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Abstract: A Carnot type engine with a changing phase during the heating and the cooling is 

modeled with its thermal contact with the heat source. In a first optimization, the optimal 

high temperature of the cycle is determined to maximize the power output. The temperature 

and the mass flow rate of the heat source are given. This does not take into account the 

converter internal fluid and its mass flow rate. It is an exogenous optimization of the 

converter. In a second optimization, the endogenous optimization, the isothermal heating 

corresponds only to the vaporization of the selected fluid. The maximization of the power 

output gives the optimal vaporization temperature of the cycled fluid. Using these two 

optima allows connecting the temperature of the heat source to the working fluid used. For 

a given temperature level, mass flow rate and composition of the waste heat to recover, an 

optimal fluid and its temperature of vaporization are deduced. The optimal conditions size 

also the internal mass flow rate and the compression ratio (pump size). The optimum 

corresponds to the maximum of the power output and must be combined with the 

environmental fluid impact and the technological constraints. 
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1. Introduction 

The first thermal model applied to an engine was developed by Carnot [1]. He describes a series of 

ideal thermodynamic transformations to convert heat into mechanical energy. The main features of his 

concept are the isothermal heating and the isothermal cooling. He chooses a vapor engine with a phase 

change and an air piston engine as examples. Carnot introduces a fundamental efficiency limit for 

converting thermal energy into mechanical energy. The maximal efficiency of a Carnot engine is given 

by the expression = 1 − ⁄ , where  and  are, respectively, the temperature of the heat 

source and the heat sink. He clearly states that the nature of the fluid and its state do not affect this 

theoretical limit. However, in this approach, the working fluid is supposed to be at the heat source 

temperature during the isothermal expansion and at the cold sink temperature during the isothermal 

compression. These assumptions require thermal equilibrium between the working fluid and the heat 

source or sink during the thermal transfers (Figure 1a). These assumptions imply infinitely slow 

transformations and, under these conditions, zero power output. 

 
(a) (b) 

Figure 1. Entropy diagram of a Carnot cycle; (a) for an ideal Carnot engine; (b) for an ideal 

Carnot engine with thermal transfer consideration. 

Curzon and Ahlborn consider another fundamental limitation on efficiency that is caused by the rate 

at which heat can be exchanged between the working fluid and the heat reservoirs [2] (Figure 1b). They 

introduce an efficiency of the Carnot engine at maximum power output, which is given by the expression = 1 − ⁄ . Historically, this theoretical limitation was introduced by Novikov [3] and, 

simultaneously, by Chambadal in France [4]. Some recent articles [5,6] refer to an older paper of  

Yvon [7]. In this paper, Yvon introduced the optimal high temperature, which maximizes the mechanical 

power output as if it was a widely known and accepted result. These considerations have led to Finite 

Time Thermodynamics [8]. The Carnot ideal engine was extended to an irreversible one with a finite 

heat source and heat sink reservoirs (Figure 2) [9–12]. This system approach allows sizing an optimal 

Carnot engine independently of the working fluid and its state. The external fluids (heat source and cold 

sink) are considered limiting. This optimization is described as exogenous, that is, external to the 

converter. Finite Time Thermodynamics evolved to Optimal Thermodynamics in Finite Physical 

Dimensions [13]. 
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Figure 2. Entropy diagram of an irreversible Carnot engine with finite heat source and heat 

sink reservoirs. 

The working fluid choice is important and has been the subject of many articles, particularly for 

Rankine cycles [14–20]. The ideal working fluid must have good thermo-physical properties, but also 

adequate chemical stability in the desired temperature range. The fluid selection considerably affects the 

operating conditions, the environment impact, and the cost. In practice, a fluid that satisfies all the ideal 

fluid criteria does not exist. In this article, an endoreversible changing phase Carnot engine is studied, 

as shown in Figure 3. The vaporization and the condensation at a constant temperature are means to 

implement a Carnot engine. There is no technical description of a specific Carnot type engine in the 

present work; only a proposition of a general design process. It can be adapted to the Rankine engine 

and also to other technologies operating according to a cycle similar to the Carnot cycle [21]. 

 

Figure 3. Changing phase Carnot engine. 

