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Abstract:

 We consider a geometric entropy as a measure of complexity for Gaussian networks, namely networks having Gaussian random variables sitting on vertices and their correlations as weighted links. We then show how the network dynamics described by the well-known Ornstein–Uhlenbeck process reflects into such a measure. We unveil a crossing of the entropy time behaviors between switching on and off links. Moreover, depending on the number of links switched on or off, the entropy time behavior can be non-monotonic.
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1. Introduction

Many systems in the world can be modeled by a network, that is a set of items (vertices) with connections between them (links) [1]. Hence, the study of networks has been engaged in several branches of science. For example, in the mathematical form of graph theory, it is one of the fundamental grounds of discrete mathematics [2]. Moreover, networks have also been extensively studied in social science [3]. In recent years, network research moved from the analysis of single small graphs and the properties of individual vertices or links to the statistical properties of entire graphs [4]. As a consequence, several different statistical mechanics tools have been conceived of in order to quantify the different levels of organization of real networks [5]. Among them, entropic measures play a relevant role [6]. Along this line, by resorting to methods of information geometry [7], we have introduced recently a geometric entropy for Gaussian networks [8], namely networks having Gaussian random variables sitting on vertices and their correlations as weighted links. Such network models, besides being rather easy to handle, find many applications, ranging from neural networks to wireless communication, from protein to electronic circuits, etc.

Traditionally, research on networks focused on features of static graphs. In this area, the study of topology networks is one of the most investigated issues. Although there is a wide diversity in the size and aim of networks observed in nature and technology, their topology shares several highly-reproducible and often universal characteristics [9]. Yet, almost all real networks are dynamic in nature [10]. Unfortunately, dealing with dynamic processes in network diversity prevails over the universality [11], and each network dynamical process is studied on its own terms, requiring its dedicated analytical formalism and numerical tools.

In the context of Gaussian networks, it seems quite natural to consider the dynamics of involved random variables described by a (multivariate) Ornstein–Uhlenbeck process [12]. In this way, the Gaussian character of the joint probability distribution is preserved over time. Taking this approach, we shall investigate how the evolution is reflected on the geometric entropy. Actually, we associate a Riemannian manifold endowed with a metric structure (that of Fisher–Rao) with the network at each time. Then, the change in level of organization of such an evolving system will be measured trough the change of the entropy, given by the logarithm of the volume of the manifold, when passing from one manifold to another.

As a simple case study, we shall consider a three-node Gaussian network. There, a first stochastic process will be considered with the aim of switching on all links starting from an uncorrelated Gaussian probability distribution (fully disconnected network). In contrast, a second stochastic process will be introduced aiming at switching off all links starting from a joint Gaussian probability distribution totally correlated (fully-connected network). The geometric entropy for these two cases varies monotonically as a function of time and shows a crossing behavior. Additionally, we shall deal with intermediate situations where part of the links are switched on and part switched off. In such cases, the geometric entropy no longer varies monotonically, while still exhibiting crossing behaviors between switched on and off links.

The layout of the article is as follows. In Section 2, we describe the measure of complexity related to the volume of the Riemannian statistical manifold associated with a static Gaussian network. In Section 3, we introduce the network dynamics, and we associate a manifold with the network at each time, thus providing a kind of foliation of the statistical manifold. Then, in Section 4, we study various dynamical cases occurring in a network having three vertices and show how their features are reflected into the geometric entropy. At the end, in Section 5, we draw our conclusions.



