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Abstract: In this paper we investigate statistical manifolds with almost quaternionic
structures. We define the concept of quaternionic Kähler-like statistical manifold and
derive the main properties of quaternionic Kähler-like statistical submersions, extending in
a new setting some previous results obtained by K. Takano concerning statistical manifolds
endowed with almost complex and almost contact structures. Finally, we give a nontrivial
example and propose some open problems in the field for further research.
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1. Introduction

It is well known that the concept of statistical manifold arises naturally from divergencies—like
Kullback–Leibler relative entropy—in statistics, information theory and related fields [1,2]. On the
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other hand, the notion of statistical submersion between statistical manifolds was introduced in 2001 by
N. Abe and K. Hasegawa [3], the authors generalizing some basic results of B. O’Neill [4,5] concerning
Riemannian submersions and geodesics. Later, K. Takano defined the concepts of Kähler-like statistical
manifold and Kähler-like statistical submersion [6], Sasaki-like statistical manifold and Sasaki-like
statistical submersion [7], and obtained several geometric properties. Particularly relevant examples of
statistical manifolds are the exponential families, whose points are probability densities of exponential
form depending on a finite number of parameters. For some important exponential families, like the
multinomial distribution, the multivariate normal distribution, and the Dirichlet and von Mises–Fisher
distributions, it is proved in [8] that they admit almost complex structures. Also, in [9] H. Matsuzoe
and J. Inoguchi investigate the extensions of statistical structures on manifolds to their tangent bundles,
proving that the tangent bundle of a flat statistical manifold has a natural almost complex statistical
structure with Norden metric. Moreover, in [10] the author considers the statistical model of the
multivariate normal distribution as the Riemannian manifold and constructs an interesting example of
statistical submersion.

We remark that a complex version of the notion of statistical structure was also considered in [11],
where the author derived a condition for the curvature of a statistical manifold to admit a kind of
standard hypersurface. On the other hand, the existence of symplectic structures on statistical manifolds
was investigated in [12], where the author obtained a duality relation between the Fubini–Study
metric on a projective space and the Fisher metric on a statistical model on a finite set. Other
interesting results concerning the geometry of statistical manifolds were recently obtained in [13–21].
In this paper, we investigate very natural kind of statistical manifold, namely those endowed with
almost quaternionic structures, extending the results of K. Takano in a new setting and obtaining new
curvature properties of statistical submersions. In particular, we generalize some previous results of
S. Ianuş et al. [22] concerning Riemannian submersions between quaternionic manifolds. Recall that
an almost quaternionic structure on a smooth manifold M is a 3-dimensional subbundle of End(TM)

which is locally spanned by an almost hypercomplex structure, i.e., three almost complex structures
satisfying the quaternionic identities [23]. We also note that the quaternionic structures generalize many
relevant properties of 4-dimensional semi-Riemannian manifolds to higher 4n-dimensional manifolds,
some of them being relevant for mathematical physics, with important applications in string theory,
solitons, theory of liquid crystals, gravity and general relativity (see [24,25] and references therein).

The present work is organized as follows. Section 2 contains definitions and basic properties of
statistical manifolds and statistical submersions. In Section 3 we investigate statistical manifolds with
almost quaternionic structures and introduce the concept of quaternionic Kähler-like statistical manifold.
Section 4 is devoted to the study of the quaternionic Kähler-like statistical submersions. This paper ends
with conclusions and several open problems in the field for further research.

2. Preliminaries

Let (M, g) be a semi-Riemannian manifold and ∇ a torsion free linear connection on M . Then ∇ is
said to be compatible to g if the covariant derivative∇g is symmetric. Moreover, the pair (∇, g) is called
a statistical structure on M and the triple (M,∇, g) is said to be a statistical manifold.
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For a statistical manifold (M,∇, g), let ∇∗ be an affine connection on M such that

Eg(F,G) = g(∇EF,G) + g(F,∇∗EG), (1)

for all E,F,G ∈ Γ(TM), where Γ(TM) denotes the set of smooth tangent vector fields on M . Then
it is easy to see that the affine connection ∇∗ is torsion free and ∇∗g is symmetric. This connection,
∇∗, is called the dual connection of ∇; the triple (M,∇∗, g) is said to be the dual statistical manifold of
(M,∇, g); and the triple (∇,∇∗, g) is called the dualistic structure on M [26]. We note that the concept
of dual connections, whose name is motivated by the fact that (∇∗)∗ = ∇, was originally introduced
by S. Amari in his seminal work [1] and later applied in various fields, like statistical physics, neural
networks and information theory.