The model used is an endoreversible engine (Figure 4). The hot fluid enters at temperature  and 

exits at temperature . The cold fluid enters at temperature  and exits at temperature . Heat 

transfer is taken into account here at the hot side only and not at the cold side. This simplifying 

assumption allows avoiding the temperature gap at the cold sink. It is equivalent to assuming known the 

condensation temperature or the condensation pressure in the condenser. Both physical quantities are 

strongly related to the environment. That is why two cases are covered in this work. Firstly, the low 

temperature is imposed equal to the ambient temperature . This corresponds to assuming that  = = = , which corresponds to Chambadal model [4]. Secondly, the low pressure is 

imposed equal to the atmospheric pressure. The cycle is optimized to maximize the mechanical power 

output. The parameters are the fluid characteristics, which are the temperature at the critical point, the 
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temperature at the triple point, and the latent heat of vaporization at the triple point. An identified 

expression of the latent heat of vaporization is given depending on the parameters and on the variable 

, the temperature of vaporization. This optimization is described as endogenous, that is, internal to the 

converter and independent of the heat source. 

 

Figure 4. Endoreversible heat engine. 

The last specific feature of this work is a way of linking exogenous and endogenous optima. This 

allows determining, for a given heat source temperature level and mass flow rate, the adapted working 

fluid, its optimal temperature of vaporization, and its optimal mass flow rate. The chosen criterion is 

thermodynamic. This optimum constitutes a tool for choosing the working fluid, even if it cannot be 

considered independently of environmental, technological, and economic criterions.  

2. General Endoreversible Carnot Engine Model 

2.1. Assumptions and Balances 

The engine diagram is given in Figure 4. The heat source is considered as a finite heat reservoir, the 

hot fluid enters at  and exits at . Symmetrically, the cold source is considered as a finite heat 

reservoir, the cold fluid enters at  and exits at . The cycled fluid is at  at the hot side and at  

at the cold side. To simplify, the assumption is added that  is known. Thus,  is a parameter as 

mentioned in Section 1. The steady state hypothesis is used so the entering heat rate is , the outgoing 

heat rate is  and the outgoing mechanical power is . The endoreversible case is considered, which 

corresponds to the case where the internal entropy production of the converter is neglected. The 

thermodynamic convention is used: each quantity going into the system is positive and the quantity going 

out is negative.  

The energy balance is: − = +  (1)

The entropy balance of the converter in the endoreversible case is: + = 0 (2)
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2.2. Exogenous Optimization 

The results of the general optimization are taken here for a Carnot engine. We can express the entering 

heat rate as: = ( − ) (3)

 is the heat source calorific rate: =  (4)

 is the mass flow rate of the heat source and  is the calorific capacity, assumed not variable 

during the heat transfer. 

The exchanger is supposed to be an ideal one, so the output temperature is equal to the high 

temperature of the internal fluid. The exchanger effectiveness is supposed to equal 1. We can write: = ( − ) (5)

Injecting (2) and (3) in (1), the power output is given by: − = ( − ) 1 −  (6)

For , , and  given, the optimal high temperature at maximum power output is the solution of − / = 0	 [5]: =  (7)

The corresponding maximum power output is: − = −  (8)

The entering heat rate becomes:  = −  (9)

The outgoing heat rate is:  = −  (10)

These three energy flows (Equations (8) to (10)) can be made dimensionless:  = 	;	 = ; = ; =  (11)

The expression of the optimal dimensionless temperature is:  =  (12)

The expression of the dimensionless power output is: − = −  (13)

The dimensionless entering heat rate is: = −  (14)

The dimensionless outgoing heat rate is:  
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= −  (15)

The optimal dimensionless temperature, the dimensionless power output, the dimensionless entering 

heat rate, and the dimensionless outgoing heat rate are plotted as a function of  in Figure 5a. The low 

temperature is fixed at an ambient temperature, assumed equal to 300	K . This choice of ambient 

temperature must be adapted to the considered environment. 

 
(a) (b) 

Figure 5. (a) Optimal high temperature, power output, entering heat flow rate and outgoing 

heat flow rate; (b) first law and second law efficiency behavior; for inlet temperature heat 

source variable and low temperature imposed equal to = 300	K.  

The first law efficiency corresponding to the power output divided by the entering heat rate is:  

= − = 1 −  (16)

The second law quality factor is: = 1 − = 11 +  
(17)

The evolution of the first law efficiency and the second law quality factor is given in Figure 5b for a 

Chambadal model ( = ) [4]. 