2. Statistical Models and Network Complexity Measure

We start considering n real-valued random variables [image: there is no content] with joint Gaussian probability distribution:



[image: there is no content]



(1)




where [image: there is no content] and C is the [image: there is no content] covariance matrix with entries [image: there is no content], [image: there is no content]. Throughout the paper, we assume to deal with zero mean probability distribution functions.
The set of all (zero mean) Gaussian probability distributions turns out to be a statistical model when we consider each function parametrized by its covariances [image: there is no content], [image: there is no content]. To be more precise, the function [image: there is no content] in Equation (1) can be uniquely characterized by [image: there is no content] parameters [image: there is no content], with [image: there is no content] for [image: there is no content] and [image: there is no content] when [image: there is no content]. This amounts to number entries [image: there is no content] of the covariance matrix C when [image: there is no content]. In such a way, we can rewrite [image: there is no content]. Therefore, the set:



P:={p(x;θ)|θ∈Θ⊂Rm}



(2)




is called the m-statistical multivariate (zero mean) Gaussian model on [image: there is no content] as the mapping [image: there is no content] is injective, and the parameter space is Θ:={θ∈Rm|C(θ)>0} [7].
Given the statistical model [image: there is no content] in Equation (2), the mapping φ:[image: there is no content]→Rm defined by [image: there is no content] is injective, and it allows us to consider [image: there is no content] as a coordinate system for [image: there is no content]. In addition, we assume that a change of coordinates [image: there is no content] is such that the set {pψ-1(κ)|κ∈ψ(Θ)}, where κ is the set of new coordinates given by [image: there is no content], represents the same family of probability functions as P={[image: there is no content]θ|θ∈Θ}. Finally, if we consider [image: there is no content]-differentiable changes of coordinates, then [image: there is no content] can be considered as a [image: there is no content] differentiable manifold, called a statistical manifold [7].

Consider now a point [image: there is no content]; then, the Fisher information matrix of [image: there is no content] at θ is the [image: there is no content] matrix [image: there is no content], where the entries are given by:



[image: there is no content](θ):=∫[image: there is no content]dxp(x;θ)[image: there is no content]lnp(x;θ)∂jlnp(x;θ)



(3)




with [image: there is no content] standing for [image: there is no content] and [image: there is no content] running in the set [image: there is no content]. The matrix [image: there is no content] results in being symmetric and positive semidefinite. Yet, we assume from here on that [image: there is no content] is positive definite. In such a way, we can endow the parameter space Θ with a Riemannian metric, the Fisher–Rao metric associated with the Gaussian statistical model [image: there is no content] of Equation (1), given by G(θ):=∑[image: there is no content][image: there is no content](θ)d[image: there is no content]⊗dθj, with [image: there is no content] as in Equation (3). Finally, the manifold [image: there is no content] describes a Riemannian manifold.
At this point, we can interpret the random variables [image: there is no content] as sitting on vertices of a network and their correlations as weighted links among the vertices of such a network. Thereby, thanks to the parametric characterization of the Gaussian probability [image: there is no content] in Equation (1), we can lift a network (discrete system) to a differentiable system (the Riemannian manifold [image: there is no content]). To be more precise, we are considering random variables as hidden variables sitting on the vertices of an undirected network (without loops on its vertices), and their correlations are seen as weighted links among the vertices, again. Therefore, we are focusing the attention on the knowledge of some parameters characterizing the hidden variables. All of the information about the system is retained in these parameters. In particular, given the information on the variances and covariances of the multiple hidden variables, a multivariate Gaussian probability distribution describing the whole given network can be derived by means of the maximum entropy principle [13]. Thus, a parameter space is associated with any given network. This space encodes all of the information about the structure of the associated network.

In order to quantify the degree of organization of a given network, it is quite natural to consider the volume of the associated Riemannian manifold. To this end, let us first consider the volume element of the manifold [image: there is no content],



νG=[image: there is no content]dθ1∧…∧dθm



(4)




Then, the volume [image: there is no content] of [image: there is no content] is evaluated as [8]:


[image: there is no content]:=∫ΘΥ(θ)νG



(5)




where [image: there is no content] is a suitable regularizing function introduced to avoid the possibility of having an ill-defined volume. Since the parameter space Θ is quite generally not compact, the function [image: there is no content] provides a kind of compactification of Θ by excluding the contributions of [image: there is no content], making [image: there is no content] divergent. It is clear that the regularizing function depends on the characteristic of the space Θ, as well as on the functional form of [image: there is no content]. An explicit expression of [image: there is no content] has been devised in some particular cases [8]. We are now in a position to define a complexity measure for a given network [image: there is no content] with associated manifold [image: there is no content] as:


𝒮:=-ln[image: there is no content]



(6)




The definition (6) is inspired by the microcanonical definition of entropy in statistical mechanics [14]. In fact, the latter involves the phase space volume bounded by the hypersurface of constant energy E, which can be traced back to ∫[image: there is no content]det[image: there is no content]dnq, where [image: there is no content] is a configuration space subset determined by E, q are the configuration coordinates and [image: there is no content] is the Jacobi kinetic energy tensor.
Unfortunately, computing such a quantity results in being quite hard. In fact, from Equations (1) and (3), it follows that:



[image: there is no content]



(7)




where the exponential stands for a power series expansion over its argument (the differential operator) and:


[image: there is no content]:=[image: there is no content]ln[p(x;θ)]∂jln[p(x;θ)]



(8)




The derivative of the logarithm reads:


[image: there is no content]ln[p(x;θ)]=-12[image: there is no content](detC)detC+∑α,β=1n[image: there is no content][image: there is no content]xαxβ



(9)




where [image: there is no content] denotes the [image: there is no content] entry of the inverse of the covariance matrix C in (1). The latter equation together with Equation (7) show the computational complexity of Equation (3). Indeed, the well-known formulas:


[image: there is no content]C-1(θ)=C-1(θ)[image: there is no content]C(θ)C-1(θ)



(10)






[image: there is no content](detC(θ))=detC(θ)Tr(C(θ)[image: there is no content](C(θ)))



(11)




require the calculation of [image: there is no content] derivatives with respect to the variables [image: there is no content] in order to work out the derivative of the logarithm in (9). Finally, to obtain the function [image: there is no content] in (8), we have to evaluate [image: there is no content] derivatives. This quickly becomes an unfeasible task with growing n, even numerically.
To overcome this difficulty, we consider only the variances of the random variables as local coordinates of the manifold associated with the network. This means that the elements of the parameter space Θ are:



θ∈Θ⊂Rm⇔θ=(θ1,…,θm)|[image: there is no content]=E(Xi2),i∈[image: there is no content]



(12)




In this way, the topological dimension of the manifold [image: there is no content]=(Θ,G(θ)) reduces from [image: there is no content] to [image: there is no content].
Thus, given a network [image: there is no content] with n vertices and the [image: there is no content] adjacency matrix A, consider the matrix [image: there is no content] defined as:



[image: there is no content]



(13)




with [image: there is no content]. Here, [image: there is no content] is the weighted [image: there is no content] symmetric matrix associated with the network [image: there is no content], whose entries are given by:


R[image: there is no content]:=[image: there is no content]ei⊤Aej,i,j∈{1,…,n}



(14)




where [image: there is no content] is a real constant and [image: there is no content] is the i-th element of the canonical basis in [image: there is no content].
Finally, to the network [image: there is no content], we associate the parameter space:



[image: there is no content]:={θ∈Θ|W(θ)>0}



(15)




There, we introduce a new metric [image: there is no content] with components:


[image: there is no content]



(16)




where [image: there is no content] is the [image: there is no content] entry of the inverse of the matrix [image: there is no content]. This choice is motivated by the functional relation found in [8] between the Fisher–Rao matrix elements and the covariance matrix elements when the latter takes values of zero or one out of the main diagonal.
It turns out that [image: there is no content] is a Riemannian metric. Hence, with a given network [image: there is no content], we associate the Riemannian manifold [image: there is no content]˜=[image: there is no content],[image: there is no content](θ). Ultimately, we consider a statistical measure of the complexity of the network [image: there is no content] with weighted matrix W and associated manifold [image: there is no content]˜=([image: there is no content],[image: there is no content](θ)) as:



𝒮˜(W):=-ln[image: there is no content]˜(W)



(17)




where [image: there is no content]˜(W) is the volume of [image: there is no content]˜ evaluated from the element:


ν[image: there is no content]:=detg˜(θ)dθ1∧…∧dθn



(18)




with g˜(θ)=g˜[image: there is no content](θ) the [image: there is no content] symmetric matrix whose entries are given by Equation (16). Notice, however, that also in this case, [image: there is no content]˜(W) might be ill-defined. The reason is two-fold: the set [image: there is no content] is not compact, because the variables [image: there is no content] are unbounded from above; moreover, [image: there is no content] diverges, since [image: there is no content] approaches zero for some [image: there is no content]. Thus, we regularize it by introducing, as is usual in the literature [15], a regularizing function [image: there is no content] supplying a sort of compactification of the parameter space [image: there is no content] in order to avoid the possible divergences. We then have:


[image: there is no content]˜(W):=∫[image: there is no content]Υ(W(θ))ν[image: there is no content]



(19)






3. Network Dynamics

Since we are dealing with Gaussian probability distribution functions and associated networks, it is quite natural to introduce a dynamics in terms of the Ornstein–Uhlenbeck process [12]. In fact, such a kind of process is known to maintain the Gaussian character of the distributions over time, and it has been already employed in neuronal networks (see, e.g., [16]). Additionally, a large variety of physical processes are described by such a stochastic evolution.

Recall that a stochastic process in [image: there is no content] is a family [image: there is no content] of random variables. A multivariate Ornstein–Uhlenbeck process is a stochastic process defined by means of the following stochastic differential equation (SDE) [12]:



[image: there is no content]



(20)




where [image: there is no content] and [image: there is no content] are [image: there is no content] real square matrices usually referred to as drift and diffusion, respectively. Moreover, [image: there is no content] represents the infinitesimal stochastic Wiener increment. The solution of Equation (20) is the stochastic process [image: there is no content] with mean:


E(X(t))=e-∫0tα(t′)dt′E(X(0))



(21)




and covariance:


E(X(t)X(t)⊤)=e-∫0tα(t′)dt′E(X(0)X(0)⊤)+∫0tdt′e-∫t′tα(s)dsβ(t′)β(t′)⊤e-∫t′tα(s)⊤ds



(22)




Here, [image: there is no content] denotes the initial value of the SDE (20).
We are interested to the case of purely stochastic dynamics with no deterministic part, i.e., [image: there is no content] for all [image: there is no content], so that given [image: there is no content] Gaussian distributed with zero mean, also [image: there is no content] will result as such. Actually, by denoting with [image: there is no content] the covariance matrix of [image: there is no content], we obtain that the network is described at the time t by means of the following probability distribution function:



p(x;θt)=1(2π)ndet[image: there is no content]exp-12x⊤[image: there is no content]-1x



(23)




Here, the parameters [image: there is no content] are exactly the variances of the random variables [image: there is no content], i.e., [image: there is no content], evaluated at time t. They are the only parameters we are considering in order to characterize the probability density function in (23); in such a way, we can write [image: there is no content]≡C(θt). The off-diagonal entries of the matrix [image: there is no content] are understood as representing the weighted links among the vertices in which the random variables [image: there is no content], [image: there is no content], sit. This amounts to describing the matrix [image: there is no content] as the [image: there is no content] weighted matrix W of Equation (13):


[image: there is no content]≡W(θt)=diagθt1,…,θtn+R(t)



(24)




where the entries R[image: there is no content](t) of the matrix [image: there is no content], previously defined in Equation (14), are given in this case by means of Equation (22) when [image: there is no content] and [image: there is no content],


R[image: there is no content](t)=∫0tdt′β(t′)β(t′)T[image: there is no content]