It is also easy to check that the curvature tensor R∗ of ∇∗ vanishes if and only if the curvature tensor
R of∇ does, and then the triple (∇,∇∗, g) is called the dually flat structure [2]. In fact, the two curvature
tensors R and R∗ on M , defined with the sign convention

R(E,F )G = [∇E,∇F ]G−∇[E,F ]G, R
∗(E,F )G = [∇∗E,∇∗F ]G−∇∗[E,F ]G,

are related by [7]
g(R(E,F )G,H) = −g(G,R∗(E,F )H), (2)

for all E,F,G,H ∈ Γ(TM).
We remark that the geometry of statistical manifolds simply reduces to the usual semi-Riemannian

geometry when∇ and∇∗ coincide [27]. Moreover, we note that on a statistical manifold one can define
a parametric family of torsion free connections {∇α}α∈R, called α-connections, by

∇α =
1 + α

2
∇+

1− α
2
∇∗. (3)

We remark that ∇(1) = ∇, ∇(−1) = ∇∗ and ∇(0) is the Levi–Civita connection of the metric g. This
family of α-connections has been investigated in [28], where the author obtains that∇α is equiaffine for
any real number α, provided that (∇,∇∗, g) is a dually flat structure, as previously noted in [29].

Let (M, g) and (M ′, g′) be two connected semi-Riemannian manifolds of index s and s′ respectively,
with 0 ≤ s ≤ dimM , 0 ≤ s′ ≤ dimM ′ and s′ ≤ s. A semi-Riemannian submersion is a smooth map
π : M →M ′ which is onto and satisfies the following conditions [30]:

(i) π∗|p : TpM → Tπ(p)M
′ is onto for all p ∈M ;

(ii) The fibers π−1(p′), p′ ∈M ′, are semi-Riemannian submanifolds of M ;

(iii) π∗ preserves scalar products of vectors normal to fibers.

It is well known that the vectors tangent to fibers are called vertical and those normal to fibers are
called horizontal. We denote by V the vertical distribution, byH the horizontal distribution and by v and
h the vertical and horizontal projection. An horizontal vector field X on M is said to be basic if X is
π-related to a vector field X ′ on M ′. It is clear that every vector field X ′ on M ′ has a unique horizontal
lift X to M and X is basic. Moreover, if X and Y are basic vector fields on M , π-related to X ′ and Y ′

on M ′, then we have the following properties (see [5,31]):
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(i) g(X, Y ) = g′(X ′, Y ′) ◦ π;

(ii) h[X, Y ] is a basic vector field and π∗h[X, Y ] = [X ′, Y ′] ◦ π.

Next we consider (M,∇, g) a statistical manifold, (M ′, g′) a semi-Riemannian manifold and let π :

M →M ′ be a semi-Riemannian submersion. We denote by ∇̂ and ∇̂∗ the affine connections induced on
fibers by the dual connections∇ and ∇∗ from M . We remark that ∇̂ and ∇̂∗ are well-defined, namely

∇̂UV = v∇UV, ∇̂∗UV = v∇∗UV (4)

for all U, V ∈ Γ(V). Moreover, we can easily see that ∇̂ and ∇̂∗ are torsion free and conjugate to each
other with respect to the induced metric on fibers. On the other hand, if we define S := ∇−∇∗, then S
is symmetric, i.e., SEF = SFE, for all vector fields E,F on M , and we also find [6]:

2g(∇XY, Z) =g(SXY, Z) +Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ])
(5)

for all X, Y, Z ∈ Γ(H). Similarly, if ∇′ and ∇′∗ are affine connections on M ′, then we can define
S ′ = ∇′−∇′∗ and we have that hSXY is basic and π-related to S ′X′Y

′ if and only if h∇XY (or h∇∗XY )
is basic and π-related to∇′X′Y ′ (or∇∗X′Y ′).