3. Changing Phase Carnot Engine  

3.1. Evolution of the Latent Heat of Vaporization with the Temperature 

In this section, a changing phase Carnot engine is considered (Figure 3). The transformation heat is 

supposed to be the latent heat of vaporization at . It imposes knowing the way that the latent heat of 

vaporization varies with . For a given fluid, the latent heat of vaporization is equal to zero at the 

critical temperature  and is supposed to be known at the temperature of the triple point : ( ) =  (18)

The latent heat of vaporization decrease with an increased of temperature can be modeled in a 

reasonable way using the following analytical equation: 
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( ) = −−  (19)

For a linear approximation of the latent heat of vaporization,  is equal to 1. In this approximation, if 

the saturation dome of the considered fluid is symmetric, the latent heat of vaporization is shown in 

Figure 6. The increase of the n value is also shown in the figure, in this case there is an adapted n value 

of between 2 and 3. A large selection of fluids with their main properties is given in Table 1. The properties 

are taken from the software Refprop. The considered fluids are chosen because their temperatures at the 

triple point are below 300	K. They are also chosen for their variable critical temperatures, ranked in 

increasing order, in the table. The knowledge of the latent heat of vaporization variation with temperature 

for each fluid allows an optimal estimation of 	by a least square regression, of which output is plotted 

together with the reference data. The comparisons for inorganic pure fluids are given in Figure 7. Figure 7a 

is the latent heat of vaporization of water and Figure 7b that of ammonia. A large selection of hydrocarbons 

is represented in Figure 8 ((a) butane, (b) isobutene, (c) cyclopentane, and (d) cyclohexane) and in Figure 

9 ((a) propane, (b) benzene, (c) decane, (d) toluene, and (e) acetone). Halogenated hydrocarbons are also 

considered. Some HCFC (HydroChloroFluoroCarbons) are given in Figure 10 ((a) R22 and (b) R123) 

and some HFC (HydroFluoroCarbons) are given in Figure 11 ((a) R32, (b) R125, (c) R134a, (d) R143a, 

and (e) R152a) and Figure 12 ((a) R227ea and (b) R245fa). Approximation (21) with different  values 

is acceptable for all of the selected fluids. The relative bias is given by: ( ) = ( ) − ( )( )  (20)

 

Figure 6. Approximation of the latent heat of vaporization for a symmetric dome of saturation. 

Table 1. Properties of the fluid selection. 

Substance 
Molecular 
formula 

Physical data Approximation data 

TC (K) TC (K)  (J/kg)  value  (%)  (%) 

R125  339 173 1.90 × 105 2.6 2.2 0.5 
R143a  346 161 2.67 × 105 2.6 1.6 0.4 
R32  351 136 4.63 × 105 2.6 2.7 0.5 
R22  369 116 3.03 × 105 2.5 2.2 1.1 

propane  370 86 5.63 × 105 2.6 1.7 1 
R134a  374 170 2.63 × 105 2.5 3.0 0.6 
R227ea  375 146 1.75 × 105 2.5 2.3 1.6 
R152a  386 155 4.06 × 105 2.5 1.7 0.6 
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Table 1. Cont. 

Substance 
Molecular 
formula 

Physical data Approximation data 

TC (K) TC (K)  (J/kg)  value  (%)  (%) 

ammonia  405 195 1.48 × 106 2.6 4.4 1.4 
isobutane  408 114 4.81 × 105 2.6 1.5 0.7 

butane  425 135 4.96 × 105 2.6 1.3 0.7 
R245fa  427 171 2.59 × 105 2.3 16 3 
R123  457 166 2.24 × 105 2.4 8.9 1.8 

acetone 508 179 6.49 × 105 2.4 5 1 
cyclopentane  512 180 4.87 × 105 2.5 25 2.2 
cyclohexane  554 279 4.04 × 105 2.5 1.5 0.7 

benzene  562 279 4.48 × 105 2.5 1.2 0.6 
toluene  592 178 4.92 × 105 2.3 5.8 2.2 
decane  618 244 3.93 × 105 2.3 2.7 1.4 
water  647 273 2.50 × 106 2.9 12 1.7 

The maximum average bias is 3% and relative to R245fa, which is acceptable (Table 1). The 

maximum relative error is for the cyclopentane (25%), which is high but is very close to the critical point 

value. At this point, the latent heat of vaporization is close to zero, so a small absolute error becomes a 

very large relative error. The other maximum relative bias has the same cause.  

(a) (b) 

Figure 7. Approximated latent heat of vaporization for (a) water and (b) ammonia. 

(a) (b)

Figure 8. Cont. 
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(c) (d) 

Figure 8. Approximated latent heat of vaporization for (a) butane; (b) isobutane;  

(c) cyclopentane; (d) cyclohexane. 

