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Abstract: Signature schemes, proposed in 1976 by Diffie and Hellman, have become
ubiquitous across modern communications. They allow for the exchange of messages
from one sender to multiple recipients, with the guarantees that messages cannot be
forged or tampered with and that messages also can be forwarded from one recipient
to another without compromising their validity. Signatures are different from, but no
less important than encryption, which ensures the privacy of a message. Commonly used
signature protocols—signatures based on the Rivest–Adleman–Shamir (RSA) algorithm,
the digital signature algorithm (DSA), and the elliptic curve digital signature algorithm
(ECDSA)—are only computationally secure, similar to public key encryption methods.
In fact, since these rely on the difficulty of finding discrete logarithms or factoring
large primes, it is known that they will become completely insecure with the emergence
of quantum computers. We may therefore see a shift towards signature protocols that
will remain secure even in a post-quantum world. Ideally, such schemes would provide
unconditional or information-theoretic security. In this paper, we aim to provide an
accessible and comprehensive review of existing unconditionally securesecure signature
schemes for signing classical messages, with a focus on unconditionally secure quantum
signature schemes.
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1. Introduction

Non-orthogonal quantum states cannot be perfectly distinguished from each other, nor perfectly
copied, and the precision of both preparation and measurement of quantum states is limited by
uncertainty relations. Such counter-intuitive properties might at first seem to pose limits on practical
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applications, but can in fact also be useful. The security of quantum cryptography rests exactly on
such quantum-mechanical features. Arguably, research on quantum cryptography started with Wiesner’s
work on “unforgeable subway tokens” [1] (which was actually only published long after its conception;
see [2] for a short, but entertaining account of early research on quantum cryptography). After Bennett’s
and Brassard’s 1984 paper on quantum key distribution (QKD) [3], quantum cryptography began to
receive more interest, and today, QKD is one of the most active and furthest developed topics in quantum
information science [4,5].

Modern cryptography, however, encompasses much more than encryption of messages [6].
Functionalities such as authentication, signatures, oblivious transfer, bit commitment and Byzantine
agreement are important, for example, in communication, for multi-party computation and for
secure voting schemes. Early work on quantum cryptography also looked to applications other than
encryption [2], but nevertheless, the term “quantum cryptography” is often used as synonymous with
quantum key distribution. In recent years, however, applications other than QKD have again begun to
receive more interest, both theoretically and experimentally. The focus of this review will be quantum
signature schemes. Signature schemes, proposed in 1976 by Diffie and Hellman [7], are crucial to
digital communications and have become ubiquitous in the modern world. Their aim is to provide a
way to securely sign (classical) messages, so that they cannot be forged or tampered with. Crucially,
in a signature scheme, messages are also transferable, meaning that a recipient of a signed message
can check whether another recipient is likely to accept that message if it is forwarded, without there
and then contacting the other recipient. Broadly speaking, this distinguishes signature schemes from
authentication schemes, which ensures two communicating parties that messages have not been tampered
with, but without necessarily guaranteeing transferability. Since we are interested in signing classical
messages, this review will not cover schemes designed to authenticate or sign quantum messages, such
as [8,9]. We also do not cover either classical or quantum schemes for so-called blind signatures, where
a signer does not learn about the message being signed [10].

Two-party authentication of classical messages can be efficiently accomplished “classically” with
information-theoretic security [11]; this is indeed used also in full implementations of QKD. Commonly
used digital signature schemes, however, only provide computational security, relying on public key
cryptography. While security is only computational, it implies ease of use, since public keys can
be easily distributed, for example, by a certificate authority. Quantum signature schemes for signing
classical messages, on the other hand, can be made information-theoretically secure, similar to the
information-theoretic security of QKD. “Information-theoretic” or “unconditional” security means that
security does not rest on computational assumptions, but instead can be proven to hold; in the case
of QKD and quantum signatures, security is guaranteed by the laws of quantum mechanics. These
protocols remain secure as long as adversaries are bound by what is possible according to quantum
mechanics. Naturally, it is important that the implementation of such protocols does what it is supposed
to, otherwise loopholes may arise.

It is also possible to construct “classical” unconditionally secure signature (USS) schemes [12–14].
We thus have to ask what the advantages of quantum unconditionally secure schemes might be, given that
implementing a quantum protocol is usually more cumbersome than implementing a classical protocol.
The answer to this question is not fully known, but the advantage of quantum signature schemes may



Entropy 2015, 17 5637

lie, e.g., in what resources are needed or in exactly which parties have to be connected by what type of
communication channels and in how many of, e.g., pairwise quantum channels are needed. All known
information-theoretically secure “classical” signature schemes also use shared secret keys, which would
have to be obtained in an information-theoretically secure way, for example using QKD, making them
indirectly rely on quantum features. In addition, the scheme in [12] uses an authenticated broadcast
channel, and the scheme in [13] is phrased in terms of a trusted omnipotent initialiser who sets up
the scheme and who would have unlimited power to forge messages, aid in repudiation, and so on.
Quantum signature schemes may be of interest mainly if one wants to do without such extra resources
and trust assumptions. For this reason, in this review we will not cover, for example, quantum signature
schemes that make use of a trusted third party [15], since if this exists, classical unconditionally secure
signature schemes are possible. Some confusion in terminology exists as to exactly what defines the
functionality of a signature scheme or digital signature scheme. One may also take the view that a
“signature” or “digital signature” must have the public verifiability implied by public key cryptography
and that “unconditionally secure signatures” should instead be called perhaps “transferable message
authentication codes”, or similar, but we have not found this choice of terminology in the literature.
Instead, we are following existing terminology introduced in [12,16,17].

The aim of this review is to provide a short and accessible account of quantum signature schemes,
mainly intended for readers with a background in quantum physics. To date, there is very little work done
on unconditionally secure signature schemes, whether “classical” or quantum, and with this review, we
hope to inspire more work on this topic. We start by defining basic properties of signature schemes
and outlining how public key-based (“classical”) signatures work. We then informally explain what
one-way and hash functions are and how these can be used in signature schemes, followed by some
remarks on existing unconditionally secure “classical” signature schemes. We then proceed to talk about
quantum signature schemes, starting with the initial work by Gottesman and Chuang [16] and followed
by subsequent work on quantum signature schemes that are more suitable for real applications. Both
experimental and theoretical work is reviewed. Far from all proposed schemes have been realized; we
mention all experimental full or partial realisations of quantum signatures of which we are aware. At the
end, we briefly discuss open problems and future research directions.

2. Basic Properties of Signature Schemes

Signature protocols have three aims: message integrity (the message has has not been altered in
transit); message authentication (that the sender of the message is authentic); and non-repudiation (the
sender cannot deny the creation of a message) [6]. Depending on the mechanism for dispute resolution,
non-repudiation is related to transferability, which means that a recipient of a message can check whether
it is likely to be accepted by another recipient if the message is forwarded. Informally, a signature scheme
is secure if it has the following three properties [17]:

(1) Unforgeability: A dishonest party should not be able to successfully send a message pretending to
be someone else.

(2) Non-repudiation: A signer should be unable to successfully deny that he sent a message signed
with his signature.
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(3) Transferability: If a verifier accepts a signature, he should be confident that any other verifier (e.g.,
a judge) would also accept the signature.