Definition 1. [7] Let (M,∇, g) and (M ′,∇′, g′) be two statistical manifolds. Then a semi-Riemannian
submersion π : M →M ′ is said to be a statistical submersion if π∗(∇XY )p = (∇′X′Y ′)π(p) for all basic
vector fields X, Y on M π-related to X ′ and Y ′ on M ′, and p ∈M .

If π : M → M ′ is a statistical submersion, then we can define as well as in the semi-Riemannian
case [32], two (1,2) tensor fields T and A on M , by the formulas:

T (E,F ) = TEF = h∇vEvF + v∇vEhF (6)

and similarly:
A(E,F ) = AEF = v∇hEhF + h∇hEvF (7)

for any E,F ∈ Γ(TM).
We can also define, in a similar way, the tensor fields T ∗ and A∗ on M by replacing ∇ by ∇∗ in

Equations (6) and (7). It is easy to check now that T ∗∗ = T and A∗∗ = A. Moreover, using the above
Definitions one can easily prove the following result.

Lemma 1. [3,6] T , A, T ∗ and A∗ have the following properties:

TUV = TVU, T
∗
UV = T ∗VU, (8)

AXY − AYX = A∗XY − A∗YX = v[X, Y ], (9)

AXY = −A∗YX, (10)

∇XY = h∇XY + AXY, ∇∗XY = h∇∗XY + A∗XY, (11)

∇UV = TUV + ∇̂UV, ∇∗UV = T ∗UV + ∇̂∗UV, (12)
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∇UX = h∇UX + TUX, ∇∗UX = h∇∗UX + T ∗UX, (13)

∇XU = AXU + v∇XU, ∇∗XU = A∗XU + v∇∗XU, (14)

g(TUV,X) = −g(V, T ∗UX), (15)

g(AXY, U) = −g(Y,A∗XU), (16)

for all X, Y ∈ Γ(H) and U, V ∈ Γ(V).

Therefore, we deduce that T (or A) vanishes identically if and only if T ∗ (or A∗) vanishes identically.
Moreover, from (9) we deduce that if A = 0 then H is integrable. We note that if TUV = 0, for all
U, V ∈ Γ(V) then π is called a statistical submersion with isometric fibers [6].

We also recall that N. Abe and K. Hasegawa [3] provided necessary and sufficient conditions for the
total space of a semi-Riemannian submersion to be a statistical manifold. In particular, we note that if
π : M →M ′ is a statistical submersion then any fiber is a statistical manifold (see also [6,7]).

3. Statistical Manifolds with almost Quaternionic Structures

Let M be a differentiable manifold and assume that there is a rank 3-subbundle σ of End(TM) such
that a local basis {J1, J2, J3} exists on sections of σ satisfying for all α ∈ {1, 2, 3}:

J2
α = −Id, JαJα+1 = −Jα+1Jα = Jα+2, (17)

where Id denotes the identity tensor field of type (1, 1) on M and the indices are taken from {1, 2, 3}
modulo 3. Then the bundle σ is called an almost quaternionic structure on M and {J1, J2, J3} is called
a canonical local basis of σ. Moreover, (M,σ) is said to be an almost quaternionic manifold [33]. It is
easy to see that any almost quaternionic manifold is of dimension 4m, m ≥ 1.

A semi-Riemannian metric g on M is said to be adapted to the almost quaternionic structure σ if
it satisfies:

g(JαE, JαF ) = g(E,F ), α ∈ {1, 2, 3} (18)

for all vector fields E,F on M and any canonical local basis {J1, J2, J3} of σ. Moreover, (M,σ, g) is
said to be an almost Hermite quaternionic manifold [33].

Definition 2. Let (M, g) be a semi-Riemannian manifold endowed with an almost quaternionic structure
σ which has for any canonical local basis {J1, J2, J3} of σ three other tensor fields {J∗1 , J∗2 , J∗3} of type
(1, 1) on M , satisfying

g(JαE,F ) + g(E, J∗αF ) = 0, α ∈ {1, 2, 3} (19)

for all vector fields E,F on M . Then (M,σ, g) is said to be an almost Hermite-like quaternionic
manifold. Moreover, if (M,σ, g) is equipped with a torsion free linear connection ∇ such that ∇g is
symmetric, then (M,∇, σ, g) is said to be an almost Hermite-like quaternionic statistical manifold.