(a) (b) 

(c) (d) 

(e)

Figure 9. Approximated latent heat of vaporization for (a) propane; (b) benzene;  

(c) decane; (d) toluene; (e) acetone. 
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(a) (b) 

Figure 10. Approximated latent heat of vaporization for (a) R22 and (b) R123. 

(a) (b) 

(c) (d) 

(e) 

Figure 11. Approximated latent heat of vaporization for (a) R32; (b) R125; (c) R134a;  

(d) R143a; and (e) R152a. 
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(a) (b) 

Figure 12. Approximated latent heat of vaporization for (a) R227ea and (b) 245fa. 

3.2. Endogenous Optimization 

The entering heat rate depends on the latent heat of vaporization ( ):  = ( ) (21)

 is the cycled fluid mass flow rate.  

The outgoing mechanical power can be expressed with (2) and (21) as: − = ( ) 1 −  (22)

To maximize the outgoing mechanical power we have to solve: − = 0 (23)

The optimal high temperature, taking Equation (19) into account, is: 

= 12 ( − 1) + 4 − ( − 1)  (24)

 depends on the fluid and is between 2 and 3.  is the critical temperature of the considered fluid and 

 is assumed to be known. The result means that, for a given fluid, we know at which temperature the 

fluid must be evaporated to deliver the maximum power for an endoreversible cycle and a fixed 

condensation temperature. To view this result, the variation of the area of the cycle versus the 

evaporation temperature is shown in Figure 13 for a wet fluid. In Figure 13a, this area is represented in 

the entropy diagram. In Figure 13b, the area is directly plotted versus temperature . For =  or 

for = , the area is null. The optimal temperature is the temperature at maximal power output, which 

is equivalent to the maximum area. It is also valid for dry and isentropic fluids because it is only the 

vaporization which fixes the length of the rectangle. The height of the rectangle depends on the 

temperature difference. The optimization corresponds to the optimal allocation of both sides to maximize 

the surface area of the rectangle. Recalled that the low temperature is fixed. 
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(a) (b) 

Figure 13. Specific work variation with the high temperature (a) representation in the 

entropy diagram; (b) corresponding behavior. 

The maximum power output is: 

− = −− 1 −  (25)

The entering heat rate becomes:  

= −−  (26)

The outgoing heat rate is: 

= − −−  (27)

3.2.1. Temperature  Equal to the Ambient Temperature  

For the first case studied, the low temperature  is fixed and equal to the ambient one . The 
variation of the optimal dimensionless temperature = ⁄  with the increase of the critical 

dimensionless temperature = ⁄  is plotted in Figure 14 for different fluids. The vaporization 

temperature and the corresponding compression ratio for the fluid selection are listed in Table 2. Note 

that the condensation pressure at atmospheric temperature is very low for some fluids  

( 	 5 × 10 	Pa for water, decane and toluene), and quite low for acetone, cyclopentane, cyclohexane 

and benzene ( 5 × 10 	Pa). This makes the implementation difficult because compression ratios 

are not physically acceptable. Moreover, for some fluids (R125, R134a, R32, R22, propane, R134a, 

R152, and ammonia) the low pressure is higher than 5 × 10 	Pa. This situation is not an ideal one 

because it induces high evaporation pressure, which imposes some technological constraints (principally 

the choice of exchanger and the maintenance cost). 
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Figure 14. Optimal high temperature for variable critical temperature with = 300	K. 

Table 2. Optimal vaporization temperature and corresponding compression ratio for  

fluid selection. 