It is important to stress that for transferability, a recipient should be able to test, upon receipt
of a signed message and without any further interaction with any other party, whether one or more
other recipients are likely to accept the message if it is forwarded. Formal security definitions do not
currently exist for general quantum signature protocols. Instead, authors have used the above criteria
to show that, for their specific protocol, participants are unable to forge or repudiate and that messages
are transferable, except with negligible probability. Recently, Swanson and Stinson [17] produced a
formal description of the security requirements of “classical” unconditionally secure signature schemes
(described in Section 3). These definitions can be adapted to quantum signature schemes [18] (described
in Section 4), albeit with some modifications. For example, in [17], it is implicitly assumed that there
is only one signature for each message that will pass verification with all users, whereas for existing
quantum signature schemes, there may be more than one such signature, without altering the actual
practical functionality of the scheme.

Since messages may be transferred from one recipient to another, in the minimal signature scenario,
classical or quantum, there are three parties: one sender, whom we will refer to as “Alice”, and two
recipients, referred to as “Bob” and “Charlie”. It is important to stress that, unlike in QKD, where
sender and receiver are assumed to be honest, in a signature protocol, any party could be dishonest. This
means that there must be a pre-agreed dispute resolution procedure. For example, imagine a three-party
scenario where Alice is dishonest and sends a valid signature to Bob who accepts it. At some point
in the future, Alice tries to repudiate and claims that she did not send the signed message. If Bob
maintains that she did, how do they decide who is lying? An obvious solution, and the one assumed
for the quantum signature protocols presented in this review, is for all participants to vote and take
the majority decision. In this example, then, Bob would forward the signed message on to Charlie,
who would accept it as valid (by transferability). Then, both Bob and Charlie would correctly decide
that Alice did in fact send the message. Majority voting should, if the scheme is correctly designed,
lead to the correct outcome whenever at least half of the participants are honest. It can be seen that
in the three-party case with majority voting, non-repudiation and transferability are closely linked. Any
such three-party scheme satisfying unforgeability and transferability will automatically be secure against
repudiation attempts. Therefore, when proving security in this scenario, one must show that for the
protocol considered, two conditions hold. First, the probability of Bob (or Charlie) being able to find
a message-signature pair (which has not come from Alice) that Charlie (or Bob) will accept as valid is
negligibly small. This usually means showing that the probability decays exponentially in the size of the
signature length. Second, one must show that if Bob (or Charlie) accepts a message-signature pair as
valid, except with negligible probability, Charlie (or Bob) will also accept the message-signature pair as
valid. As mentioned above, general security definitions are a recent development, and as such, existing
security proofs have not been written in terms of the new security framework.

In general, there are many possible dispute resolution procedures, each with different trust
assumptions. One may have a single arbiter (a trusted party) whose decision is final in resolving disputes.
Alternatively, one may decide that certain parties are more trustworthy than others and implement a
weighted voting system. The choice of dispute resolution method will depend on the specific scenario
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in which the signature scheme will be used. It is expected that dispute resolution will be used relatively
rarely and only as a last resort. If majority voting is used, all participants must be contacted, which may
take considerable effort. If a trusted party resolves disputes, dispute resolution is akin to going to court.

3. “Classical” Signature Schemes

3.1. Public-Key Digital Signatures

A widely used concept in classical cryptography is the one-way function. Informally, this is a function
whose output is easy to compute given an input, but whose input (pre-image) is hard to compute given an
output. A trapdoor function is a one-way function whose pre-image becomes easy to compute given an
output, as well as an associated secret. A standard example is prime factorisation: given two large prime
numbers, it is easy to compute their product, but given their product, it is believed to be computationally
difficult to find the prime factors, unless more information is given as well. This is the basis of
Rivest–Adleman–Shamir (RSA) [6] encryption schemes, where, roughly speaking, the product of the
two primes is the public key, and the prime numbers themselves are the private key. Anyone with access
to the public key can encrypt messages, but only those with access to the private key can decrypt the
messages. No one-way function has been proven to be information-theoretically secure. In fact, proving
the existence of such a one-way function would imply P 6= NP .

Roughly speaking, then, if a message can be correctly decrypted using the public key belonging to
a particular sender, then it follows that the message must have been encrypted using the private key for
that sender; hence that the message originated from this sender and has not been altered. Any honest
party in possession of the correct public key will reach the same conclusion, implying that messages
are transferable. In practice, it is common to create a signature scheme using slightly modified versions
of existing public key encryption methods. The most commonly used digital signature schemes are the
digital signature algorithm (DSA) [19] and the elliptic curve digital signature algorithm (ECDSA) [20],
which have been the standard in the U.S. since 1998. Although slightly different from RSA encryption,
the general principle is the same, with security derived from the assumed computational difficulty of
finding discrete logarithms. Given the widespread usage of RSA, DSA and ECDSA, it was perhaps
unsettling (and exciting) when it was shown [21] that quantum computers could efficiently factorise
prime numbers and find discrete logarithms. This means that any scheme relying on these problems will
become completely insecure in a post-quantum world.

A natural question is then: are there any signature protocols, classical or quantum, that are secure
if quantum computers exist? One solution is to start using quantum signature schemes to generate
unconditional security, but there may also be entirely “classical” encryption and signature methods that
remain computationally secure in the presence of quantum computers [22]. Even if quantum computers
do not yet exist, perhaps we should already start worrying. In order to protect against future security
breaches by an eavesdropper listening in on communications now and breaking the cryptographic
scheme later on when better algorithms or quantum computers become available, perhaps we should
already be using more secure cryptographic protocols. This can be used as an argument for quantum
key distribution, with the aim of using the generated secret key for message encryption using the
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one-time pad, which essentially is the only encryption method that is provably information-theoretically
secure [23]. For signature schemes, the issue with future security breaches is still present, but somewhat
less serious. If we anticipate that a signature scheme is about to be broken, we can re-sign the data using
a stronger signature scheme. However, if a signature scheme has already been broken, then security is
lost; an adversary may have tampered with the data and forged a signature, and obviously, re-signing
with a stronger scheme no longer helps.

3.2. Cryptographic and Universal Hash Functions

One-way functions are closely related to hash functions, and both can be used for signature schemes
and authentication. In modern computer science, there are several types of hash functions with different
properties depending on their intended usage. Roughly speaking, a hash function is an easily computable
function that maps a longer message to a shorter string, called a hash or a tag, of shorter, often fixed,
length. Given a tag, it may or may not be easy to compute a message corresponding to the tag; that is,
the hash function may or may not be a one-way function. A simple example where it is easy to find a
message corresponding to a given tag is if the tag simply is the XOR of all of the message bits. Strictly
speaking, such a checksum or hash sum is again slightly different from a hash function in its detailed
properties, but this example nevertheless serves well as an illustration. Checksums are useful, e.g., to
detect unintentional mistakes in a message, such as a bank account number or social security number.
Another application where it is not necessary that a hash function is hard to invert is if it is used to
accelerate data lookup. A fingerprint is another related concept; this maps a large data item to a much
shorter string, to be used, for example, to facilitate a comparison between large data items.

For authentication and signature schemes, hash functions where it is difficult to find messages
corresponding to a given tag are of more interest. There are two main types of such hash functions,
cryptographic hash functions and universal hash functions. These are special types of one-way functions
commonly used in computer science and are particularly useful in many cryptographic protocols. As
explained below, cryptographic hash functions can be used for signature schemes, just as any one-way
function can. Two important situations where universal hash functions can be used are message
authentication with information-theoretic security [11] and privacy amplification in QKD [24].

Somewhat more formally, we can demand that a cryptographic hash function should have the
following three properties [6]:

(1) Pre-image resistance: Given h(x), it should be difficult to find x, that is, these hash functions are
one-way functions.

(2) Second pre-image resistance: Given x1, it should be difficult to find an x2, such that h(x1) = h(x2).
(3) Collision resistance: It should be difficult to find any distinct pair x1, x2, such that h(x1) = h(x2).

