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Abstract:

 Entropic Dynamics is a framework in which dynamical laws are derived as an application of entropic methods of inference. No underlying action principle is postulated. Instead, the dynamics is driven by entropy subject to the constraints appropriate to the problem at hand. In this paper we review three examples of entropic dynamics. First we tackle the simpler case of a standard diffusion process which allows us to address the central issue of the nature of time. Then we show that imposing the additional constraint that the dynamics be non-dissipative leads to Hamiltonian dynamics. Finally, considerations from information geometry naturally lead to the type of Hamiltonian that describes quantum theory.
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1. Introduction

The laws of physics, and in particular the laws of dynamics, have traditionally been seen as laws of nature. It is usually believed that such laws are discovered and that they are useful because they reflect reality. The reflection, imperfect though it may be, represents a very direct relation between physics and nature. Here we explore an alternative view in which the relation is considerably more indirect: The laws of physics provide a framework for processing information about nature. From this perspective physical models are mere tools that are partly discovered and partly designed with our own very human purposes in mind. This approach is decidedly pragmatic: when tools happen to be successful we do not say that they are true; we say that they are useful.

Is there any evidence in support of such an unorthodox view? The answer is yes. Indeed, if physics is an exercise in inference then we should expect it to include both ontic and epistemic concepts. The ontic concepts are meant to represent those entities in nature that are the subject of our interest. They include the quantities, such as particle positions and field strengths, that we want to predict, to explain, and to control. The epistemic concepts, on the other hand, are the tools—the probabilities, the entropies, and the (information) geometries—that are used to carry out our inferences. The prominence of these epistemic elements strongly suggests that physics is not a mere mirror of nature; instead physics is an inference framework designed by humans for the purpose of facilitating their interactions with nature. The founders of quantum theory—Bohr, Heisenberg, Born, etc.—were quite aware of the epistemological and pragmatic elements in quantum mechanics (see e.g., [1]) but they wrote at a time when the tools of quantitative epistemology—the Bayesian and entropic methods of inference—had not yet been sufficiently developed.

Entropic Dynamics (ED) provides a framework for deriving dynamical laws as an application of entropic methods. (The principle of maximum entropy as a method for inference can be traced to E. T. Jaynes. For a pedagogical overview of Bayesian and entropic inference and further references see [2].) In ED, the dynamics is driven by entropy subject to the constraints appropriate to the problem at hand. It is through these constraints that the “physics” is introduced. Such a framework is extremely restrictive. For example, in order to adopt an epistemic view of the quantum state ψ it is not sufficient to merely assert that the probability [image: there is no content] represents a state of knowledge; this is a good start but it is not nearly enough. It is also necessary that the changes or updates of the epistemic ψ—which include both the unitary time evolution described the Schrödinger equation and the collapse of the wave function during measurement—be derived according to the established rules of inference. Therefore, in a truly entropic dynamics we are not allowed to postulate action principles that operate at some deeper sub-quantum level. Instead, the goal is to derive such action principles from entropy principles with suitably chosen constraints.

In this paper we collect and streamline results that have appeared in several publications (see [3,4,5,6] and references therein) to provide a self-contained overview of three types of ED: (1) standard diffusion; (2) Hamiltonian dynamics; and (3) quantum mechanics. First we tackle the case of a diffusion process which serves to address the central concern with the nature of time. In ED “entropic” time is a relational concept introduced as a book-keeping device designed to keep track of the accumulation of change. Time is constructed by (a) introducing the notion of “instants”; (b) showing that these instants are “ordered”; and (c) defining a measure of the interval that separates successive instants. The welcome new feature is that an arrow of time is generated automatically; entropic time is intrinsically directional.

The early formulation of ED [3] involved assumptions about auxiliary variables, the metric of configuration space, and the form of the quantum potential. All these assumptions have been subsequently removed. In [6] it was shown how the constraint that the dynamics be non-dissipative leads to a generic form of Hamiltonian dynamics, with its corresponding symplectic structure and action principle. Thus, in the context of ED action principles are derived; they are useful tools but they are not fundamental.

Different Hamiltonians lead to different dynamical laws. We show how considerations of information geometry provide the natural path to Hamiltonians that include the correct form of “quantum potential” and lead to the Schrödinger equation, and we also identify the constraints that describe motion in an external electromagnetic field.

Here, we focus on the derivation of the Schrödinger equation but the ED approach has been applied to several other topics in quantum mechanics that will not be reviewed here. These include the quantum measurement problem [5,7,8]; momentum, angular momentum, their uncertainty relations, and spin [9,10]; relativistic scalar fields [11]; the Bohmian limit [12]; and the extension to curved spaces [13].

There is vast literature on the attempts to reconstruct quantum mechanics and it is inevitable that the ED approach might resemble them in one aspect or another — after all, in order to claim success all these approaches must sooner or later converge to the same Schrödinger equation. However, there are important differences. For example, the central concern with the notion of time makes ED significantly different from other approaches that are also based on information theory (see e.g., [14,15,16,17,18,19,20,21,22,23,24]). ED also differs from those approaches that attempt to explain the emergence of quantum behavior as the effective statistical mechanics of some underlying sub-quantum dynamics which might possibly include some additional stochastic element (see e.g., [25,26,27,28,29,30,31,32,33,34]). Indeed, ED makes no reference to any sub-quantum dynamics whether classical, deterministic, or stochastic.