Substance 

TL imposed at 300 K PL imposed at 1 × 105 Pa 

TL (=T0) PL  PH  TL PL (=P0)  PH  

R125 300 1.45 × 106 327 ± 2 2.80 × 106 1.9 225 1 × 105 300 ± 1 1.46 × 106 15 

R143a 300 1.32 × 106 332 ± 1 2.81 × 106 2.1 226 1 × 105 305 ± 1 1.49 × 106 15 

R32 300 1.77 × 106 335 ± 1 4.17 × 106 2.4 221 1 × 105 306 ± 1 2.08 × 106 21 

R22 300 1.10 × 106 347 ± 1 3.27 × 106 3 232 1 × 105 320 ± 1 1.83 × 106 18 

propane 300 9.98 × 105 348 ± 1 2.86 × 106 2.9 231 1 × 105 321 ± 1 1.65 × 106 16 

R134a 300 7.03 × 105 351 ± 1 2.49 × 106 3.6 247 1 × 105 330 ± 1 1.55 × 106 16 

R227ea 300 4.81 × 105 351 ± 1 1.77 × 106 3.7 257 1 × 105 334 ± 1 1.21 × 106 12 

R152a 300 6.30 × 105 358 ± 1 2.65 × 106 4.2 249 1 × 105 339 ± 1 1.72 × 106 17 

ammonia 300 1.06 × 106 371 ± 1 6.04 × 106 5.7 240 1 × 105 346 ± 1 3.55 × 106 35 

isobutane 300 3.70 × 105 372 ± 1 1.98 × 106 5.4 261 1 × 105 357 ± 1 1.46 × 106 15 

butane 300 2.58 × 105 383 ± 1 1.87 × 106 7.3 272 1 × 105 372 ± 1 1.51 × 106 15 

R245fa 300 1.59 × 105 382 ± 1 1.55 × 106 10 288 1 × 105 377 ± 1 1.39 × 106 14 

R123 300 9.78 × 104 401 ± 1 1.41 × 106 14 301 1 × 105 401 ± 1 1.42 × 106 14 

acetone 300 3.33 × 104 432 ± 1 1.31 × 106 39 329 1 × 105 444 ± 1 1.68 × 106 17 

cyclopentane 300 4.55 × 104 434 ± 1 1.44 × 106 32 322 1 × 105 444 ± 1 1.71 × 106 17 

cyclohexane 300 1.41 × 104 458 ± 1 1.04 × 106 74 353 1 × 105 483 ± 1 1.56 × 106 16 

benzene 300 1.38 × 104 462 ± 1 1.20 × 106 87 353 1 × 105 488 ± 1 1.80 × 106 18 

toluene 300 4.18 × 103 473 ± 1 7.67 × 106 184 383 1 × 105 515 ± 1 1.50 × 106 15 

decane 300 2.07 × 102 492 ± 1 2.49 × 106 1202 447 1 × 105 558 ± 1 8.90 × 106 8.9 

water 300 3.54 × 103 507 ± 1 3.62 × 106 1023 373 1 × 105 554 ± 1 6.51 × 106 65 

3.2.2. Pressure  Equal to the Ambient Pressure  

A second optimization is possible. The low pressure is fixed to the atmospheric pressure  and the 

low temperature is the temperature of condensation at the atmospheric pressure.  is deduced from the 
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nature of the fluid (especial temperature of vaporization at ambient pressure). The optimal results are 

given in Figure 15 and Table 2. The condensation temperature under these conditions is equal to  for 

R123, both hypotheses are equivalent for this fluid. For a large range of selected fluids, the low 

temperature is lower than the ambient one (R125, R143a, R32, R22, propane, R134a, R227ea, R152a, 

ammonia, isobutene, butane, and R245fa). That is not physically acceptable. A compromise between 

low temperature and low pressure is necessary for getting physically and technologically realistic 

conditions. This compromise depends on the selected fluid. 

 

Figure 15. Optimal high temperature for variable critical temperature with 	= 1.0 × 10 	Pa.  

4. Endogenous and Exogenous Optimization of a Carnot Engine 

The external fluid is considered as a limiting factor so the energy balances are the same as with the 

exogenous case (Equations (5) and (6)). The Objective Function ( ) to maximize is the mechanical 

power is: = − = ( − ) 1 −  (28)

There is a supplementary constraint  on the mass flow rate. The heat rate transferred by the heat source 

to the cycled fluid is the energy of vaporization. Equations (5) and (21) are equals: = ( − ) − ( ) = 0 (29)( ) can be replaced by its value (Equation (19)). The system has an optimum, which maximizes the 
mechanical power output for the variables  and . The Lagrangien ( ) is: = + = ( − ) 1 − + ( − ) − ( )  (30)

The system to solve is: 
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= 0= 0
= 0

 (31) 

The optimal solutions are: =
= − √ − − −  (32) 

The dimensionless mass flow rate  is: 

= = − √ − − −
 (33) 

Recall that the assumption of an ideal exchanger is made, it means that the exchange area is infinite. 

This assumption affects the optimal mass flow rate. 
The dimensionless high temperature  is: 

= =  (34)

The corresponding maximal power output, the entering heat rate, and the outgoing heat rate are the same 

as the exogenous optimization (Equations (8)–(10)). Coupling the endogenous and exogenous equation 

permits to add a constraint to optimize the mass flow rate of the cycled fluid. 