Since there are no one-way functions that are known to be provably more difficult to invert than to
compute, the security of cryptographic hash functions is computational. This also then holds for signature
and authentication schemes constructed from cryptographic hash functions.

Somewhat different from a cryptographic hash function, a universal hash function is instead a
collection of hash functions, from which one picks one particular function. Exactly which hash function
one picks is determined by a secret shared key. Individually, the hash functions in the set do not have to
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satisfy Properties 1–3 above. Given knowledge of a certain number of messages and their hash values,
but without knowledge of the specific hash function chosen, the hash values behave like independent
random variables. That is, knowledge of the hash of a certain number of messages gives no information
regarding the hash value of any other distinct message. To come up with another message-hash pair, one
can do no better than guessing (or if the function is “almost universal”, at least not much better than this).

More formally, suppose H is a set of hash functions, mapping longer messages to shorter hashes. H is
strongly universaln if given any n distinct messages x1, x2, . . . , xn and (not necessarily distinct) hashes
y1, y2, . . . yn, then the number of hash functions taking x1 to y1, x2 to y2, etc., is equal to |H|/|T |n, where
|H| is the number of hash functions and |T | the number of possible hashes. It is this property of universal
hash function sets that makes them useful in protocols desiring information-theoretic security. Wegman
and Carter [11] give a construction by which it is efficient to specify which of the hash functions in
the set one picks. If the messages have n bits and hashes have t bits, then this takes only of the order
t log n bits. The scheme is “almost strongly universal”, and Wegman and Carter describe how this can
be used, e.g., to construct an efficient unconditionally secure authentication scheme. It is this type of
authentication scheme that is used in a full implementation of QKD, in order to make the key generation
(or key expansion) unconditionally secure.

3.3. Lamport–Diffie One-Time Signatures

An interesting class of digital signatures, closely related to the proposed schemes for quantum
digital signatures, are hash-based digital signatures. Lamport [25] introduced the concept of a one-time
signature scheme that can be securely implemented using any collision-resistant one-way function.
Collision-resistance was defined above and means, loosely speaking, that the probability for two (or
more) input values is sufficiently unlikely to be mapped to the same function value. To illustrate such a
scheme, imagine that Alice wants to send a single signed bit, zero or one, at some point in the future. She
will choose two random inputs, k0 and k1, to a collision resistant one-way function f and compute f(k0)
and f(k1). The public key is then {(0, f(k0)), (1, f(k1))}. Since the function is assumed to be one-way,
potential forgers cannot find an input generating f(k0) or f(k1). To send a signed one-bit message, b,
Alice would send (b, kb). The recipient would apply the publicly known f to kb and accept the message
only if f(kb) matches the public key. Once the message is sent, the public key cannot be re-used and
must be discarded, hence the name “one-time signature scheme”.

In [26], Merkle extended the one-time signature scheme to make it re-usable, though only for a
finite number of messages. This inefficiency in terms of public key reusability meant that hash-based
digital signatures have been largely ignored in favour of the more efficient ECDSA scheme. However,
since ECDSA will be insecure in a post-quantum world, hash-based signatures are gaining in popularity
as they seem to be much more resistant to attacks from quantum computers (we note here that there
are alternatives to hash-based signatures in post-quantum cryptography, for example lattice-based
cryptography, but these similarly provide only computational security and are not considered in this
review). Still, to prove the security of these post-quantum schemes, it must be assumed that the function
used is a (classical) one-way function resistant to efficient quantum inversion algorithms [27]. Again, it
should be stressed that it has never been proven that such a function exists, even for classical computers;
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it is only an expectation. Nevertheless, efficient quantum algorithms are difficult to find, and although
there is an efficient quantum algorithm for factoring, making RSA insecure, it is hoped that hash-based
signatures will remain computationally secure, even in a post-quantum world.

Even assuming the existence of one-way functions, all such post-quantum signature schemes
provide only computational security and can be broken with enough time or computational power.
Quantum signatures and classical unconditionally secure signature schemes, on the other hand, provide
unconditional security. The first version of quantum signature schemes, including the one in [16], are
in fact quantum analogues of the Lamport–Diffie one-time signature scheme. They take advantage of
the fact that quantum mechanics can give us provably secure one-way functions, as explained below in
Section 4.1.

3.4. Unconditionally Secure “Classical” Signature Schemes

All widely used classical digital signature schemes give only computational security, but there is no
fundamental reason that this should be the case. In fact, completely classical schemes for unconditionally
secure signatures (USS) have been proposed, although this is by no means a well-investigated research
topic. This is mainly due to the popularity of public key-based signature schemes, due to their ease
of use and favourable scaling properties. As a consequence, there are still no widely accepted precise
definitions of what it means for a protocol to be an unconditionally secure signature scheme and
exactly what security requirements must be satisfied. In this review, we follow the definitions and
security requirements set out in [17], which were stated informally in Section 2. Since quantum
signature schemes very likely are more cumbersome to implement than any classical scheme, ideally to
motivate us to investigate quantum signature schemes, these should have some advantages over classical
unconditionally secure signature schemes. It is therefore important to know exactly what the properties
of classical USS schemes are.

Chaum and Roijakkers were the first to propose an USS scheme [12]. Given an authenticated
(classical) broadcast channel and pairwise secret authenticated (classical) channels, this scheme makes
use of the untraceable sending protocol from [28] in order to send a single signed bit. In order to
send longer messages, the protocol should be iterated, leading to a signature length that scales linearly
with the size of the message. This protocol can be made unconditionally secure, because it does
not rely on the use of assumed one-way functions. Instead, the sender’s signature contains elements
from all participants sent anonymously using the untraceable sending protocol. Intuitively, this is what
guarantees transferability: a dishonest sender does not know which part of the signature came from
which participant, so any mismatches will be spread evenly between all participants. Security against
forging is guaranteed because all participants send their elements of the signature over secret channels,
so no one, except the sender, can reproduce the full signature.

The USS scheme proposed by Hanaoka et al. [13] makes some important improvements over [12]
at the cost of introducing a trusted authority who creates and distributes keys to each participant.
For each of the n users, U1, ..., Un, the trusted authority uniformly and randomly picks an ω-vector,
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vi, the components of which are elements of the finite field Fq. The trusted authority also constructs
the polynomial

F (x, y1, ..., yω, z) =
n−1∑
i=0

ψ∑
k=0

ai0kx
izk +

n−1∑
i=0

ω∑
j=1

ψ∑
k=0

aijkx
iyjz

k (1)

by choosing the coefficients aijk uniformly at random from Fq. The variables x, yi and z are free variables
in the polynomial, used for signing and verifying messages (see below). It is assumed that both the
message and each user’s identity is described by an element in Fq, i.e., m,Ui ∈ Fq for i = 1, ..., n. The
trusted authority then secretly distributes the following to each participant:

(1) A signing key: si = F (Ui, y1, ..., yω, z);
(2) A pair of verification keys: vi and ṽi = F (x, vi, z).

Note that the signing keys, si, and the verification keys, ṽi, are actually polynomials with coefficients
in Fq. The identities of users (i.e., the Ui ∈ Fq) are public, while the signing and verification keys, as
well as the polynomial F , are secret. To sign a message, m, user Ui would send (m,α) to, say, user Uj ,
where α = F (Ui, y1, ..., yω,m). To verify the message, user Uj calculates

r1 = F (Ui, vj,m)

r2 = α|(y1,...,yω)=vj .