We remark that {J∗1 , J∗2 , J∗3} defined by (19) satisfy (17) and hence we can consider the subbundle σ∗

of End(TM) locally spanned by {J∗1 , J∗2 , J∗3}. We also see that

(J∗α)∗ = Jα
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and
g(JαE, J

∗
αF ) = g(E,F ),

for all vector fields E,F on M and α ∈ {1, 2, 3}.

Definition 3. Let (M,∇, σ, g) be an almost Hermite-like quaternionic statistical manifold. Then
(M,∇, σ, g) is said to be a quaternionic Kähler-like statistical manifold if for any local basis J1, J2, J3
of σ there exist three locally defined 1-forms ω1, ω2, ω3 on M such that we have for all α ∈ {1, 2, 3}:

(∇EJα)F = ωα+2(E)Jα+1F − ωα+1(E)Jα+2F, (20)

for all vector fields E,F on M , where the indices are taken from {1, 2, 3} modulo 3.

We note that if ω1 = ω2 = ω3 = 0 in (20), then (M,∇, σ, g) is said to be a locally hyper-Kähler-like
statistical manifold. Moreover, if J1, J2, J3 are globally defined on M , then (M,∇, J1, J2, J3, g) is said
to be a hyper-Kähler-like statistical manifold.

We remark that, if in the above definition ∇ is the Levi–Civita connection of g, then (M,∇, σ, g),
usually denoted by (M,σ, g), is called a quaternionic Kähler manifold [23,33,34].

Definition 4. Let (M,∇, σ, g) be a quaternionic Kähler-like statistical manifold. If the curvature tensor
R with respect to∇ satisfies

R(E,F )G =
c

4
{g(F,G)E − g(E,G)F +

3∑
α=1

[g(G, JαF )JαE − g(G, JαE)JαF ]

+
3∑

α=1

[g(E, JαF )− g(JαE,F )]JαG}, (21)

for all vector fields E,F,G on M , where c is a real constant, then the statistical manifold (M,∇, σ, g)

is said to be of type quaternionic space form.

We remark that changing Jα for J∗α in (21), we get the curvature tensor R∗ with respect to the dual
connection∇∗. If (M,σ, g) is a quaternionic Kähler manifold satisfying (21), thenM is said to be a space
of constant quaternionic sectional curvature, or quaternionic space form. It is known that quaternionic
space forms are locally congruent to either a quaternionic projective space HP n(c) of quaternionic
sectional curvature c > 0, a quaternionic Euclidean space Hn of null quaternionic sectional curvature or
a quaternionic hyperbolic space HHn(c) of quaternionic sectional curvature c < 0 [35].

Theorem 1. (M,∇, σ, g) is a quaternionic Kähler-like statistical manifold if and only if
(M,∇∗, σ∗, g) is.

Proof. First of all, it is obvious that the triple (M,σ, g) is an almost Hermite-like quaternionic manifold
if and only if (M,σ∗, g) is. Now, we take a canonical local basis {J1, J2, J3} of σ. Then, using (1) and
(19) we derive for all α ∈ {1, 2, 3}:

g((∇GJα)E,F ) = g(∇GJαE,F )− g(Jα∇GE,F )

= −g(JαE,∇∗GF ) +Gg(JαE,F ) + g(∇GE, J
∗
αF )

= g(E, J∗α∇∗GF ) +Gg(JαE,F ) +Gg(E, J∗αF )− g(E,∇∗GJ∗αF )

= −g(E, (∇∗GJ∗α)F ), (22)
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for all vector fields E,F,G on M , where the indices are taken from {1, 2, 3} modulo 3.
On the other hand, making use of (19)and (20), we obtain

g((∇GJα)E,F ) = ωα+2(G)g(Jα+1E,F )− ωα+1(G)g(Jα+2E,F )

= −ωα+2(G)g(E, J∗α+1F ) + ωα+1(G)g(E, J∗α+2F )

= g(E,−ωα+2(G)J∗α+1F + ωα+1(G)J∗α+2F ). (23)

From (22) and (23) we deduce

(∇∗GJ∗α)F = ωα+2(G)J∗α+1F − ωα+1(G)J∗α+2F,

for all vector fields F,G on M and for all α ∈ {1, 2, 3}, where the indices are taken from
{1, 2, 3} modulo 3. Therefore we conclude that (M,∇∗, σ∗, g) is a quaternionic Kähler-like statistical
manifold.