To have the better fluid for a given heat source, we seek to determine the optimal critical temperature 

depending on the entering heat source temperature. For this, the optimization results are equalized to 

those of the endogenous optimization. Indeed, the high temperature must satisfy: =  (35)

To satisfy (35), the heat source temperature  and the critical temperature of the working fluid  are 

linked by the relation: = ( − 1) +  (36)

This relation depends on the fluid. The dimensionless critical temperature is: =  (37)

We can see in Figure 16a that the behavior of the dimensionless optimal critical temperature  and 
the optimal high temperature of the cycled fluid  for variable entering heat source temperature  = ⁄ , for different fluids and = 300	K. The corresponding dimensionless mass flow rate is 
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given in Figure 16b. The corresponding values are listed in Table 3. For the case where  is fixed to 1 × 10 	Pa, the behavior of the results are given in Figure 17a,b. 

(a) (b) 

Figure 16. (a) Optimal critical temperature and optimal vaporization temperature;  

(b) internal mass flow rate; for entering heat source temperature variable and = 300	K. 

(a) (b) 

Figure 17. (a) Optimal critical temperature and optimal vaporization temperature; (b) 

internal mass flow rate; for entering heat source temperature variable and 	= 1.0 × 10 	Pa. 

Table 3. Optimal high temperature, heat source temperature and mass flow rate for  

different fluids. 

Substance 
TL imposed at 300 K PL imposed at 1 × 105 Pa 

      

R125 327 ± 2 358 0.280 300 ± 1 401 0.589 
R143a 332 ± 1 368 0.323 305 ± 1 412 0.635 
R32 335 ± 1 376 0.368 306 ± 1 424 0.713 
R22 347 ± 1 402 0.487 320 ± 1 443 0.786 

propane 348 ± 1 404 0.504 321 ± 1 448 0.830 
R134a 351 ± 1 410 0.467 330 ± 1 441 0.681 
R227ea 351 ± 1 411 0.491 334 ± 1 436 0.675 
R152a 358 ± 1 430 0.538 339 ± 1 462 0.756 

ammonia 371 ± 1 460 0.593 346 ± 1 500 0.835 
isobutane 372 ± 1 464 0.686 357 ± 1 489 0.863 
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Table 3. Cont. 

Substance 
TL imposed at 300 K PL imposed at 1 × 105 Pa 

      

butane 383 ± 1 491 0.757 372 ± 1 509 0.880 
R245fa 384 ± 1 488 0.736 377 ± 1 494 0.783 
R123 402 ± 1 537 0.890 402 ± 1 537 0.888 

acetone 432 ± 1 617 1.14 444 ± 1 598 1.02 
cyclopentane 434 ± 1 628 1.16 445 ± 1 615 1.06 
cyclohexane 458 ± 1 698 1.22 483 ± 1 660 1.01 

benzene 462 ± 1 712 1.26 488 ± 1 674 1.06 
toluene 478 ± 1 750 1.57 516 ± 1 694 1.22 
decane 492 ± 1 788 1.59 558 ± 1 696 1.02 
water 507 ± 1 893 1.80 554 ± 1 824 1.45 

For example, for a heat source of 1	kg/s of industrial flue gas at 410	K, the calorific rate is equal to 1000	W/K . For a low temperature equal to the ambient temperature at 300	K , the optimal high 

temperature is 351	K. The corresponding fluid is the R134a. The optimal mass flow rate of internal fluid 

is 0.537	kg/s.  
5. Conclusion  

A Carnot type engine is modeled and optimized. The heating corresponds to the vaporization of the 

internal working fluid and the cooling of the condensation. The temperature of condensation is supposed 

known and the internal dissipations (entropy production) are neglected. A known optimization of a 

Carnot engine with the Chambadal model is recovered and completed by an endogenous optimization. 

This second optimization takes into account the working fluid and the behavior of its latent heat of 

vaporization. Making these two optima equal allows linking the heat source to the internal cycle. For a 

given temperature, mass flow rate, and composition of the waste heat to recover, an optimal fluid and its 

temperature of vaporization is proposed. The optimal conditions size also the internal mass flow rate and 

the compression ratio (pump size). The optimum corresponds to the maximum of power output, and 

must be combined with the environmental fluid impact and the technological constraints. These results 

have been proposed for pure fluids. Extension to mixtures is envisioned. 
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