enable scene 

reconstruction meeting the specified distortion criterion. The reasons are three-fold: (1) necessary 

conditions are not sufficient ones, (2) information-theoretically derived sampling necessities are 

theoretical and algorithm-independent while algorithms may incur extra expenses of sampling, and (3) 

sampling necessary conditions derived previously are meaningful on probabilistic terms, suggesting 

variabilities in trade-offs between sampling and distortion. 

As mentioned previously, the results obtained with simulated data are conditional to the particular 

measurement matrix A set forth, as is also the case with Zhang and Yang [15]. In other words, our results 

are not invariant to measurement matrices and hence the radar transmitted waveforms and other relevant 

parameters employed in a CS system. This raises, for instance, the issue of how waveforms should be 

designed to maximize mutual information between Y and X, as discussed by Bell [22]. Clearly, the 

existing literature on related topics and the results obtained here in this paper should be integrated to 

push forward research on CS-radar informatics and sampling theorems. For instance, the informational 

quantities described in this paper in the context of CS-radar should be made to augment the existing 

predominantly statistical metrics for performance evaluation of radar systems. On the other hand, we 

should consider the aforementioned computational approaches to phase transitions to handle peculiar 

signal models, sampling matrices, reconstruction algorithms and performance evaluation criteria, which 

are otherwise difficult to analyze theoretically. 

3.4. Discussion  

In this sub-section, we discuss the results by first comparing undersampling ratios derived from 

information-theoretic analysis and those based on the restricted isometry property (RIP) in classical CS 

theory. We will also reflect on future developments in compressive radar imaging, focusing on 

compressible radar scene modeling and sparsity-enhancement in radar imaging. 
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CS sensing matrices and reconstruction algorithms function like encoders and decoders in the context 

of information theory, with the former seeking to preserve information content in the sparse signal while 

the latter aiming to be efficient and robust for recovering the original signal in presence of measurement 

noise. The so-called RIP is one of desirable properties that we would like CS sensing matrices to have 

so that the sensing matrices possess adequate level of efficiency in transferring information in the original 

signal. With a sensing matrix satisfying the RIP, various algorithms will be able to successfully recover 

sparse signals from noisy measurement, according to established RIP-based CS results [53]. The necessary 

numbers of measurements needed to achieve the RIP are studied widely in CS literature. Here, we 

mention one of such results originally reviewed by Davenport et al. [53]. Let A be an m n×  matrix that 

satisfies the RIP of order 2 k with RIP constant δ ∈  (0, 0.5], where m and n represent the number of 

measurements Y and the length of signal vector X, respectively. Then, RIP requirements can be used to 

derive phase transition for a problem dimension {k, m, n} such that log( / )m ck n k>  with 0.28c ≈  [53]. 

There exist a few major distinctions between information-theoretically determined undersampling 

ratios in this paper and RIP results. We highlight some of them in terms of the signal models, sensing 

matrices and reconstruction criteria concerned. First, sparse signals are usually described by just sparsity 

in RIP, while both sparsity and TBRs are accommodated in GMMs-based signal models in the paper. 

The two-component (i.e., target-clutter) GMMs employed therein were shown to have well supported 

the tasks of target detection against clutter interference in approximately sparse radar scenes. This 

represents a major strength and contribution of this paper.  

Secondly, randomized sensing matrices such as those drawn from i.i.d. Gaussian distributions are 

preferred in RIP-based analysis for under-sampling ratios. Although deterministic sensing matrices can 

also be considered in CS literature through the concept of coherence [53] and its relationships with RIP, 

the derived under-sampling ratios are often unacceptably high. On the other hand, informational analysis 

performed in this paper was based on deterministic sensing matrices, which are common in compressive 

radar imaging. The information-theoretic limits on undersampling were shown to be related to l2-norms 

of the sensing matrix rows, which are easier to analyze and optimize, as seen previously.  

Thirdly, RIP-derived phase transition is mostly about exact or precise recovery [27], although 

relations between achievable minimum errors in signal recovery and RIP constants are confirmed in the 

literature [54]. In informational analysis reported in this paper, rate distortion was shown to be a valuable 

theoretic construct to analyze the trade-offs between information rates and distortion tolerance, as shown 

in Figure 2. Thus, the phase diagrams shown in Figures 5 and 6 of the paper were distortion-specific. 

Furthermore, mutual information computed for a set of compressive measurements can be used as a 

quality measure for the images formed from under-sampled data, as discussed towards the end of Section 2. 