User Uj accepts the message if and only if r1 = r2. The security of this protocol derives from the fact
that each participant has partial (but not full) knowledge of the polynomial F . Since their knowledge
of the polynomial F is limited, it is highly unlikely that they will be able to forge a message. Further,
the participants do not know what knowledge other participants have, i.e., the verification keys are kept
secret. It is this that guarantees transferability. In [17], a proof of the security of this scheme is presented
in terms of their general security criteria.

Unlike the original USS scheme, the scheme by Hanaoka et al. in [13] can be used to sign longer
messages, and the length of the signature is shown to be optimal in the sense that it achieves a lower
bound on the required memory size of a signature. A second advantage of this scheme is that it admits
unlimited transferability between participants. This is in contrast to all of the quantum signature schemes
presented below, as well as the USS in [12], where transferability requires the verification parameters
sa, sv to be such that sa < sv. Here, the parameter sa refers to a threshold used by a recipient who
receives a message directly from a sender and sv to a threshold used for a forwarded message.

Given the existence of classical schemes that are unconditionally secure, one may wonder why
quantum signatures are needed at all. Although there is no definitive answer, so far it seems that
quantum signature schemes are able to achieve the same functionality as classical USS, while making
fewer assumptions. In any cryptographic protocol, assumptions are crucial to the practical viability and
security of the scheme. In [12], the resources assumed—an authenticated broadcast channel and secret
authenticated classical channels—are expensive. The secret authenticated channels between participants
would require pairwise shared secret keys of the same length as the length of the messages being
transmitted, since information-theoretic secrecy requires application of the one-time pad. Further, it
is known that between participants sharing only pairwise authenticated channels (even secret ones),
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a broadcast channel is only achievable if fewer than 1/3 of the participants are dishonest [29]. The
improvements in [13] come at the cost of introducing a trusted authority, whose role is to distribute
the signing and verification keys to each participant. In reality, this makes the protocol vulnerable to
targeted attacks against the trusted authority or even to dishonesty or incompetence on the part of the
trusted authority. In contrast, the quantum signature protocols we will cover in this review do not assume
either a broadcast channel or the existence of a trusted authority and are able to partly remove the need
for secret classical channels by employing quantum channels instead.

We end this section by mentioning an “almost classical” signature scheme presented as “P2”in [14].
It provides unconditional security while only requiring authenticated classical channels between all
participants, as well as secret classical communication channels, which, for information-theoretic
security, can be realised through QKD using untrusted, noisy quantum channels. Each pair of participants
performs QKD using the noisy quantum channels and authenticated classical channels to generate shared
secret keys, which can then be used to privately send classical messages via the one-time pad. For each
future one-bit message, Alice will pick two uncorrelated random bit strings of length L, which we
denote as A0

B, A1
B, A0

C and A1
C . The superscript denotes the future message, while the subscript denotes

the participant to whom she will send the bit string. She will use the secret keys (generated using QKD)
and the classical channels to privately send A0

B, A1
B to Bob and A0

C , A1
C to Charlie. Bob and Charlie will

then use their secret keys (generated using QKD) to privately exchange half of their bit string elements
with one another, thus symmetrising their keys from Alice’s viewpoint. That is, Bob sends half of the
bit values in Ab

B to Charlie and receives half of the bit values in Ab
C from Charlie, for b = 0, 1. To sign a

message, m, Alice presents the message-signature pair (m,Am
B , A

m
C ). The recipient, say Bob, will check

that the signature matches the parts of Am
B , Am

C known to him. If there are fewer than saL mismatches,
he will accept the message-signature pair as valid. To forward a message, Bob will send (b, Am

B , A
m
C ) to

Charlie, who will perform the same checks, but will instead accept up to svL errors, where sv > sa.
Security against repudiation by Alice comes from the symmetrisation performed by Bob and Charlie.

Since all communication is done classically, it is reasonable to set sa = 0. In that case, for Bob to accept
the message, he must find no mismatches with the parts of Am

B and Am
C known to him. To successfully

repudiate, Alice must also make Charlie receive more than svL mismatches. Since Alice does not know
which half of Am

B , Am
C that Bob will keep/receive, any mismatch introduced has a 1/2 chance of ending

up with Bob and a 1/2 chance of ending up with Charlie. To achieve this, an honest Bob/Charlie will
not test for mismatches in the elements they forwarded. Simple probabilistic arguments show that

P (Repudiation) ≤ (1/2)svL. (2)

In the case presented here, where Bob and Charlie exchange exactly half of their bit string elements,
security against forging follows because Bob has zero information on the L/2 bits that Charlie received
from Alice, but did not forward to Bob. In order to successfully forge a message, Bob must guess the
values of these L/2 bits, making fewer than svL mistakes. The probability of Bob doing this can be
bounded as

P (Forge) ≤ exp(−(1/2− sv)
2L). (3)

The security of this protocol relies entirely on the security of the underlying QKD scheme used
to generate the secret shared keys. Secure QKD systems exist and are commercially available from a
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number of companies. Therefore, this quantum signature protocol can be securely implemented using
existing technology. If the participants are using QKD to generate secret shared keys, they only need
enough secret shared keys bits to authenticate their classical channels to initiate QKD at the start of
the scheme. QKD is then used for key expansion, to generate more shared secret keys. “P2” has been
generalised to more than two recipients, which required the introduction of different levels of acceptance
thresholds and separate checks for parts of the signatures received directly from Alice and for those
forwarded from each other participant [18].

Note the similarities and differences between this protocol and most quantum signature protocols to be
described below; in many respects, this is similar to other protocols described below, but in “P2”, Alice
sends different classical strings to Bob and Charlie, whereas in existing quantum signature protocols,
Alice typically sends the same quantum states to all recipients. “P2” has the advantage of reducing the
initial size of the secret shared keys as compared to quantum schemes, where Alice sends each recipient
the same quantum states.

4. Quantum Signature Schemes

4.1. Quantum One-Way Functions and Quantum Hash Functions

Given how useful cryptographic hash functions are, it would be nice to find one that is provably a
one-way function. In fact, quantum-mechanical unconditionally secure one-way functions exist, in the
sense that given the description (e.g., wave function) of a quantum state, one can, at least in principle,
prepare it. Given a copy of the quantum state, however, it is not even in principle possible to determine,
with a 100% success rate, exactly what that state is by measuring it (see, for example, the mapping given
by Equation (5) below). More precisely, it is impossible to determine exactly what a quantum state is,
unless one has very particular prior information about what the possible states are, namely if the only
possible states are some set of orthogonal quantum states. Security is here guaranteed by the Holevo
bound on the accessible information [16,30]. Broadly speaking, this is what guarantees the security
of all proposed quantum signature schemes. (Note that a somewhat different definition of a quantum
one-way function also has been made, as a function that is easily computable by a classical algorithm,
but hard to invert even by a quantum computer [31]. Such a function does not necessarily have to involve
quantum states.)

Apart from quantum signature schemes, beginning with the scheme in [16], the concept of quantum
one-way or quantum hash functions has been used also for quantum fingerprinting [32,33]. A fingerprint,
loosely speaking, is a short identifier for a longer string. One can reformulate the properties of quantum
one-way and quantum hash functions in the language of modern cryptography [34], although this
treatment does not emphasise that “computing the quantum hash” has to involve preparation of the
quantum state, not just a computation of what the state should be, and, related to this, does not specify
what is meant by “inverting” the quantum one-way or hash function. We therefore modify the definitions
in [34] to read:

Definition 1. Quantum one-way function: Let ψ : {0, 1}n → H be the mapping k → |ψk〉. Then, ψ is
called a quantum one-way function if it is easy to compute, i.e., |ψk〉 for a particular k can be determined



Entropy 2015, 17 5646

using a polynomial-time algorithm, but impossible to invert, in the sense that if given a quantum state
prepared in one of the states |ψk〉, one cannot, using any procedure allowed by quantum mechanics, with
certainty determine which state one has been given.