2. Entropic Dynamics

As with other applications of entropic methods, to derive dynamical laws we must first specify the microstates that are the subject of our inference — the subject matter — and then we must specify the prior probabilities and the constraints that represent the information that is relevant to our problem. (See e.g., [2].) We consider N particles living in a flat Euclidean space [image: there is no content] with metric [image: there is no content]. We assume that the particles have definite positions [image: there is no content] and it is their unknown values that we wish to infer. (The index [image: there is no content] denotes the particle and [image: there is no content] the spatial coordinates.) For N particles the configuration space is [image: there is no content]N=[image: there is no content]×…×[image: there is no content].

In this work ED is developed as a model for the quantum mechanics of particles. The same framework can be deployed to construct models for the quantum mechanics of fields, in which case it is the fields that are objectively “real” and have well-defined, albeit unknown, values [11].

The assumption that the particles have definite positions is in flat contradiction with the standard Copenhagen notion that quantum particles acquire definite positions only as a result of a measurement. For example, in the ED description of the double slit experiment we do not know which slit the quantum particle goes through but it most definitely goes through either one or the other.

We do not explain why motion happens but, given the information that it does, our task is to produce an estimate of what short steps we can reasonably expect. The next assumption is dynamical: we assume that the particles follow trajectories that are continuous. This means that displacements over finite distances can be analyzed as the accumulation of many infinitesimally short steps, and our first task is to find the transition probability density [image: there is no content] for a single short step from a given initial x∈[image: there is no content]N to an unknown neighboring [image: there is no content]∈[image: there is no content]N. Later we will determine how such short steps accumulate to yield a finite displacement.

To find [image: there is no content] we maximize the (relative) entropy,



S[P,Q]=−∫d[image: there is no content]P([image: there is no content]|x)log[image: there is no content][image: there is no content]



(1)




To simplify the notation in all configuration space integrals we write [image: there is no content], [image: there is no content], and so on. [image: there is no content] is the prior probability. It expresses our beliefs—or more precisely, the beliefs of an ideally rational agent—before any information about the motion is taken into account. The physically relevant information about the step is expressed in the form of constraints imposed on [image: there is no content]—this is the stage at which the physics is introduced.

The prior—We adopt a prior [image: there is no content] that represents a state of extreme ignorance: knowledge of the initial position x tells us nothing about [image: there is no content]. Such ignorance is expressed by assuming that Q([image: there is no content]|x)d[image: there is no content] is proportional to the volume element in [image: there is no content]N. Since the space [image: there is no content]N is flat and a mere proportionality constant has no effect on the entropy maximization we can set Q([image: there is no content]|x)=1. The generalization to curved spaces is straightforward [13]. Another possible matter of concern is that the uniform prior is not normalizable and it is known that improper priors can sometimes be mathematically problematic. Fortunately, in our case no such difficulties arise. For microscopic particles any prior that is sufficiently flat over macroscopic scales turns out to lead to exactly the same physical predictions. We can, for example, use a Gaussian centered at x with a macroscopically large standard deviation and this leads to exactly the same transition probability.

The constraints—The first piece of information is that motion is continuous—motion consists of a succession of infinitesimally short steps. Each individual particle n will take a short step from [image: there is no content] to [image: there is no content]na=[image: there is no content]+Δ[image: there is no content] and we require that for each particle the expected squared displacement,



⟨Δ[image: there is no content]Δxnb⟩[image: there is no content]=[image: there is no content](n=1…N)



(2)




takes some small value [image: there is no content]. Infinitesimally short steps are obtained by taking the limit [image: there is no content]→0. We will assume each [image: there is no content] to be independent of x to reflect the translational symmetry of [image: there is no content]. In order to describe non-identical particles, we assume that the value of [image: there is no content] depends on the particle index n.
The N constraints Equation (2) treat the particles as statistically independent and their accumulation eventually leads to a completely isotropic diffusion. But we know that particles can become correlated and even become entangled. We also know that motion is not normally isotropic; once particles are set in motion they tend to persist in it. This information is introduced through one additional constraint involving a “drift” potential [image: there is no content] that is a function in configuration space, x∈[image: there is no content]N. We impose that the expected displacements Δ[image: there is no content] along the direction of the gradient of ϕ satisfy



⟨ΔxA⟩∂Aϕ=∑n=1NΔ[image: there is no content]∂ϕ∂[image: there is no content]=[image: there is no content]



(3)




where capitalized indices such as [image: there is no content] include both the particle index and its spatial coordinate; ∂A=∂/∂xA=∂/∂[image: there is no content]; and [image: there is no content] is another small, but for now unspecified, position-independent constant.
The introduction of the drift potential ϕ will not be justified at this point. The idea is that we can make progress by identifying the constraints even when their physical origin remains unexplained. This situation is not unlike classical mechanics, where identifying the forces is useful even in situations where their microscopic origin is not understood. We do however make two brief comments. First, in section 9 we shall see that ED in an external electromagnetic field is described by constraints that are formally similar to Equation (3). There we shall show that the effects of the drift potential ϕ and the electromagnetic vector potential [image: there is no content] are intimately related—a manifestation of gauge symmetry—suggesting that whatever ϕ might be, it is as “real” as [image: there is no content]. The second comment is that elsewhere, in the context of a particle with spin, we will see that the drift potential can be given a natural geometric interpretation as an angular variable. This imposes the additional condition that the integral of ϕ over any closed loop is quantized, [image: there is no content] where ν is an integer.