Corollary 1. (M,∇, σ, g) is a hyper-Kähler-like statistical manifold if and only if (M,∇∗, σ∗, g) is.

Proof. The assertion is clear from Theorem 1.

Remark 1. We note that the concepts of almost Hermite-like quaternionic manifold and quaternionic
Kähler-like statistical manifold proposed in this section generalize the classical notions of almost
quaternionic Hermitian manifold and quaternionic Kähler manifold [23,33]. In fact, an almost
quaternionic Hermitian manifold is a particular case of almost Hermite-like quaternionic manifold with
J∗α = Jα, α ∈ {1, 2, 3}, and hence with σ = σ∗. Similarly, any quaternionic Kähler manifold is
a particular case of quaternionic Kähler-like statistical manifold, where ∇ = ∇∗ is the Levi–Civita
connection of the metric g.

Example 1. Let (M,∇, φ, g) be an almost Hermite-like statistical manifold (see [6,36] for basic
definitions and examples). Next we prove that TM can be endowed with an almost Hermite-like
quaternionic statistical structure. First of all, we note that the tangent bundle TM can be equipped
with the Sasaki metric G defined by

G(A,B) = g(KA,KB) + g(π∗A, π∗B),

for all vector fields A,B on TM , where π is the natural projection of TM onto M and K is the
connection map associated with the Levi–Civita connection of the metric g (see [37]).

We note that if X ∈ Γ(TM), then there exists exactly one vector field on TM , denoted by Xh and
called the horizontal lift, and denoted Xv and called the vertical lift of X , such that we have for all
U ∈ TM :

π∗X
h
U = Xπ(U), π∗X

v
U = 0π(U), KX

h
U = 0π(U), KX

v
U = Xπ(U).

We recall now that, according to Theorem 3 in [38], one can define a torsion free linear connection
∇′ on TM compatible to the Sasaki metric G. Hence (TM,∇′, G) is a statistical manifold. Moreover,
using the almost complex structure φ on M , we can also define three tensor fields J1, J2, J3 on TM by
the equalities: {

J1X
h = Xv

J1X
v = −Xh

,
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{
J2X

h = (φX)v

J2X
v = (φX)h

,

{
J3X

h = −(φX)h

J3X
v = (φX)v

.

It is easy to see that J1, J2, J3 satisfy the quaternionic identities (17) and, defining σ to be the
3-subbundle of End(TM) generated by (Jα)α=1,2,3, we derive immediately that (TM,∇′, σ,G) is an
almost Hermite-like quaternionic statistical manifold. Moreover it can be proved that (TM,∇′, σ,G)

is a hyper-Kähler-like statistical manifold if and only if (M,∇, φ, g) is a flat Kähler-like statistical
manifold.

4. Quaternionic Kähler-like Statistical Submersions

Definition 5. Let (M,σ, g) and (M ′, σ′, g′) be two almost Hermite-like quaternionic manifolds. Then:

i. A map f : M →M ′ is called a (σ, σ′)−holomorphic map at a point p ∈M if for any J ∈ σp exists
J ′ ∈ σ′f(p) such that f∗ ◦ J = J ′ ◦ f∗. Moreover, we say that f is a (σ, σ′)-holomorphic map if f is a
(σ, σ′)-holomorphic map at each point p ∈M .

ii. A semi-Riemannian submersion π : M → M ′ which is a (σ, σ′)-holomorphic map is called an
almost Hermite-like quaternionic submersion.

iii. A statistical submersion π : M → M ′ between two almost Hermite-like quaternionic statistical
manifolds (M,∇, σ, g) and (M ′,∇′, σ′, g′) such that π is a (σ, σ′)-holomorphic map is said to be an
almost Hermite-like quaternionic statistical submersion.

iv. An almost Hermite-like quaternionic statistical submersion π : M → M ′, where (M,∇, σ, g)

is a quaternionic Kähler-like statistical manifold, is called a quaternionic Kähler-like statistical
submersion. In particular, if (M,∇, σ, g) is a (locally) hyper-Kähler-like statistical manifold, then
π is called a (locally) hyper-Kähler-like statistical submersion.