Security is guaranteed by the Holevo bound [30]. For example, if the quantum states have m qubits
and k is an n-bit string where n > m, then it is impossible to obtain more than m bits of information
about k, and depending on the states |ψk〉, the bound may be even tighter. It is therefore impossible to
perfectly determine k, and so it is also impossible to determine |ψk〉.

Definition 2. (n,s,δ)-quantum hash function: Let ψ be a quantum one-way function whose domain has
size 2n and whose range is a Hilbert space with dimension 2s. Suppose further that any distinct w,w′ give
δ-orthogonal outputs (δ < 1), i.e., |〈ψ(w)|ψ(w′)〉| < δ. Then, ψ is an (n,s,δ)-quantum hash function.

A classical-quantum or simply quantum hash function then is a function that satisfies all of the
properties that a “classical” hash function should satisfy; such information-theoretically secure quantum
one-way functions then exist. Pre-image resistance follows from Holevo’s theorem when n > s, since
any measurement on |ψk〉 can reveal at most s bits of information about k. Second pre-image resistance
and collision resistance follow, because all input states are mapped to states that are δ-orthogonal.
Therefore, we see that quantum hash functions can satisfy the three conditions with information-theoretic
security. The above definitions are for discrete domains and finite-dimensional Hilbert spaces; we note
that we can in principle also define quantum one-way and hash functions also for continuous variables,
although this has, to our knowledge, not been formally done. Doing so may be useful, e.g., for outlining
continuous-variable quantum signature schemes, in analogy to continuous-variable QKD.

A difference between classical and quantum hash functions arises in their collision properties. For
a classical hash function, a collision arises if two messages have the same hash. For quantum hash
functions, we may have quantum collisions, meaning that two quantum hashes (which are quantum
states) might be different, but since non-orthogonal quantum states cannot be perfectly distinguished
from each other, a test used to check whether quantum hashes are different may not always detect the
difference. It of course also matters what test we specify for testing the equality of quantum hashes; one
possibility is quantum comparison [35–37]. Another possibility is a SWAP test, given in [32], which
takes two states and an ancilla to perform the mapping

|0〉|φ〉|ψ〉 → 1

2
|0〉(|φ〉|ψ〉+ |ψ〉|φ〉) + 1

2
|1〉(|φ〉|ψ〉 − |ψ〉|φ〉). (4)

Measurement of the ancilla qubit then produces outcome zero with certainty if the states are equal.
The outcome one is obtained with probability 1

2
− 1

2
|〈φ|ψ〉|2. If many copies of the two states are

available, performing the SWAP test many times determines whether the states are equal or not with a
probability that can be made arbitrarily close to one.

As will be explained next, quantum one-way functions or cryptographic quantum hash functions can
be used to generate unconditionally secure quantum signature protocols analogous to how cryptographic
hash functions are used in the Lamport–Diffie one-time signature scheme. Since quantum one-way
functions are provably information-theoretically secure, the resulting quantum signature schemes are
information-theoretically secure.
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4.2. Quantum Digital Signatures

Gottesman and Chuang [16] proposed the first quantum signature scheme, a “quantum public
key” signature scheme in which the “public keys” are quantum states and the private keys are
classical strings that specify what the quantum states are. The scheme is an analogue of the classical
Lamport–Diffie signature scheme, but with a quantum one-way function to generate unconditional
security. Quantum one-way and quantum hash functions have the additional property that the function
output values (quantum hashes) can be made shorter than their classical counterparts, to give quantum
“fingerprints” [32]. To have unconditional security, it is actually not necessary for the function values to
be short compared to the input strings. It is only necessary that the function values are non-orthogonal
enough, so that an adversary cannot gain too much information about them. Nevertheless, short values
are useful, since a scheme with shorter signatures is more practical. If one defines the distance between
two quantum states |ψ〉 and |ψ′〉 as

√
1− |〈ψ|ψ′〉|2, where 〈ψ|ψ′〉 is the inner product between the

states, then there exist sets of states of n qubits {|ψk〉} satisfying |〈ψk|ψk′〉| ≤ δ for k 6= k′, such
that the set may have many more than 2n states if δ < 1. Here, k is the function input and |ψk〉 the
corresponding output. Let us denote the length of the bit string k by L; there are 2L such bit strings. One
possible such family of states are the quantum fingerprinting states suggested by Buhrman et al. [32],
which gives L = O(2n) for δ ≈ 0.9. The resulting quantum one-way function is

k → |ψk〉 =
1√
m

m∑
i=1

(−1)E(k)i |i〉, (5)

where E is a Justesen error-correcting code, mapping bit strings of length L to bit strings of length m,
such that m = O(L), and E(k)i is the i-th component of E(k). The right-hand side has dimension m

and can therefore be seen as a system of log2(m) = n qubits. In the terminology introduced above, the
mapping is a (L, n, δ ≈ 0.9)-quantum hash function with L = O(2n). Other possibilities mentioned
in [16] are quantum stabiliser states, with L = n2/2 + o(n2), or the single-qubit states cos(jθ)|0〉 +
sin(jθ)|1〉, for θ = π/2L and integer j, for any L and with δ = cos θ.

To begin the protocol, the quantum public keys are first distributed to the recipients to enable the
sender to later on send a signed message. For the protocol to be secure, one must be careful about how
the states are distributed. For clarity, this will be discussed below; for now, we note that the participants
need a way of assuring that Alice has sent them identical quantum states and that the states have not
been altered in transmission. When Alice wants to send a signed message b to someone with access to
the public key, |ψbk〉, she will send the message along with kb (her signature). Given kb, the receiver can
apply the known quantum one-way function and compare the output to the public key. The message will
be accepted if the public key matches the output of the one-way function. Just as in the Lamport scheme,
at the end of the scheme, all used and unused quantum public and private keys must be discarded.

More concretely, to sign a single bit with t participants, the protocol proceeds as follows:

(1) Alice chooses M pairs of L-bit classical strings, {ki0, ki1}, 1 ≤ i ≤ M . The k0’s will be used if
the future message is chosen to be the bit zero and the k1’s will be used if the future message is
chosen to be the bit one. Increasing the value of M will increase the security level of the protocol
(security is exponential in M ).
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(2) Alice assigns each of the L-bit strings to a different element in the set of fingerprinting states,
or whatever the chosen set of output quantum states is, according to a mapping known to all
participants. That is, all participants know the one-way function, but not the L-bit strings used as
input. She then distributes the quantum states to the t participants, so that each participant has a
suitable number of copies of each of the the 2M quantum states {|ψki0〉, |ψki1〉}, 1 ≤ i ≤M .

(3) Unless the distribution is managed by a trusted third party, the participants should perform some
sort of test to ensure that they all received the same public keys. In the three-party setting,
Gottesman and Chuang suggest that Alice sends two copies of each public key to each participant.
Bob and Charlie would then both perform a SWAP test on their two keys to check that they are the
same. One participant, say Bob, would then pass one of his keys to Charlie, who would perform a
SWAP test on this key and one of his own to determine if they are equal. Bob performs a similar
test on a key received directly from Alice and one forwarded by Charlie. The keys used in these
last SWAP tests would then be discarded, and Bob and Charlie are left with one copy of the
public key each. If any of the SWAP tests fail, the protocol is aborted. If none of the tests fail, the
participants have evidence that Alice did in fact send out the same public key states. By sending
each participant more copies of the public key, the probability of discovering a cheating Alice can
be made arbitrarily close to one.
In the more general t-party setting, the authors suggest a distributed symmetry test performed
by all participants. In this case, Alice would distribute t + 1 copies of the public key to each
participant. They would perform a test to check for complete symmetry of their t+1 copies. If the
test is passed, they would send one copy of the public key to each of the other t − 1 participants,
keeping one copy to use for signature verification and the remaining copy for a further symmetry
test using all of the public keys received from other participants.