(25)




At this point, we can associate at each time [image: there is no content] a manifold with the given network described by the probability density function (23). Hence, from Equations (15) and (16), with the network, at the time t, is associated the manifold [image: there is no content]˜t=[image: there is no content]t,[image: there is no content](θt), where:



[image: there is no content]t:=θt|[image: there is no content]>0



(26)




and [image: there is no content](θt)=∑[image: there is no content]g˜[image: there is no content](θt)d[image: there is no content]⊗dθtj with components given by:


g˜[image: there is no content](θt)=12[image: there is no content]2



(27)




where [image: there is no content] is the [image: there is no content] entry of the inverse of the weighted matrix [image: there is no content] in (24).
Finally, from Equation (17), we can quantify the level of organization of the dynamical network described by the SDE Equation (20) when [image: there is no content] by means of the following entropy:



[image: there is no content]:=𝒮˜([image: there is no content])=-ln[image: there is no content]˜([image: there is no content]),t∈[image: there is no content]



(28)




where [image: there is no content]˜([image: there is no content]) is the volume of the manifold [image: there is no content]˜t associated with the network at the time t. It is worthwhile noticing that from Equation (24), we can write Equation (28) as depending on the covariance matrix [image: there is no content].


4. Trivariate Dynamical Networks: Results and Discussions

In order to get some insights from the model under study, we specialize to the statistical model [image: there is no content] of Equation (2) with [image: there is no content]. This entails a network with three vertices, so that the dynamics we are considering is described by a stochastic process [image: there is no content] in [image: there is no content] solution of (20) with [image: there is no content] for all [image: there is no content].

Let us start considering an initial condition [image: there is no content] characterized by the covariance matrix:



[image: there is no content]



(29)




That is, initially, we have a network with three vertices and no links between them. Then, let us consider a dynamics switching on all of the links, i.e., the following diffusion matrix:



[image: there is no content]



(30)




As a consequence of Equations (24) and (25), the Gaussian stochastic process [image: there is no content] will be characterized by covariance matrix:


[image: there is no content]=θt11-e-t1-e-t1-e-tθt21-e-t1-e-t1-e-tθt3



(31)




Let us remark that the latter covariance matrix [image: there is no content] underlines a network with three vertices and the links among them having the same weights R[image: there is no content]=1-e-t for [image: there is no content]. The parameters [image: there is no content]’s represent the variances of the random variables [image: there is no content] at the time t. They are the set of local coordinates that allow us to associate a Riemannian manifold with the network at the time t. As the time t goes to infinity, the network dynamics leads to a network with three vertices and all of the links with unit weight.
At this point, from Equation (26), we figure out the parameter space associated with the network at the time t. The conditions to have the matrix [image: there is no content] positive definite are implemented by requiring that all of its principal minors are positive. Hence, in the case under consideration, we obtain:



[image: there is no content]t=θt1,θt2,θt3∈[image: there is no content]|θt1>0,θt2>(1-e-t)2θt1,θt3>(1-e-t)2θt1+θt2-2(1-e-t)θt1θt2-(1-e-t)2



(32)




Subsequently, from Equation (27), we compute the metric:


[image: there is no content](θt)=e2t(-1+2et+e2t(-1+θt2θt3))22(det[image: there is no content])2dθt1⊗dθt1+e2t(-1+2et+e2t(-1+θt1θt3))22(det[image: there is no content])2dθt2⊗dθt2+e2t(-1+2et+e2t(-1+θt2θt2))22(det[image: there is no content])2dθt3⊗dθt3+e2t(-1+et)2(1+et(-1+θt3))2(det[image: there is no content])2dθt1⊗dθt2+e2t(-1+et)2(1+et(-1+θt2))2(det[image: there is no content])2dθt1⊗dθt3+e2t(-1+et)2(1+et(-1+θt1))2(det[image: there is no content])2dθt2⊗dθt3