Remark 2. We can easily check that:

i. A map f : M → M ′ between two almost Hermite-like quaternionic manifolds is a
(σ, σ′)-holomorphic map at a point p ∈M if and only if for any canonical local basis {J1, J2, J3} of
σp there exists a canonical local basis {J ′1, J ′2, J ′3} of σ′f(p) such that f∗◦Jα = J ′α◦f∗, for α = 1, 2, 3.

ii. A semi-Riemannian submersion π : M → M ′ between two almost Hermite-like quaternionic
statistical manifolds (M,∇, σ, g) and (M ′,∇′, σ′, g′) is a (σ, σ′)-holomorphic map if and only if
it is a (σ∗, σ′∗)-holomorphic map.

Property 1. Let π : M →M ′ be an almost Hermite-like quaternionic statistical submersion. Then:

i. V and H are invariant under each J ∈ σp and J∗ ∈ σp, ∀p ∈ M . Moreover, J and J∗ commute
with the horizontal and vertical projectors.
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ii. If X is a basic vector field on M π-related to X ′ on M ′, then JαX (or J∗αX) is a basic vector field
π-related to J ′αX

′ (or J ′∗αX
′) on M ′, for α = 1, 2, 3.

Proof. i. Since π is a (σ, σ′)-holomorphic map, we obtain for any V ∈ Γ(V):

π∗JαV = J ′απ∗V = 0

and thus we conclude that Jα(V) ⊆ V , ∀α ∈ {1, 2, 3}, where {J1, J2, J3} is a canonical local basis
of σ. Similarly it follows that J∗α(V) ⊆ V , ∀α ∈ {1, 2, 3}. On the other hand, for any X ∈ Γ(H)

and V ∈ Γ(V), we derive
g(JαX, V ) = −g(X, J∗αV ) = 0

and thus we conclude that Jα(H) ⊆ H, ∀α ∈ {1, 2, 3}, where {J1, J2, J3} is a canonical local basis
of σ. In a similar way, we obtain that J∗α(H) ⊆ H, ∀α ∈ {1, 2, 3}. The second part of the statement
now follows immediately.

ii. If X is a basic vector field, then from i. JαX and J∗αX are horizontal vector fields. On the other
hand, since π is a (σ, σ′)-holomorphic map and X is π-related to X ′ on M ′ we derive that

π∗JαX = J ′απ∗X = J ′αX
′

and similarly
π∗J

∗
αX = J ′∗α π∗X = J ′∗αX

′

for α = 1, 2, 3 and the conclusion is now clear.

Theorem 2. If π : M → M ′ is an almost Hermite-like quaternionic statistical submersion, then the
fibers are almost Hermite-like quaternionic statistical manifolds.

Proof. Let F = π−1(p′) be a fiber of the submersion, where p′ ∈M ′. Then it is known from [3,6,7] that
(F, ∇̂, ĝ = g|F ) is a statistical manifold. Moreover, for any canonical local basis {J1, J2, J3} of σ, we
can define

Ĵα := Jα|F , α = 1, 2, 3,

and we can consider the subbundle σ̂ locally spanned by {Ĵ1, Ĵ2, Ĵ3}. Now it follows immediately that
(F, ∇̂, σ̂, ĝ) is an almost Hermite-like quaternionic statistical manifold.

Theorem 3. If π : M → M ′ is a quaternionic Kähler-like statistical submersion, then (M ′,∇′, σ′, g′)
is a quaternionic Kähler-like statistical manifold. Moreover, the fibers are also quaternionic Kähler-like
statistical manifolds.

Proof. If we take two basic vector fields X, Y on M π-related to X ′, Y ′ on M ′, then using Proposition 1
we derive:

(∇′X′J ′α)Y ′ = ∇′X′(J ′αY ′)− J ′α(∇′X′Y ′)
= ∇′π∗X(π∗(JαY ))− J ′απ∗(∇XY )

= π∗(∇X(JαY ))− π∗(Jα(∇XY ))

= π∗((∇XJα)Y ). (24)
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Since (M,∇, σ, g) is a quaternionic Kähler-like statistical manifold, we have (20) and we can define
1-forms ω′1, ω

′
2, ω

′
3 on M ′ by:

ω′α(X ′) := ωα(X), α = 1, 2, 3, (25)

for any local vector field X ′ on M ′ and X a basic vector field on M such that π∗X = X ′.
Next, making use of (20), (24) and (25), we obtain:

(∇′X′J ′α)Y ′ = π∗(ωα+2(X)Jα+1Y − ωα+1(X)Jα+2Y )

= ω′α+2(X
′)J ′α+1Y

′ − ω′α+1(X
′)J ′α+2Y

′, (26)

where the indices are taken from {1, 2, 3} modulo 3. Therefore (M ′,∇′, σ′, g′) is a quaternionic
Kähler-like statistical manifold.