Maximizing [image: there is no content] in Equation (1) subject to the [image: there is no content] constraints Equations (2) and (3) plus normalization yields a Gaussian distribution,



P([image: there is no content]|x)=1ζexp∑n−12[image: there is no content]Δ[image: there is no content]Δxnb[image: there is no content]+[image: there is no content]Δ[image: there is no content]∂ϕ∂xna



(4)




where [image: there is no content] is a normalization constant and the Lagrange multipliers [image: there is no content] and [image: there is no content] are determined from


∂logζ/∂[image: there is no content]=−[image: there is no content]/2and∂logζ/∂[image: there is no content]=[image: there is no content]



(5)




The distribution [image: there is no content] is conveniently rewritten as



P([image: there is no content]|x)=1Zexp−12∑n[image: there is no content][image: there is no content](Δ[image: there is no content]−⟨Δxna⟩)(Δxnb−⟨Δxnb⟩)



(6)




where Z is a new normalization constant. A generic displacement Δ[image: there is no content]=[image: there is no content]na−[image: there is no content] can be expressed as an expected drift plus a fluctuation,


Δ[image: there is no content]=Δ[image: there is no content]+Δwna,where⟨Δ[image: there is no content]⟩=[image: there is no content][image: there is no content]δab∂ϕ∂xnb



(7)






Δwna=0and⟨ΔwnaΔwnb⟩=1[image: there is no content]δab



(8)




From these equations we can get a first glimpse into the meaning of the multipliers [image: there is no content] and [image: there is no content]. For very short steps, as [image: there is no content]→∞, the fluctuations become dominant: the drift is ⟨Δ[image: there is no content]⟩∼O(αn−1) while Δwna∼O(αn−1/2). This implies that, as in Brownian motion, the trajectory is continuous but not differentiable. In the ED approach a particle has a definite position, but its velocity—the tangent to the trajectory—is completely undefined. We can also see that the effect of [image: there is no content] is to enhance or suppress the magnitude of the drift relative to the fluctuations — a subject that is discussed in detail in [12]. However, for our current purposes we can absorb [image: there is no content] into the so far unspecified drift potential, [image: there is no content]ϕ→ϕ, which amounts to setting [image: there is no content]=1.



3. Entropic Time

The goal is to derive dynamical laws as an application of inference methods, although the latter make no reference to time. Therefore, additional assumptions are needed to specify what constitutes “time” in our framework.

The foundation to any notion of time is dynamics. We must first identify a notion of “instant” that properly takes into account the inferential nature of entropic dynamics. Time is then is constructed as a device to keep track of change or, more explicitly, of the accumulation of repeated small changes.


3.1. Time as an Ordered Sequence of Instants

Entropic dynamics is generated by the short-step transition probability [image: there is no content], Equation (6). In the ith step, which takes the system from [image: there is no content] to [image: there is no content]=[image: there is no content], both [image: there is no content] and [image: there is no content] are unknown. Integrating the joint probability, P([image: there is no content],[image: there is no content]), over [image: there is no content] gives



P([image: there is no content])=∫d[image: there is no content]P([image: there is no content],[image: there is no content])=∫d[image: there is no content]P([image: there is no content]|[image: there is no content])P([image: there is no content])



(9)




These equations involve no assumptions—they are true by virtue of the laws of probability. However, if P([image: there is no content]) happens to be the probability of different values of [image: there is no content]at an “instant” labelled t, then we can interpret P([image: there is no content]) as the probability of values of [image: there is no content]at the next “instant” which we will label [image: there is no content]. Accordingly, we write P([image: there is no content])=ρ(x,t) and P([image: there is no content])=ρ([image: there is no content],[image: there is no content]) so that


ρ([image: there is no content],[image: there is no content])=∫dxP([image: there is no content]|x)ρ(x,t)



(10)




Nothing in the laws of probability leading to Equation (9) forces the interpretation Equation (10) on us—this is an independent assumption about what constitutes time in our model. We use Equation (10) to define what we mean by an instant: if the distribution [image: there is no content]refers to one instant t, then the distribution ρ([image: there is no content],[image: there is no content])generated by [image: there is no content]defines what we mean by the “next” instant [image: there is no content]. The iteration of this process defines the dynamics: entropic time is constructed instant by instant: ρ([image: there is no content]) is constructed from [image: there is no content], [image: there is no content] is constructed from ρ([image: there is no content]), and so on.
The inferential nature of the construction can be phrased more explicitly. Once we have decided on the relevant information necessary for predicting future behavior—the distributions [image: there is no content] and [image: there is no content]—we can say that this information defines what we mean by an “instant”. Furthermore, Equation (10) shows that:


	Time is designed in such a way that given the present the future is independent of the past.




An equation such as Equation (10) is commonly employed to define Markovian behavior, in which case it is sometimes known as the Chapman–Kolmogorov equation. Markovian processes are such that once an external notion of time is given, defined perhaps by an external clock, the specification of the state of the system at time t is sufficient to fully determine its state after time t—no additional information about times prior to t is needed. It should be emphasized that we do not make a Markovian assumption. We are concerned with a different problem: we do not use Equation (10) to define a Markovian process in an already existing background time; we use it to construct time itself.