(4) To later send the message b, Alice would send (b, k1
b , k

2
b , ..., k

M
b ). From this, a recipient can easily

compute |ψkib〉 for each i and compare the state to the public keys they previously received from
Alice (again using a SWAP test). The recipient counts the number of mismatches he gets.

(5) If the mismatch rate is less than some rate sa, the recipient will accept the message. If the message
is forwarded on from another recipient, the mismatch rate must be less than sv to be accepted,
where sv > sa.

(6) All used and unused keys are discarded.

Security against forging comes from the fact that there are a limited number T of copies of each
quantum state in circulation, and each of the states has n qubits. By Holevo’s theorem, even if a forger
gained access to all T copies of the state |fkib〉, at best, he could discover Tn bits of information about the
L-bit classical string kib used as input to the quantum one-way function. If Tn < L, the forger will not
be able to determine kib exactly. Furthermore, for unknown states, the SWAP test is only non-destructive
if the states being compared are equal (the Holevo bound limits also this procedure). This means that
the forger cannot apply a trial-and-error technique to discover ki0, since each time he is wrong, he will
destroy one of his copies of the public key. Choosing the security parameters sa and sv to be low protects
against forging attempts.

Transferability comes from the fact that the public key needs to pass SWAP tests performed by the
participants. Therefore, Alice can try to cheat by, for example, sending participants different quantum
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states, but unless what she sends is symmetric, it may not pass the SWAP tests. The upshot of this is
that Alice cannot engineer a state that will lead to a much higher average number of mismatches for one
participant relative to any other participant. If M is large, the difference in the number of mismatches
(parts of Alice’s signature declaration that do not agree with the corresponding public key) observed
by Bob and Charlie will be O(

√
M) with high probability, and it is therefore highly unlikely that one

participant will observe fewer than saM errors while the other observes more than svM errors. To ensure
transferability, we need a sufficiently large gap between sv and sa.

There are a few observations to make about this protocol. First, a disadvantage of this and all other
quantum signature schemes proposed so far is that the length of a signed message scales linearly with
L, making it inefficient. There seems to be no reason why this should be a fundamental limitation,
though, and it is possible that more efficient protocols will emerge. Second, as mentioned previously,
this is a one-time signature scheme, meaning that the public/private key pair can only be used once. An
interesting question is whether there is some method, possibly similar to the one used classically in [26],
to enable reusability. Lastly, the protocol as described is unfeasible with current technology. This is
because the distributed SWAP tests are non-trivial to perform, but above all, due to the requirement of
long-term quantum memory. The public keys are quantum states and must be kept indefinitely until Alice
wants to send a message. Methods of removing this requirement will be addressed in the next section.

We now further comment on the issue of how the public keys can be securely distributed. Of course,
if a forger can make a recipient think that he has received a public key from Alice, when in fact it comes
from the forger, then he can easily forge a message. Therefore, it is clear that, as well as the SWAP or
symmetry tests, there must be some sort of authentication of the quantum states being used as public keys.
One solution proposed by Gottesman and Chuang is to use a trusted third party with authenticated links
(as in [8]) to all participants. This simplifies the protocol by allowing the SWAP tests to be performed
entirely by the third party, at the cost of introducing extra trust assumptions. Alternatively, Alice could
directly send states to each recipient over authenticated quantum channels. Each solution requires
authentication of quantum channels, which becomes very expensive for all practically implementable
quantum digital signature schemes (discussed below). In Section 4.5, we present an alternative key
distribution method, which is much less expensive in terms of the resources consumed.

4.3. Quantum Signatures Using a Multi-Port without Quantum Memory

The original quantum signature protocol by Gottesman and Chuang [16] has been further developed,
in particular to make experimental realisation more feasible. In a scheme using coherent states outlined
in [37], message transferability is ensured by an optical multi-port, which is simpler to realise than a
SWAP test. The multi-port consists of four 50/50 beam splitters, as shown in Figure 1. It symmetrises
Alice’s input states, so that the recipients, here Bob and Charlie, will obtain the same measurement
statistics. Alice therefore cannot make them disagree on the validity of a message. The symmetrisation
procedure is non-destructive, that is, it does not alter the input state, if the total input quantum state is
symmetric. This is the case in particular if the input states are identical. This allows the quantum states
in the signal output modes to be further used; the null-ports then contain the vacuum state. If the input
states are not identical (specifically, if the input state is not symmetric), then photons may be detected in
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the null-ports, and this can also be used to detect adverse activity, either by Alice or by a recipient. This
protocol was analysed and experimentally realised in [38]. The multi-port can in principle be generalised
to more than two recipients, but as it essentially is an intertwined interferometer, the scheme becomes
rather complex to implement.

Figure 1. Taken from [39]. The multi-port used by Bob and Charlie to symmetrise the
quantum states they receive from Alice. Whatever overall quantum state Alice sends to Bob
(|α〉) and Charlie (|β〉), the outputs of the signal ports will be symmetric with respect to Bob
and Charlie. Bob and Charlie can either store the signal port states in quantum memory or,
alternatively, if one wishes to also remove the need for quantum memory, they can perform
some type of quantum measurement on the signal ports directly when the states are received
from Alice. Detecting photons in the null ports helps to detect cheating.

An even more serious limitation, however, was the requirement of long-term quantum memory.
The scheme proposed in [39] and experimentally realised in [40] removes this requirement. Here, the
recipients immediately measure the quantum states they receive from Alice and only store the classical
outcomes. This way, their test that the declared private key matches the previously received quantum
public key is a little less efficient at detecting mismatches than if they keep their quantum states in
memory until they know what state they are supposed to test for, but this is a small price to pay for
removing the need for quantum memory. Importantly, security is still exponential in the length of the
sequence of states that Alice selects.
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In all of these schemes, just as in the scheme by Gottesman and Chuang, the quantum signature states
are first distributed, enabling signed messages to be sent later on. The distribution stage typically takes
place long before the messaging stage, perhaps weeks or months. The schemes in [37,39] are phrased
in terms of coherent states, although any set of non-orthogonal quantum states could in principle be
used. If using coherent states, in order to be able to later sign a one-bit message sent to Bob or Charlie
according to the scheme in [39], Alice would choose two L-bit strings, k0 and k1, one for each future
message. She encodes the zeros in this bit string as the low-intensity coherent state |α〉 and the ones
as | − α〉. That is, the bit strings Alice chooses determine the sequences of phases for the coherent
states. Alice’s signature for message b is kb, and these bit strings must be kept secret. Alice could
also choose from more than two different phases; in the corresponding experimental realisation in [40],
she chooses from four different phases. Alice sends one copy of the sequence of coherent states to
Bob and one to Charlie. As in [37,38] and also in [39], Bob and Charlie pass the states through the
same type of optical multi-port in order to symmetrise the states that they receive, thus ensuring the
transferability of messages. Directly when receiving the states, however, they both measure the states
and record the classical outcomes. The classical outcomes are Bob’s and Charlie’s keys, which they will
keep secret and use to verify Alice’s signature, testing for mismatches, much as in previous schemes. In
this way, they each have partial information about Alice’s signature. Exactly what information Bob and
Charlie have about Alice’s signatures after the distribution stage depends on what measurement they use.
In [39], unambiguous quantum state discrimination (USD) [41] is suggested. When this type of quantum
measurement gives a result, it is guaranteed to be correct, but sometimes, the measurement fails to give
any result. Then, depending on the outcome of the USD measurement, they each independently gain
either full information on Alice’s quantum state or zero information.