Clearly, the information-theoretic quantification about sampling-distortion trade-offs is particularly useful 

for compressive radar imaging where sampling efficiency, target detectability and imaging quality are 

important considerations. 

Although GMMs were employed to model compressible radar scenes in this paper, we may well use 

other kinds of models for modeling complex-valued radar reflectivities if empirical evidence suggests 

so. For example, it was found that Laplace distributions are more suitable to model complex-valued 

images under wavelet transforms than Gaussian distributions, as shown in Xu et al. [13]. Further research 

is needed for balancing between model complexity (hence related computational cost) and precision in 

modeling. The mixture distribution models are versatile and worth exploring in applications. For 
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instance, it is interesting to extend use of GMMs by modeling both sparse targets of interest and the 

clutter interference through their respective GMMs. 

In this paper, complex-valued radar images were represented by real and imaginary parts. Since phase 

components are not sparse due to them being uniformly distributed in the interval of [−π, π], we often 

model and represent sparsity in radar images based on their amplitude components alone. However, the 

complex nature of original images and the mechanism of coherent radar imaging require treatment of 

both amplitude and phase [55], even if we need amplitude images only as the end results. Nevertheless, 

there remains the issue of optimum sparse representation and sparsity/feature-enhanced imaging 

algorithms for compressible radar scenes, as elaborated below.  

We may enforce sparsity in amplitude alone in CS-based radar imaging by modifying objective 

functions for signal reconstruction. The so-called sparsity-enhanced methods for compressive radar 

imaging may be usefully explored, as described by [55]. The cost functional to minimize includes 

sparsity-enforcing weights on the vectors of amplitudes and their gradients, in addition to an l2-norm on 

the differences between complex-valued measurements Y and reconstruction-induced projections AX. 

To avoid potential conflicting of these two kinds of constraints, we need to employ joint optimization of 

amplitudes and phases via alternating minimization of objective functions. One acts explicitly on 

amplitudes with initial estimation of phases, while the other on phases based on updated estimates of 

amplitudes. The joint optimization is done through an iterative process until convergence. This approach 

provides the capability to preserve and enhance multiple distinct features on different patches of the 

underlying scene. Nevertheless, the algorithms employed above are tailor-made, and a joint optimization 

strategy tends to be computationally more expensive than the algorithm adopted in this paper, as it is 

originally developed for real-valued signal processing and imaging. 

4. Conclusions  

This paper has presented an information-theoretic strategy, which is seen to be complementary to the 

classic CS theory, to describe, analyze and interpret information dynamics in compressive radar imaging. 

The undertaken informational analyses focused on compressibility of radar scenes and  

trans-information of radar measurements about the underlying scene and the targets of interest, 

respectively. The amount of information conveyed by compressive sampling about targets of interest 

against clutter is more conservative as a measure of trans-information than that about the scene as a 

whole. The formulas for estimating the former (i.e., trans-information regarding targets of interest in 

clutter) constitute a major thrust of innovation of this paper. Quantification of compressible radar scene’s 

rate-distortion and trans-information of compressive radar measurements facilitates determination of 

necessary undersampling ratios. The necessary undersampling ratios derived for scene reconstruction vs. 

target detection/estimation, within certain MSE distortion thresholds, are seen to differ greatly, with the 

latter being more contingent, given that it has to accommodate the task of detecting targets of interest against 

clutter interference, as target detection/estimation is dependent, additionally, on target-to-background 

variance ratios (TBRs). A simulated experiment illustrated theoretical derivations and their use through 

computer-generated graphics visualizing scene-sampling-distortion inter-relationships with an 

information-theoretic perspective. This work will also be constructive for CS-radar sampling design via 

undersampling ratios determination and performance evaluation by using trans-information as upper 
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bounds on information content of reconstructed images. For instance, a specific radar imaging 

application with a particular scene and image distortion corresponds to a set of “points” over the 

information-theoretically generated graphics, and can thus be informed of its corresponding rate-

distortion, trans-information and necessary under-sampling ratio. Moreover, the general framework 

proposed in this paper can be applied to other computational imaging applications that capitalize on CS 

principles and techniques. 

The results derived regarding informational analysis and necessary sampling rates for compressible 

radar scene reconstruction from undersampled echo data can be extended to two scenarios. One concerns 

discrete support recovery only, which requires less amount of sampling obviously, while the other about 

conditions for exact reconstruction as opposed to approximate reconstruction, as presented here in this 

paper, although this is not elaborated here in this paper. Future research should, hopefully, also address 

issues related to real applications, as it is important to showcase CS theorems and their practicality in 

radar imaging and other fields.  
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