3.2. The Arrow of Entropic Time

The notion of time constructed according to Equation (10) incorporates an intrinsic directionality: there is an absolute sense in which [image: there is no content] is prior and ρ([image: there is no content],[image: there is no content]) is posterior. To construct the time-reversed evolution we just write



ρ(x,t)=∫d[image: there is no content]P(x|[image: there is no content])ρ([image: there is no content],[image: there is no content]),



(11)




where according to the rules of probability theory P(x|[image: there is no content]) is related to [image: there is no content] in Equation (6) by Bayes’ theorem,


P(x|[image: there is no content])=[image: there is no content]ρ([image: there is no content],[image: there is no content])P([image: there is no content]|x).



(12)




Note that this is not a mere exchange of primed and unprimed quantities: [image: there is no content] is the Gaussian distribution, Equation (6), obtained using the maximum entropy method; in contrast, the time-reversed P(x|[image: there is no content]) obtained using Bayes’ theorem, Equation (12), will not in general be Gaussian. The asymmetry between the inferential past and the inferential future is traced to the asymmetry between priors and posteriors.

The subject of the arrow of time has a vast literature (see e.g., [35,36]). The puzzle has been how to explain the asymmetric arrow from underlying symmetric laws of nature. The solution offered by ED is that there are no symmetric underlying laws and the asymmetry is the inevitable consequence of entropic inference. From the point of view of ED, the challenge is not to explain the arrow of time, but rather the reverse, how to explain the emergence of symmetric laws within an intrinsically asymmetric entropic framework. As we shall see below the derived laws of physics—e.g., the Schrödinger equation—are time-reversible but entropic time itself only flows forward.



3.3. Duration: A Convenient Time Scale

To complete the model of entropic time we need to specify the interval [image: there is no content] between successive instants. The basic criterion is that duration is defined so that motion looks simple. From Equations (7) and (8) for short steps (large [image: there is no content]) the motion is dominated by the fluctuations [image: there is no content]. Therefore specifying [image: there is no content] amounts to specifying the multipliers [image: there is no content] in terms of [image: there is no content].

To start, we appeal to symmetry: in order that the fluctuations [image: there is no content] reflect the symmetry of translations in space and time—a time that, just like Newton’s, flows “equably everywhere and everywhen”—we choose [image: there is no content] to be independent of x and t, and we choose [image: there is no content] so that [image: there is no content]∝1/Δt. More explicitly, we write



[image: there is no content]=[image: there is no content]η1[image: there is no content]



(13)




where the proportionality constants have been written in terms of some particle-specific constants [image: there is no content], which will eventually be identified with the particle masses, and an overall constant η that fixes the units of the [image: there is no content]s relative to the units of time and will later be regraduated into ℏ.
Before discussing the implications of the choice Equation (13) it is useful to consider the geometry of the N-particle configuration space, [image: there is no content]N.




4. The Information Metric of Configuration Space

We have assumed that the geometry of the single particle spaces [image: there is no content] is described by the Euclidean metric [image: there is no content]. We can expect that the N-particle configuration space, [image: there is no content]N=[image: there is no content]×…×[image: there is no content], will also have a flat geometry, but the relative contribution of different particles to the metric remains undetermined. Should very massive particles contribute the same as very light particles? The answer is provided by information geometry.

To each point x∈[image: there is no content]N there corresponds a probability distribution [image: there is no content]. Therefore [image: there is no content]N is a statistical manifold and up to an arbitrary global scale factor its geometry is uniquely determined by the information metric,



[image: there is no content]=C∫d[image: there is no content]P([image: there is no content]|x)∂logP([image: there is no content]|x)∂xA∂logP([image: there is no content]|x)∂xB



(14)




where C is an arbitrary positive constant (see e.g., [2]). A straightforward substitution of Equations (6) and (13) into Equation (14) in the limit of short steps ([image: there is no content]→∞) yields


[image: there is no content]=C[image: there is no content]ηΔtδnn′[image: there is no content]=C[image: there is no content]ηΔtδAB



(15)




We see that [image: there is no content] diverges as [image: there is no content]. The reason for this is not hard to find. As the Gaussian distributions [image: there is no content] and P([image: there is no content]|x+Δx) become more sharply peaked and it is easier to distinguish one from the other which translates into a greater information distance, [image: there is no content]→∞. In order to define a distance that remains meaningful for arbitrarily small [image: there is no content] it is convenient to choose [image: there is no content]. In what follows the metric tensor will always appear in combinations such as [image: there is no content]Δt/C. It is therefore convenient to define the “mass” tensor,



[image: there is no content]=ηΔtC[image: there is no content]=[image: there is no content]δAB



(16)




Its inverse,


mAB=CηΔtγAB=1[image: there is no content]δAB



(17)




is called the “diffusion” tensor.
We can now summarize our results so far. The choice Equation (13) of the multipliers [image: there is no content] simplifies the dynamics: [image: there is no content] in Equation (6) is a standard Wiener process. A generic displacement, Equation (7), is



ΔxA=[image: there is no content]Δt+ΔwA



(18)




where [image: there is no content] is the drift velocity,


⟨ΔxA⟩=[image: there is no content]Δtwith[image: there is no content]=η[image: there is no content]δAB∂Bϕ=ηmAB∂Bϕ



(19)




and the fluctuations [image: there is no content] are such that


⟨ΔwA⟩=0and⟨ΔwAΔwB⟩=η[image: there is no content]δABΔt=ηmABΔt



(20)




We are now ready to comment on the implications of the choice of time scale [image: there is no content] and of multipliers [image: there is no content], Equation (13). The first remark is on the nature of clocks: In Newtonian mechanics the prototype of a clock is the free particle, and time is defined so as to simplify the motion of free particles—they move equal distances in equal times. In ED the prototype of a clock is a free particle too—for sufficiently short times all particles are free—and time here is also defined to simplify the description of their motion: the particle undergoes equal fluctuations in equal times.