(33)




Therefore, at the time t, the Riemannian manifold [image: there is no content]˜t=([image: there is no content]t,[image: there is no content](θt)) turns out to be associated with the network.
We are now in a position to compute the volume of the manifold [image: there is no content]˜t by applying Equation (19), where we set [8]:



Υ([image: there is no content]):=e-Tr([image: there is no content])log1+(det[image: there is no content])2



(34)




with Tr([image: there is no content]) denoting the trace of the matrix [image: there is no content]. The choice of this regularizing function stems from the specific form of the metric [image: there is no content](θt) in Equation (33). Indeed, in order to cure the divergence caused by the [image: there is no content]’s making det[image: there is no content]=0, we employed the logarithmic function; while we employed the exponential function to cure the divergence occurring as the [image: there is no content]’s go to infinity.
Finally, letting t vary in [image: there is no content], we can describe the time-dependent behavior of the entropy [image: there is no content] of Equation (28). This is shown in Figure 1.

Figure 1. Geometric entropy [image: there is no content] of the dynamical network model when the initial state is a fully-disconnected network (magenta line) and when it is a fully-connected network (blue line).



[image: Entropy 17 05660 g001 1024]





Let us now consider an initial condition [image: there is no content] characterized by the covariance matrix:



[image: there is no content]



(35)




and a drift matrix:


[image: there is no content]



(36)




The Gaussian stochastic process [image: there is no content] is again worked out from Equations (24) and (25). It describes a dynamics starting from a fully-connected network and leading to a fully-disconnected network. The covariance matrix of [image: there is no content] results:


[image: there is no content]=θt1e-te-te-tθt2e-te-te-tθt3



(37)




By applying Equation (26), we figure out the parameter space associated with the network at the time t; it reads:


[image: there is no content]t=θt1,θt2,θt3∈[image: there is no content]|θt1>0,θt2>e-2tθt1,θt3>e-2t(θt1+θt2-2e-t)θt1θt2-e-2t



(38)




Then, from Equation (27), we get the metric:


[image: there is no content](θt)=e2t(-1+e2tθt2θt3)22(det[image: there is no content])2dθt1⊗dθt1+e2t(-1+e2tθt1θt3)22(det[image: there is no content])2dθt2⊗dθt2+e2t(-1+e2tθt1θt2)22(det[image: there is no content])2dθt3⊗dθt3+(et-e2tθt3)2(det[image: there is no content])2dθt1⊗dθt2+(et-e2tθt2)2(det[image: there is no content])2dθt1⊗dθt3+(et-e2tθt1)2(det[image: there is no content])2dθt2⊗dθt3



(39)




The regularizing function of Equation (34) is a general function able to cure the divergences of the volume also in this case. Therefore, we compute the entropy [image: there is no content] in (28) by employing the function Υ([image: there is no content]) of Equation (34). The result is shown in Figure 1.



In Figure 1, it is worth noting a crossing of the entropies’ time behaviors related to the two cases (links switched on and off). The first dynamics we dealt with switches on the links between nodes and shows how the entropy monotonically increases vs. time. The maximum is asymptotically achieved and corresponds to the value computed for the fully-connected three-node network. The other dynamics considered describes a fully-connected network that switches off all of the links. In this case, the entropy monotonically decreases vs. time. It asymptotically reaches the same value of that computed for the three-node networks with no links. Recall that the network dynamics is driven by the covariance matrices [image: there is no content] given in (31) and (37). Then, at each time t, we consider a set of local coordinates [image: there is no content], and the time dependent entropy (28) is obtained as the logarithm of the volume of manifolds characterized by such a family (over t) of coordinates. The dynamics is reflected into this quantity in a very expected way; indeed, as is shown in [8], increasing or decreasing the topological dimension of the network, then the entropy increases or decreases, respectively. Therefore, adding links in the bare network amounts to growing the topological dimension up to the highest possible one represented by the fully-connected network. It is obvious that the contrary happens when the links are switched off from the fully-connected network.