When Alice wants to send a message b to Bob, she will send (b, kb). Just as before, Bob will check kb

against his measurement outcomes and only accept the message if there are fewer than saL mismatches,
with some suitably chosen sa. To forward the message to Charlie, he sends exactly what he received
from Alice. Charlie performs the same tests, but uses the mismatch threshold svL instead. Just as before,
choosing a low value of sv gives protection against forging attempts, since in order to forge a message,
Bob would have to guess a message-signature pair that has fewer than svL mismatches with Charlie’s
measurement outcomes. It is shown in [39] that for individual or collective attacks, the probability of a
recipient, say Bob, being able to find a message signature pair (not originating from Alice) that Charlie
will accept as valid can be bounded by

P (Forge) ≤ exp

(
−2
(
pmin − sv

pUSD
pUSD − δ

)2

(pUSD − δ)L

)
, (6)

where pmin is the minimum error probability, i.e., the minimum probability achievable that Bob
incorrectly identifies a quantum signature element sent to him by Alice. The probability of obtaining
an unambiguous outcome in the USD measurement is pUSD, and δ is a small parameter that takes into
account the worst-case scenario, whereby Charlie’s unambiguous state discrimination measurement is
successful only (pUSD− δ)L times (any fewer, and the protocol would be aborted). The pmin term arises
because Bob’s optimal strategy would be to perform a minimum-error measurement on each of the states
he received from Alice in order to make the best possible guess of the states Alice actually sent.
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Choosing a large gap between sv and sa gives protection against repudiation and provides
transferability. It is shown in [39] that even for the most general cheating strategies available to Alice,
the probability of successful repudiation decays exponentially in the size of the signature length. More
specifically, it can be shown that the probability of Alice being able to send a sequence of states such that
one recipient receives fewer than saL mismatches while the other receives more than svL mismatches
with her signature declaration is bounded as

P (Repudiation) ≤ exp

(
−1

2
p2USD(sv − sa)

2L

)
. (7)

This is because the multi-port ensures that the overall state sent by Alice is symmetric with respect
to the exchange of Bob and Charlie. Therefore, any mismatches introduced by Alice are equally likely
to be discovered by Bob or Charlie, and so, the probability of one finding less than saL errors and the
other finding more than svL errors becomes small. If there are no imperfections, one can choose sa = 0,
but as soon as the implementation is not ideal, one must choose sa > 0; otherwise, even an honest Alice
may not be able to sign messages. Note that finding optimal choices of the parameters sa and sv is highly
non-trivial and depends on many practical aspects of the experimental setup.

In the experimental realisation, Bob and Charlie instead use unambiguous quantum state elimination,
which is a quantum measurement that unambiguously rules out one or more of the states that Alice has
chosen [40–42]. This measurement has a higher success rate than USD, making the signature scheme
more efficient. Importantly, no matter what type of measurement Bob and Charlie use, neither of them
knows Alice’s full signature, nor do they know exactly what the other recipient knows about Alice’s
signature. Furthermore, Alice does not know what Bob knows and what Charlie knows. Loosely
speaking, this guarantees security against forging and repudiation, although security against coherent
forging attacks to date remains formally unproven for schemes using coherent states. In coherent attacks,
a forger can make measurements in an entangled basis on any number of the quantum states that Alice
sends. In individual and collective attacks, a forger is limited to measurements on individual states or
classically correlated measurements on individual states.

The protocol removing the need for quantum memory was an important step towards implementable
quantum digital signatures. However, the experimental demonstration [40] showed that efficient
implementation is difficult; for α = 1, in order to sign a single “half-bit” with a security level of 99.99%,
a value of L = 5.10 × 1013 was required. This was mainly attributed to the multi-port causing large
losses and being difficult to align.

4.4. Quantum Signatures with Quantum Key Distribution Components

In Wallden et al. [14], to further make quantum signatures more feasible, the multi-port is removed.
Furthermore, the protocol is phrased in terms of BB84 states instead of coherent states. The BB84 states
are more convenient to work with, as security proof techniques can be leveraged from work on relativistic
quantum bit commitment [43]. This enabled the first proof of security against coherent forging.

Apart from the absence of the multi-port, the protocol works similarly to before. For each future
possible message, Alice will create two copies of a classical string of symbols drawn from the set
{0, 1,+,−}. This will be her signature, and she must keep it secret. She encodes each symbol into
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the BB84 quantum states {|0〉, |1〉, |+〉, |−〉}, where |±〉 = (|0〉 ± |1〉)/
√
2, and sends one copy of the

sequence of states to Bob and one to Charlie. The measurements made by Bob and Charlie are quantum
unambiguous state elimination (USE) measurements. Each of them can with certainty rule out one of
the possible states for each position in the sequence. For example, if Bob makes a measurement in the Z
basis and obtains the result |0〉, then he knows that Alice cannot have sent the state |1〉, but could have sent
any of the other three states. Without knowing the encoding basis for a state, Bob and Charlie cannot
make a measurement that distinguishes exactly which state Alice sent. In this way, Bob and Charlie
each gain partial information of Alice’s signature, also without knowing exactly what information the
other recipient has gained. Note that in contrast to QKD, the parties do not proceed to announce their
measurement and preparation bases.

Previously, the purpose of the multi-port was to symmetrise the states Alice sent to Bob and Charlie in
order to protect against repudiation. In fact, this symmetrisation can be achieved just as well by requiring
that with probability 1/2, rather than measuring a state received from Alice, Bob/Charlie would instead
forward it to the other participant. In this way, Bob receives about half the states that Alice sent to him
and about half the states that Alice sent to Charlie and vice versa. Importantly, it is assumed that Alice
cannot eavesdrop on the Bob-Charlie quantum channel, since she should not know who has which state.
This means that from her point of view, the overall state is symmetric with respect to exchange of Bob and
Charlie, which provides security against repudiation similar to before. Alternatively, Bob and Charlie
can measure all quantum states they receive from Alice and then use a classical secret communication
channel to randomly forward some results to the other recipient.

Mainly because the multi-port is removed, this protocol achieves a significant improvement in
efficiency over the previous one. In the latest experimental realisation [44], for the same security
requirements as in [40], the length of the required signature is reduced to L = O(109). Further, as
mentioned above, the protocol is secure even against coherent forging. Still, further improvements in
efficiency are needed, and signature length still scales linearly with message length. More efficient
protocols would be desirable. Furthermore, as we will discuss next, an important security assumption
would need to be relaxed.

4.5. Security against Tampering with the Quantum Channels

All quantum signature protocols described so far have made a strong assumption that we have
not mentioned until now: that all quantum channels are “tamperproof”, with the expectation that
this assumption could be removed if the parties use a procedure similar to parameter estimation in
QKD [4,5]. By “tamperproof”, we mean that it is guaranteed that the participants do not eavesdrop
or otherwise tamper with the quantum channels used by Alice to send quantum states to Bob and
Charlie and, if applicable, with the channels used by Bob to forward quantum states to Charlie and vice
versa. In parameter estimation for QKD, the parties declare some of the transmitted states and obtained
measurement results, to check for errors that an eavesdropper would cause. This allows them to bound
the information an eavesdropper could hold about the remaining undeclared states and the resulting key.