The second remark is on the nature of mass. The particle-specific constants [image: there is no content] will, in due course, be called “mass” and Equation (20) provides their interpretation: mass is an inverse measure of fluctuations. Thus, up to overall constants the metric of configuration space is the mass tensor and its inverse is the diffusion tensor. In standard QM there are two mysteries: “Why quantum fluctuations?” and “What is mass?” ED offers some progress in that instead of two mysteries there is only one. Fluctuations and mass are two sides of the same coin.

Finally we note the formal similarity to Nelson’s stochastic mechanics [25]. The similarity is to be expected—all theories that converge on the Schrödinger equation must at some point become formally similar—but our epistemic interpretation differs radically from Nelson’s ontic interpretation and avoids the difficulties discussed in [37].



5. Diffusive Dynamics

Equation (10) is the dynamical equation for the evolution of [image: there is no content]. It is written in integral form but it can be written in differential form as a Fokker–Planck (FP) equation (see e.g., [2])



∂tρ=−∂A[image: there is no content]ρ+12ηmAB∂A∂Bρ



(21)




or equivalently as a continuity equation,


∂tρ=−∂Aρ[image: there is no content]



(22)




where


[image: there is no content]=[image: there is no content]+[image: there is no content]



(23)




is the velocity of the probability flow or current velocity and


[image: there is no content]=−ηmAB∂Blogρ1/2



(24)




is called the osmotic velocity—it represents the tendency for probability to flow down the density gradient. Since both [image: there is no content] and [image: there is no content] are gradients, it follows that the current velocity is a gradient too,


[image: there is no content]=mAB∂BΦwhereΦ=η(ϕ−logρ1/2).



(25)




The FP equation,



∂tρ=−∂AρmAB∂BΦ,



(26)




can be conveniently rewritten in the alternative form


∂tρ=δ[image: there is no content]δΦ



(27)




for some suitably chosen functional [image: there is no content]. It is easy to check that the appropriate functional [image: there is no content] is


[image: there is no content][ρ,Φ]=∫dx12ρmAB∂AΦ∂BΦ+F[ρ]



(28)




where the integration constant [image: there is no content] is some unspecified functional of ρ.
With these results we have demonstrated that a specific form of dynamics—a standard diffusion process—can be derived from principles of entropic inference. This diffusive dynamics can be written in different but equivalent ways—Equations (21), (22), (26) and (27) are all equivalent. Next we turn our attention to other forms of dynamics, such as quantum or classical mechanics which require a somewhat different choice of constraints.



6. Hamiltonian Dynamics

The previous discussion has led us to a standard diffusion, in which the density ρ evolves under the influence of some externally fixed drift potential ϕ. However, in quantum dynamics we require a second degree of freedom, the phase of the wave function. The extra degree of freedom is introduced into ED by replacing the constraint of a fixed drift potential ϕ by an evolving constraint in which at each time step the potential ϕ is readjusted in response to the evolving ρ.

To find the appropriate readjustment of ϕ we borrow an idea of Nelson’s [38] and impose that the potential ϕ be updated in such a way that a certain functional, later called “energy”, remains constant. The next challenge is to identify the appropriate functional form of this energy, but before this we make two remarks.

The standard procedure in mechanics is to derive the conservation of energy from the invariance of the action under time translations, but here we do not have an action yet. The logic of our derivation runs in the opposite direction: we first identify the conservation of an energy as the piece of information that is relevant to our inferences, and from it we derive Hamilton’s equations and their associated action principle.

Imposing energy conservation appears to be natural because it agrees with our classical preconceptions of what mechanics is like. But ED is not at all like classical mechanics. Indeed, Equation (18) is the kind of equation (a Langevin equation) that characterizes a Brownian motion in the limit of infinite friction. Therefore in the ED approach to quantum theory particles seem to be subject to infinite friction while suffering zero dissipation. Such a strange dynamics can hardly be called “mechanics”, much less “classical”.

The Ensemble Hamiltonian—The energy functional that codifies the correct constraint is of the form Equation (28). We therefore impose that, irrespective of the initial conditions, the potential ϕ will be updated in such a way that the functional [image: there is no content] in Equation (28) is always conserved,



d[image: there is no content]dt=∫dxδ[image: there is no content]δΦ∂tΦ+δ[image: there is no content]δρ∂tρ=0



(29)




Using Equation (27) we get


d[image: there is no content]dt=∫dx∂tΦ+δ[image: there is no content]δρ∂tρ=0



(30)




We require that [image: there is no content]=const. for arbitrary choices of the initial values of ρ and Φ. From Equation (26) we see that this amounts to imposing d[image: there is no content]/dt=0 for arbitrary choices of [image: there is no content]. Therefore the requirement that [image: there is no content] be conserved for arbitrary initial conditions amounts to imposing that


∂tΦ=−δ[image: there is no content]δρ



(31)




Equations (27) and (31) have the form of a canonically conjugate pair of Hamilton’s equations. The field ρ is a generalized coordinate and Φ is its canonical momentum. The conserved functional [image: there is no content] in Equation (28) will be called the ensemble Hamiltonian. We conclude that non-dissipative ED leads to Hamiltonian dynamics.