Going further on, we consider intermediate situations with respect to the previous ones. That is, a network having initially one link and evolving in such a way that the other two links are switched on while the pre-existing one is switched off. This situation is characterized by, e.g.,



[image: there is no content]



(40)




and:


[image: there is no content]



(41)




Furthermore, we consider a network having initially two links and evolving in such a way the other link is switched on while the pre-existing switched off. This situation is characterized by, e.g.,



[image: there is no content]



(42)




and:


[image: there is no content]



(43)




In these cases, the entropy shows a non-monotonic time behavior, as can be seen in Figure 2. Actually, in both cases, [image: there is no content] decreases towards a minimum and then rises up, reaching an asymptotic value. Each of these values corresponds to the initial value of the other curve. Here, the time-dependent entropy (28) reflects a more complex behavior than the one in Figure 1. Such a non-monotonic behavior could be explained by the fact that the dynamics described by Drifts (41), (43) involves two opposite processes, namely the switching on and off of links. Finally, it is worth highlighting that minimum values of the two curves are different; indeed, one is [image: there is no content] (magenta line), while the other is [image: there is no content] (red line).

Figure 2. Geometric entropy [image: there is no content] of the dynamical network model when the initial state has two links (magenta line) and when it has one link (blue line).
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5. Conclusions

In this work, we considered a way to associate a Riemannian manifold with a dynamical network interpreting random variables as sitting on vertices and their correlations as weighted links among vertices. We dealt with dynamics stemming from the Ornstein–Uhlenbeck process describing Gaussian networks’ evolution in order to account for switching on and off links. This entails dealing with a family [image: there is no content] of Gaussian random variables. In such a way, we associated a Riemannian manifold with the network at each time [image: there is no content]. It is worth remarking that at each time, a set of new local coordinates is provided. Hence, a mapping from [image: there is no content] to [image: there is no content] is supplied by the geometric entropy [image: there is no content] of Equation (28) in order to quantify the level of organization of the network along its time evolution.

Specifically, we considered a network with three vertices, and the dynamics is governed by Equation (20) setting the drift matrix [image: there is no content] to zero for every [image: there is no content] and choosing the diffusion matrix [image: there is no content] in order to describe the switching off and on of links.

The network’s evolution is reflected in the time behavior of the geometric entropy in a simple monotonic way when all links are switched on or off together. In contrast, the time behavior of the geometric entropy becomes more involved (with minima) when part of the links is switched on and part off. In any case, a crossing of the entropy time behaviors between switching on and off links occurs.

It is worth noticing the difference with time-dependent entropy of [17] due to a network dynamics arising from an inference process [13]. In the present work, we started from a definition of static entropy [18] and then introduced a dynamics by the well-known Ornstein–Uhlenbeck process. In doing that, we considered a family of probability distributions and associate with it a network. Furthermore, the reverse process would be possible. In fact, given an n-vertexes network, we can always consider associated with it n random variables with correlations reflecting the edges disposition in the network and their weights. The problem is what kind of distribution do such variables have to respect. The choice could be done according to the type of network, or, better to say, to the kind of situation, or the system it represents. For instance, we may consider an electrical network where the edges are resistors and be interested in the voltage response on the current applied to each node. Then, voltages can be suitably described by a Gaussian probability distribution, which accounts for thermal noise (Johnson–Nyquist noise).

A natural extension of the present work would contemplate the same dynamics in larger networks where the interplay of various links and their (de)-synchronization could lead to a more complex time dependence of [image: there is no content]. Additionally, it would be interesting to go beyond purely stochastic dynamics and see how deterministic components affect the geometric entropy. This could be done, for example, by including deterministic pairwise interactions and eventually self-dynamics of node variables too, similar to those considered in [19].
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