Next, we consider F = π−1(p′), p′ ∈M ′, a fiber of the submersion. Then, from Theorem 2, it follows
that (F, ∇̂, σ̂, ĝ) is an almost Hermite-like quaternionic statistical manifold. Using (12) we derive for all
U, V ∈ Γ(V):

(∇UJα)V = (∇̂UJα)V + (TUJαV − JαTUV ), α = 1, 2, 3. (27)

On the other hand, from (20) we have

(∇UJα)V = ωα+2(U)Ĵα+1V − ωα+1(U)Ĵα+2V, α = 1, 2, 3. (28)

From (27) and (28) we deduce

(∇̂UJα)V = ωα+2(U)Ĵα+1V − ωα+1(U)Ĵα+2V, α = 1, 2, 3 (29)

and
TUJαV = JαTUV, α = 1, 2, 3. (30)

Finally, from (29) it follows that (F, ∇̂, σ̂, ĝ) is a quaternionic Kähler-like statistical manifold and the
proof is now complete.

Corollary 2. If π : M → M ′ is a locally hyper-Kähler-like statistical submersion, then (M ′,∇′, σ′, g′)
is a locally hyper-Kähler-like statistical manifold. Moreover, the fibers are also locally hyper-Kähler-like
statistical manifolds.

Proof. The assertion is immediate from Theorem 3.

Theorem 4. Let π : M →M ′ be a quaternionic Kähler-like statistical submersion. Then:

i. TUV = 0, for all U, V ∈ Γ(V);

ii. AXY = 0, for all X, Y ∈ Γ(H).
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Proof. Since T has the symmetry property for vertical vector fields (cf. (8)), using (17) and (30) we
derive for all U, V ∈ Γ(V) and α = 1, 2, 3:

TUV + TJαUJαV = TUV + JαTJαUV

= TUV + JαTV JαU

= TUV + J2
αTVU

= TUV − TVU
= 0.

Therefore, we deduce

TUV + TJ1UJ1V = TUV + TJ2UJ2V = TUV + TJ3UJ3V = 0. (31)

In particular, from (30) it follows that

TJ1UJ1V = TJ2UJ2V. (32)

On the other hand, replacing in (31) U by J1U and V by J1V , we derive

TJ1UJ1V + TJ2UJ2V = 0. (33)

Now, from (32) and (33) we deduce that

TJ1UJ1V = TJ2UJ2V = 0 (34)

and finally, from (31) and (34) we conclude that TUV = 0, for all U, V ∈ Γ(V).
Assertion ii. follows in a similar way.

Corollary 3. If π : M → M ′ is a quaternionic Kähler-like statistical submersion, then π has
isometric fibers.

Proof. The assertion is an obvious consequence of Theorem 4.

Corollary 4. If π : M → M ′ is a quaternionic Kähler-like statistical submersion, then A∗XY = 0, for
all X, Y ∈ Γ(H).

Proof. The conclusion follows immediately from Theorem 4 and (10).

Corollary 5. If π : M → M ′ is a quaternionic Kähler-like statistical submersion, then the horizontal
distribution is completely integrable.

Proof. This assertion is clear from Theorem 4 and (9).

Theorem 5. Let π : M → M ′ be a quaternionic Kähler-like statistical submersion. If the total space
of the submersion is of type quaternionic space form, then the base space of the submersion is of type
quaternionic space form and each fiber is a totally geodesic submanifold of M of type quaternionic
space form.
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Proof. The conclusions follow easily using the analogues of the O’Neill equations for a statistical
submersion (Theorem 2.1 in [6]) and taking account of Theorem 4.

Example 2. Let (M,∇, σ, g) be an almost Hermite-like quaternionic statistical manifold. Then we can
define a torsion free linear connection ∇′ on TM such that (TM,∇′, G) is a statistical manifold [38],
where G is the Sasaki metric. Next, we consider for any canonical local basis {J1, J2, J3} of σ the
following tensor fields on TM , denoted by J ′1, J

′
2, J

′
3:

J ′αX
h = (JαX)h, J ′αX

v = (JαX)v, α = 1, 2, 3.