Equation (31) leads to a generalized Hamilton–Jacobi equation,



∂tΦ=−12mAB∂AΦ∂BΦ−δFδρ



(32)




The Action, Poisson Brackets, etc.—Now that we have Hamilton’s equations, (27) and (31), we can invert the usual procedure and construct an action principle from which they can be derived. Define the differential



δA=∫dt∫dx∂tρ−δ[image: there is no content]δΦδΦ−∂tΦ+δ[image: there is no content]δρδρ



(33)




and then integrate to get the action


A[ρ,Φ]=∫dt∫dxΦρ˙−[image: there is no content][ρ,Φ]



(34)




By construction, imposing [image: there is no content] leads to Equations (27) and (31).
The time evolution of any arbitrary functional [image: there is no content] is given by a Poisson bracket,



ddtf[ρ,Φ]=∫dxδfδρδ[image: there is no content]δΦ−δfδΦδ[image: there is no content]δρ={f,[image: there is no content]}



(35)




which shows that the ensemble Hamiltonian [image: there is no content] is the generator of time evolution. Similarly, under a spatial displacement [image: there is no content] the change in [image: there is no content] is


[image: there is no content]



(36)




where


P˜a=∫d3Nxρ∑n∂Φ∂[image: there is no content]=∫d3Nxρ∂Φ∂[image: there is no content]



(37)




is interpreted as the expectation of the total momentum, and [image: there is no content] are the coordinates of the center of mass,


[image: there is no content]=1M∑n[image: there is no content][image: there is no content]



(38)




A Schrödinger-Like Equation—We can always combine ρ and Φ to define the family of complex functions,



[image: there is no content]=ρ1/2exp(ikΦ/η)



(39)




where k is some arbitrary positive constant. Then the two coupled Equations (27) and (31) can be written as a single complex Schrödinger-like equation,


iηk∂t[image: there is no content]=−12η2k2mAB∂A∂B[image: there is no content]+12η2k2mAB∂A∂B|[image: there is no content]||[image: there is no content]|[image: there is no content]+δFδρ[image: there is no content]



(40)




The reason for the parameter k will become clear shortly, but even at this stage we can already anticipate that [image: there is no content] will play the role of ℏ.



7. Information Geometry and the Quantum Potential

Different choices of the functional [image: there is no content] in Equation (28) lead to different dynamics. Earlier we invoked information geometry, Equation (14), to define the metric [image: there is no content] induced in configuration space by the transition probabilities [image: there is no content]. To motivate the particular choice of the functional [image: there is no content] that leads to quantum theory we appeal to information geometry once again.

Consider the family of distributions [image: there is no content] that are generated from a distribution [image: there is no content] by pure translations by a vector [image: there is no content], [image: there is no content]. The extent to which [image: there is no content] can be distinguished from the slightly displaced [image: there is no content] or, equivalently, the information distance between [image: there is no content] and [image: there is no content]+d[image: there is no content], is given by



dℓ2=gABd[image: there is no content]dθB



(41)




where


gAB(θ)=∫dx1ρ(x−θ)∂ρ(x−θ)∂[image: there is no content]∂ρ(x−θ)∂θB



(42)




Changing variables [image: there is no content] yields



gAB(θ)=∫dx1[image: there is no content]∂ρ(x)∂xA∂ρ(x)∂xB=IAB[ρ]



(43)




The Functional [image: there is no content]—The simplest choice of functional [image: there is no content] is linear in ρ, F[ρ]=∫dxρV, where [image: there is no content] is some function that will be recognized as the familiar scalar potential. Since ED aims to derive the laws of physics from a framework for inference, it is natural to expect that the Hamiltonian might also contain terms that are of a purely informational nature. We have identified two such tensors: one is the information metric of configuration space [image: there is no content]∝[image: there is no content], another is [image: there is no content]. The simplest nontrivial scalar that can be constructed from them is the trace [image: there is no content]. This suggests



F[ρ]=ξmABIAB[ρ]+∫dxρV



(44)




where [image: there is no content] is a constant that controls the relative strength of the two contributions. The term [image: there is no content] is sometimes called the “quantum” or the “osmotic” potential. This relation between the quantum potential and the Fisher information was pointed out in [39]. From Equation (43) we see that [image: there is no content] is a contribution to the energy such that those states that are more smoothly spread out tend to have lower energy. The case [image: there is no content] leads to instabilities and is therefore excluded; the case [image: there is no content] leads to a qualitatively different theory and will be discussed elsewhere [12].
With this choice of [image: there is no content] the generalized Hamilton-Jacobi Equation (32) becomes



−∂tΦ=12mAB∂AΦ∂BΦ+V−4ξmAB∂A∂Bρ1/2ρ1/2



(45)






8. The Schrödinger Equation

Substituting Equation (44) into Equation (40) gives a Schrödinger-like equation,



iηk∂t[image: there is no content]=−η22k2mAB∂A∂B[image: there is no content]+V[image: there is no content]+η22k2−4ξmAB∂A∂B|[image: there is no content]||[image: there is no content]|[image: there is no content]



(46)




the beauty of which is severely marred by the non-linear last term.
Regraduation—We can now make good use of the freedom afforded by the arbitrary constant k. Since the physics is fully described by ρ and Φ, the different choices of k in [image: there is no content] all describe the same theory. Among all these equivalent descriptions, it is clearly to our advantage to pick the k that is most convenient—a process usually known as “regraduation”. Other notable examples of regraduation include the Kelvin choice of absolute temperature, the Cox derivation of the sum and product rule for probabilities, and the derivation of the sum and product rules for quantum amplitudes [2,15].