In [45], this strong assumption on the quantum channels is removed. The protocol requires insecure
quantum channels connecting all participants pairwise, as well as pairwise authenticated classical
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channels. Alice-Bob and Alice-Charlie separately perform the BB84 QKD protocol, but without the
classical post-processing steps of error correction and privacy amplification. We call this sub-protocol
the key generation protocol (KGP), and shared keys are generated for each possible future message.
Following the Alice-Bob KGP, Alice has bit strings A0

B and A1
B, where the superscript denotes what the

future message bit string is for, and the subscript denotes that the KGP was performed with Bob. Bob
holds the strings B0 and B1, which ideally would be identical to A0

B and A1
B, but in general, will not

be. Parameter estimation can be used to estimate the correlation between Alice and Bob’s bit strings,
and from this, the level of possible eavesdropping can be quantified just as in QKD. As long as the error
rate between Alice’s and Bob’s string is sufficiently low, it can be shown that, in the case of individual
and collective attacks, any potential eavesdropper cannot (except with negligible probability) produce
a string that is more correlated with Bb than Ab

B is correlated with Bb, for b = 0, 1. Exactly the same
arguments apply to the Alice-Charlie KGP, denoting Charlie’s bit strings by Cb for b = 0, 1.

As in previous protocols, Bob and Charlie symmetrise their bit strings to ensure security against
repudiation. That is, Bob privately sends half of Bb to Charlie and privately receives half of Cb for
b = 0, 1. To send a message, m, Alice would send (m,Am

B , A
m
C ) to the desired recipient. The recipients

then verify the signature as before, using verification thresholds sa and sv. A detailed description of the
security analysis is beyond the scope of this review, but is provided in [45].

A major difference in this protocol compared to previous protocols is that Alice no longer sends the
same sequences of states to Bob and Charlie, but instead sends them different sequences. Importantly,
Bob and Charlie can still guard against repudiation by randomly exchanging part of their measurement
results, secret from Alice. However, the advantage is that a forger no longer has full access to a legitimate
copy of Alice’s quantum sequence that she sent to the other participant. This means that the protocol will
require shorter state sequences than previous protocols where Alice sent all recipients the same quantum
states. The “partial QKD” procedure also means that this quantum signature scheme in practice can
be performed over quantum channels, which are too imperfect for QKD to be possible (although the
Bob-Charlie quantum channel used for the symmetrising exchange must still be good enough to perform
QKD). This is because in a practical implementation of QKD, error correction will somewhat decrease
the threshold for the acceptable quantum bit error rate. For a signature scheme, it is not essential to distil
an error-free and perfectly secret shared key. It is instead enough that Alice’s declaration of her signature
gives rise to fewer mismatches than a declaration made by a forger.

This protocol is no longer a “quantum public key” signature protocol, since all recipients now
receive different “quantum keys”. Nevertheless, compared with the previous “quantum public key”
signature protocols, this seems to be a minor disadvantage, as the signature distribution stage is no
more complicated than when Alice sends every recipient the same quantum state sequences.

4.6. Coherent State Mappings

An interesting connection between the quantum signature protocols using coherent states [38,39] and
the original Gottesman–Chuang protocol [16] is highlighted in [46]. The paper uses techniques from [47]
to map the fingerprinting states in Equation (5) to trains of coherent states. Written in the form given in
Equation (5), the fingerprinting states are viewed as living in an m-dimensional Hilbert space. Assuming
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m is a power of two, we can decompose this large Hilbert space into a tensor product of two-dimensional
Hilbert spaces to get an equivalent representation, expressed as log2(m) qubits. However, the high degree
of entanglement between the qubits makes such a state very difficult (or impossible) to create with current
technology. Alternatively, the state could be viewed as arising from a single photon distributed over m
orthogonal optical modes. In this case, the fingerprinting states can be exactly expressed as

1√
m

m∑
i=1

(−1)E(k)i |1〉i, (8)

where |1〉i represents one photon in the i-th mode. Finally, instead of considering a single photon, the
authors suggest considering the train of coherent states

|α〉k =
m⊗
i=1

∣∣∣∣(−1)E(k)i
α√
m

〉
i

, (9)

where α, the coherent state amplitude, will be chosen to be small. When this state is projected onto the
single-photon subspace, the single-photon Expression (8) is recovered.

The advantage of this mapping to trains of coherent states is that it gives a simple and experimentally
practical method to create and compare the fingerprinting states for quantum signatures. This comes
at the cost of having a large number, m, of modes. Further, it reveals a close similarity between
the Gottesman–Chuang protocol and the coherent-state multi-port protocols defined above. In the
Gottesman–Chuang protocol, Alice may choose a fingerprinting state to act as the quantum public key
and sends a copy to both Bob and Charlie. Bob and Charlie use a SWAP test to ensure that they received
the same state and then store the quantum public key. If Alice were to apply the coherent state mapping
to the quantum public key, she would then send a train of coherent states to both Bob and Charlie.
The equality of the coherent states can be tested using the multi-port, analogous to the SWAP test.
Alternatively, some sort of parameter estimation procedure could be used. Finally, rather than storing
the states, Bob and Charlie could measure the states and store the classical outcomes. In this way, they
each gain partial information on the quantum public key, but not full information, and so, cannot forge.
The amount of information they gain will depend on the value of α.

5. Conclusions

Signature schemes are widely used in modern communications. Despite their importance, research
into unconditionally secure schemes has remained a niche field in quantum cryptography and modern
“classical” cryptography alike. This is largely due to the highly significant advantages, both in
terms of efficiency and ease of use, that currently used public key signature protocols have over
any unconditionally secure schemes. Nevertheless, with the advent of quantum computers, or better
algorithms, RSA, DSA and ECDSA would all become obsolete, and signatures would have to be
generated in other ways. At this point, hash-based signature schemes are a possible option. Schemes
of this type may also prove to be resistant to attacks by quantum computers, depending on the one-way
function used. However, since their security rests on the difficulty of inverting certain functions, these
schemes are still only computationally secure, and there is no fundamental reason why future advances
will not render them insecure.
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In some highly sensitive applications, it may be desirable to have unconditional security instead.
Research suggests that quantum mechanical features can be used to construct unconditionally secure
signature schemes, such as the ones covered in this short review paper, that seem to require fewer
additional resources than their classical counterparts. So far, this has come at the cost of lower efficiency,
though this may be because quantum schemes are still largely unexplored. While the classical protocol
“P2” in [39] at the moment seems to be the most complete and easily implementable quantum signature
protocol presented, it may not be the most efficient. For example, the Alice-Bob QKD link generates a
perfectly secret shared key, when in fact, all that is required is that any eavesdropper is less correlated
with Bob’s key than Alice is. As mentioned above, it can indeed be shown [45] that quantum signatures
are possible with quantum channels that are of too low quality for QKD to be practical.

As it stands, in all quantum signature schemes, the signature length scales linearly with the size of the
message. Efficiency would be greatly increased if this scaling could be improved, and in fact, our recent
investigations seem to suggest a scheme whose signature length scales more favourably with the size of
the message being transmitted. The length of the signature is not the only measure of efficiency though:
other respects in which protocols may be optimised are in the number of quantum channels required
between participants and the number of secret pre-shared bits required between participants. Currently,
all quantum schemes require pairwise quantum channels between all participants. When the number of
participants becomes high, this requirement becomes expensive, and it would be interesting to see if a
practical protocol exists requiring fewer quantum channels.
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