Defining now the vector bundle σ′ over TM generated by {J ′1, J ′2, J ′3} (see [22,39]), one can easily
conclude that (TM,∇′, σ′, g′) is an almost Hermite-like quaternionic statistical manifold. Moreover, we
remark that

π∗J
′
αX

v = π∗(JαX)v = 0 = Jαπ∗X
v

and
π∗J

′
αX

h = π∗(JαX)h = JαX = Jαπ∗X
h.

Hence π∗J ′α = Jαπ∗, α = 1, 2, 3, and we conclude that the canonical projection π : TM → M is
a (σ, σ′)-holomorphic map. Therefore π is an almost Hermite-like quaternionic statistical submersion.
Moreover, it follows that π is a locally hyper-Kähler-like statistical submersion if and only if (M,∇, σ, g)

is a flat locally hyper-Kähler-like statistical manifold.

5. Conclusions and Future Research

It is well known there is a deep relationship between statistics and differential geometry. A first step
in this connection was given by C.R. Rao [40], who introduced a Riemannian metric in the space of
probability distributions, providing a general framework for discussing problems of statistical inference,
information loss and estimation, and giving an impulse to construct a geometrical theory of statistics
(see, e.g., [41–48]). The most natural frame in this context is the concept of a statistical manifold [49].
As it was pointed out in [50], the statistical manifolds are naturally associated to a family of affine-metric
geometries and one can obtain interesting properties relating self-parallel curves to the relative entropy.
Recently, H.V. Lê [51] proved that any smooth statistical manifold can be embedded into the space of
probability measures on a finite set, giving a positive answer to an open problem of S. Amari and S.L.
Lauritzen (see [2]). Therefore, any smooth statistical manifold is a finite-dimensional statistical model.

In the present paper, we introduced the notions of almost Hermite-like quaternionic statistical
manifold and quaternionic Kähler-like statistical submersion, obtaining several properties. We also
proved that the tangent bundle of an almost Hermite-like quaternionic statistical manifold has a
natural almost Hermite-like quaternionic statistical structure and showed that the canonical projection
provides us a very natural example of an almost Hermite-like quaternionic statistical submersion.
We believe that the concepts investigated in this work can be also studied in some new settings,
namely for statistical manifolds endowed with quaternionic structures of second kind [52] (also
called paraquaternionic structures [39]), Kenmotsu structures [53], 3-Sasakian structures [54], almost
para-Hermitian structures [55,56] and almost para-contact structure [57,58]. We note that all these
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structure are of great interest not only in differential geometry, but also in various fields of science and
engineering, such as string theory, integrable systems, quantum systems, statistical mechanics, motion
planning, robot control and sensing, sensor networks, and digital signal processing. We look forward to
studying some of these problems in detail later. Finally, we would like to note another five open problems
in the field for further research.

Problem 1. To investigate if it is possible to construct an infinite family of quaternionic Kähler-like
statistical structures on the tangent bundle of an almost Hermite-like quaternionic statistical manifold.
A possible answer could be obtained by deforming the almost Hermite-like quaternionic statistical
structure defined in Example 2 in a similar way to [59].

Problem 2. To construct examples of locally hyper-Kähler-like statistical manifolds which are not
hyper-Kähler ones. A possible solution could be to deform the almost Hermite-like quaternionic
statistical structure from Example 1.

Problem 3. To investigate under what conditions the exponential families, including the well-known
multinomial distribution, negative multinomial distribution, and multivariate normal distribution, admit
hyper-Kähler or quaternionic Kähler structure.

Problem 4. To investigate the behavior of submanifolds in statistical manifolds of type quaternionic
space form, as a quaternionic version of some recent results from [13] concerning submanifolds in
statistical manifolds of constant curvature.

Problem 5. To define affine connections compatible with a hypercosymplectic structure [60] and to
obtain necessary and sufficient conditions for two compatible connections to form a dualistic structure,
as an extension of the results from [61]. Moreover, to define and investigate statistical submersions
from almost Hermite-like quaternionic statistical submersions onto statistical manifolds equipped with
hypercosymplectic structures.
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