A quick examination of Equation (46) shows that the optimal k is such that the non-linear term drops out. The optimal choice, which we denote [image: there is no content], is



[image: there is no content]=(η28ξ)1/2



(47)




We can now identify the optimal regraduated η/[image: there is no content] with Planck’s constant ℏ,


η[image: there is no content]=(8ξ)1/2=ℏ



(48)




and Equation (46) becomes the linear Schrödinger equation,


iℏ∂tΨ=−ℏ22mAB∂A∂BΨ+VΨ=∑n−ℏ22[image: there is no content]∇n2Ψ+VΨ



(49)




where the wave function is [image: there is no content]. The constant ξ=ℏ2/8in Equation (44) turns out to be crucial: it defines the numerical value of what we call Planck’s constant and sets the scale that separates quantum from classical regimes.
The conclusion is that for any positive value of the constant ξ it is always possible to regraduate [image: there is no content] to a physically equivalent but more convenient description where the Schrödinger equation is linear. From the ED perspective the linear superposition principle and the complex Hilbert spaces are important because they are convenient, but not because they are fundamental.



9. ED in an External Electromagnetic Field

In ED the information that is physically relevant for prediction is codified into constraints that reflect that motion is (a) continuous, (b) correlated and directional, and (c) non-dissipative. These constraints are expressed by Equations (2), (3), and (31) respectively. In this section we show that interactions can be introduced by imposing additional constraints.

As an explicit illustration, we show that the effect of an external electromagnetic field is modelled by a constraint on the component of displacements along a certain direction represented by the vector potential [image: there is no content](x). For each particle n we impose the constraint



⟨Δxa⟩[image: there is no content](xn)=[image: there is no content],(n=1…N)



(50)




where [image: there is no content] is a particle-dependent constant that reflects the strength of the coupling to [image: there is no content].
The resemblance between Equation (50) and the drift potential constraint, Equation (3), is very significant—as we shall see shortly it leads to gauge symmetries—but there also are significant differences. Note that Equation (3) is a single constraint acting in the N-particle configuration space—it involves the drift potential [image: there is no content] with x∈[image: there is no content]N. In contrast, Equation (50) is N constraints acting in the 1-particle space—the vector potential [image: there is no content](xn) is a function in 3D space, xn∈[image: there is no content].

Except for minor changes the development of ED proceeds as before. The transition probability [image: there is no content] that maximizes the entropy [image: there is no content], Equation (1), subject to Equations (2), (3) and (50) and normalization, is



P([image: there is no content]|x)=1ζexp−∑n12[image: there is no content][image: there is no content]Δ[image: there is no content]Δxnb−[image: there is no content]∂ϕ∂[image: there is no content]−[image: there is no content][image: there is no content](xn)Δ[image: there is no content]



(51)




which includes an additional set of Lagrange multipliers [image: there is no content]. Next use Equations (13) and (16) to get


P([image: there is no content]|x)=1ζexp−12ηΔt[image: there is no content]ΔxAΔxB−∂Aϕ−1ηAAΔxA



(52)




where we have absorbed [image: there is no content] into ϕ, [image: there is no content]ϕ→ϕ, and written


AA(x)=η[image: there is no content][image: there is no content](xn)



(53)




as a vector in configuration space. As in Equation (18), a generic displacement [image: there is no content] can be expressed in terms of a expected drift plus a fluctuation, ΔxA=[image: there is no content]Δt+ΔwA, but the drift velocity now includes a new term,


[image: there is no content]=mABη∂Aϕ−AA



(54)




The fluctuations [image: there is no content], Equation (20), remain unchanged.
A very significant feature of the transition probability [image: there is no content] is its invariance under gauge transformations,



∂ϕ∂[image: there is no content]→∂ϕ˜∂[image: there is no content]=∂ϕ∂[image: there is no content]+1[image: there is no content]∂χ(xn)∂[image: there is no content]



(55)






[image: there is no content](xn)→A˜a(xn)=[image: there is no content](xn)+1α″∂χ(xn)∂[image: there is no content]



(56)




Note that these transformations are local in space. (The vector potential [image: there is no content](xn) and the gauge function [image: there is no content] are functions in space.) They can be written in the N-particle configuration space,


ϕ→ϕ˜=ϕ+1ηχ¯



(57)






AA→A˜A=AA+∂Aχ¯



(58)




where


χ¯(x)=∑nχ(xn)



(59)




The accumulation of many small steps is described by a Fokker–Planck equation which can be written either as a continuity equation, Equation (22), or in its Hamiltonian form, Equation (27). As might be expected, the current velocity [image: there is no content], Equation (25), and the ensemble Hamiltonian [image: there is no content], Equation (28), must be suitably modified,



[image: there is no content]=mAB∂BΦ−ABwithΦ=η(ϕ−logρ1/2)



(60)




and


[image: there is no content][ρ,Φ]=∫dx12ρmAB∂AΦ−AA∂BΦ−AB+ρV+ℏ28ρmAB∂Aρ∂Bρ



(61)




As a shortcut here, we have adopted the same functional [image: there is no content] motivated by information-geometry, Equation (44), and set [image: there is no content]. The new FP equation now reads,



∂tρ=−∂AρmAB∂BΦ−AB



(62)




The requirement that [image: there is no content] be conserved for arbitrary initial conditions amounts to imposing the second Hamilton equation, Equation (31), which leads to the Hamilton–Jacobi equation,



∂tΦ=−12mAB∂AΦ−AA∂BΦ−AB+V−ℏ22mAB∂A∂Bρ1/2ρ1/2



(63)




Finally, we combine ρ and Φ into a single wave function, [image: there is no content], to obtain the Schrödinger equation,



iℏ∂t[image: there is no content]=−ℏ22mAB(∂A−iℏAA)(∂B−iℏAB)[image: there is no content]+V[image: there is no content]



(64)




We conclude with two comments. First, the covariant derivative



DA=∂A−iℏAA=∂∂[image: there is no content]−iℏη[image: there is no content][image: there is no content](xn)



(65)




in Equation (64) can be written in the standard notation,


DA=∂∂[image: there is no content]−i[image: there is no content]ℏc[image: there is no content](xn)



(66)




where [image: there is no content] is the electric charge of particle n in units where c is the speed of light. Comparing Equation (65) with Equation (66) allows us to interpret the Lagrange multipliers


[image: there is no content]=[image: there is no content]ηc



(67)




in terms of the electric charges [image: there is no content] and the speed of light c. Thus, in ED electric charge [image: there is no content] is essentially a Lagrange multiplier [image: there is no content] that regulates the response to the external electromagnetic potential [image: there is no content].
The second comment is that the derivation above is limited to static external potentials, [image: there is no content] and ∂t[image: there is no content]=0, so that energy is conserved. This limitation is easily lifted. For time-dependent potentials the relevant energy condition must take into account the work done by external sources: we require that the energy increase at the rate



d[image: there is no content]dt=∂[image: there is no content]∂t



(68)




The net result is that Equations (62)–(64) remain valid for time-dependent external potentials.



10. Some Remarks and Conclusions

Are there any new predictions?—Our goal has been to derive dynamical laws, and in particular quantum theory, as an example of entropic inference. This means that, to the extent that we succeed and derive quantum mechanics and not some other theory, we should not expect predictions that deviate from those of the standard quantum theory — at least not in the nonrelativistic regime discussed here. However, the motivation behind the ED program lies in the conviction that it will eventually allow us to extend it to other realms, such as gravity or cosmology, where the status of quantum theory is more questionable.

The Wallstrom objection—An important remaining question is whether the Fokker–Planck and the generalized Hamilton–Jacobi equations, Equations (27) and (31), are fully equivalent to the Schrödinger equation. This point was first raised by Wallstrom [40,41] in the context of Nelson’s stochastic mechanics [25] and concerns the single- or multi-valuedness of phases and wave functions. Briefly, the objection is that stochastic mechanics leads to phases Φ and wave functions Ψ that are either both multi-valued or both single-valued. Both alternatives are unsatisfactory: quantum mechanics forbids multi-valued wave functions, while single-valued phases can exclude physically relevant states (e.g., states with non-zero angular momentum). Here we do not discuss this issue in any detail except to note that the objection does not apply once particle spin is incorporated into ED. As shown by Takabayasi [42], a similar result holds for the hydrodynamical formalism. The basic idea is that, as mentioned earlier, the drift potential ϕ should be interpreted as an angle. Then the integral of the phase [image: there is no content] over a closed path gives precisely the quantization condition that guarantees that wave functions remain single-valued even for multi-valued phases.

Epistemology vs. ontology—Dynamical laws have been derived as an example of entropic dynamics. In this model “reality” is reflected in the positions of the particles and our “limited information about reality” is represented in the probabilities as they are updated to reflect the physically relevant constraints.

Quantum non-locality— ED may appear classical because no quantum probabilities were introduced. But this is not so. Probabilities, in this approach, are neither classical nor quantum; they are tools for inference. Phenomena that would normally be considered non-classical, such as non-local correlations, are the natural result of including the quantum potential term in the ensemble Hamiltonian.

On dynamical laws—Action principles are not fundamental; they are convenient ways to summarize the dynamical laws derived from the deeper principles of entropic inference. The requirement that an energy be conserved is an important piece of information (i.e., a constraint) which will probably receive its full justification once a completely relativistic extension of entropic dynamics to gravity is developed.

On entropic vs. physical time—The derivation of laws of physics as examples of inference led us to introduce the informationally motivated notion of entropic time, which includes assumptions about the concepts of instant, simultaneity, ordering, and duration. It is clear that entropic time is useful, but is this the actual, real, “physical” time? The answer is yes. By deriving the Schrödinger equation (from which we can obtain the classical limit) we have shown that the t that appears in the laws of physics is entropic time. Since these are the equations that we routinely use to design and calibrate our clocks, we conclude that what clocks measure is entropic time. No notion of time that is in any way deeper or more “physical” is needed. Most interestingly, the entropic model automatically includes an arrow of time.
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